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Abstract: The Cattell–Horn–Carroll (CHC) model is based on psychometric cognitive ability research
and is the most empirically supported model of cognitive ability constructs. This study is one in a
series of cross-national comparisons investigating the equivalence and generalizability of psycho-
logical constructs which align with the CHC model. Previous research exploring the cross-cultural
generalizability of cognitive ability measures concluded that the factor analytic models of cognitive
abilities generalize across cultures and are compatible with well-established CHC constructs. The
equivalence of the psychological constructs, as measured by the Wechsler Intelligence Scale for
Children-Fifth Edition (WISC-V), has been established across English-speaking samples. However,
few studies have explored the equivalence of psychological constructs across non-English speaking,
nationally representative samples. This study explored the equivalence of the WISC-V five-factor
model across standardization samples from France, Spain, and the US. The five-factor scoring model
demonstrated excellent fit across the three samples independently. Factorial invariance was investi-
gated and the results demonstrated strict factorial invariance across France, Spain, and the US. The
results provide further support for the generalizability of CHC constructs across Western cultural
populations that speak different languages and support the continued use and development of the
CHC model as a common nomenclature and blueprint for cognitive ability researchers and test
developers. Suggestions for future research on the CHC model of intelligence are discussed.

Keywords: Wechsler Intelligence Scale for Children-Fifth Edition; measurement invariance; confir-
matory factor analysis; construct validity; intelligence

1. Introduction

Generalizing the measurement of psychological constructs across populations requires
the demonstration of measurement invariance (AERA et al. 2014; ITC 2017). Further, this
demonstration allows for the generalizability of construct validity in terms of convergent
and discriminant validity (Jewsbury and Bowden 2017). Construct validity can be defined
as how well a set of tests, or an assessment battery, accurately measures the constructs
of interest (e.g., working memory, fluid reasoning etc.). Establishing construct validity
thus provides evidence that the same construct is evident across different populations and
that the construct can be accurately measured and compared. However, psychological
constructs are not directly measurable (i.e., latent) but are estimated using various tech-
niques, including confirmatory factor analysis (CFA). In this way, a factor model provides a
description of the statistical and theoretical relationship between observed test scores and
the corresponding latent variables or constructs.
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Cognitive ability assessment is founded on psychometric theory and factor analysis.
Spearman (1904) initially theorized that a single factor ‘g’ (or general intelligence, or
Spearman’s ‘g’) would explain the intercorrelations across intelligence tests. Thurstone
(1938) later proposed that many factors account for the variance across intelligence tests.
The theory of cognitive ability later grew with the work of Cattell (1943, 1963), who
suggested that ‘g’ could be divided into two methods of problem-solving, a ‘fluid’ and
‘crystallized’ intelligence (Gf-Gc Theory). This theory was then developed by the work
of his student, Horn (1986), who expanded the model and suggested there are multiple
constructs of intelligence. However, it was the seminal work of Carroll (1993) and the
factor analysis of over 450 data sets that led to a hierarchical model of cognitive abilities.
From this work emerged what is a widely accepted and empirically supported model of
intelligence, the Cattell–Horn–Carroll (CHC) model (McGrew 2009; Schneider and McGrew
2018). Carroll’s factor analytic research demonstrated that a vast array of cognitive ability
tests are not unidimensional but, instead, comprise a finite set of positively correlated
(positive manifold) latent abilities (Schneider and Newman 2015). The CHC framework
describes a three-stratum model of intelligence, with general intelligence at the top, broad
abilities (first-order factors) at the second stratum, and narrow, mostly tests-specific abilities,
at stratum one. It is the first-order factors, or broad abilities under the CHC framework,
which are identified by CFA and are of most importance in terms of construct validity
(Jewsbury and Bowden 2017). For a comprehensive explanation and review of the current
literature on the CHC model, see Schneider and McGrew (2018).

As a test of construct validity, measurement invariance analysis uses CFA across
multiple groups. Evaluation of the invariance of the factor structure across groups is
described as ‘factorial invariance’ (Meredith 1993; Widaman and Olivera-Aguilar 2023).
If established, factorial invariance implies that test scores and latent factors (constructs)
are generalizable across groups (Horn and McArdle 1992). Thus, establishing factorial
invariance is necessary to allow for the comparison of constructs across groups and allows
for the meaningful comparison of latent mean scores (Widaman and Reise 1997). Factorial
invariance also provides evidence that psychological constructs, which align with the broad
abilities in the CHC model, are present across diverse populations.

Factorial invariance analysis is conducted in an increasingly restrictive hierarchical
approach first described by Widaman and Reise (1997), (cf. Bontempo and Hofer 2007;
Meredith and Teresi 2006; Vandenberg and Lance 2000). First, configural invariance requires
only that the same indicator–factor pattern displays good fit across groups and, if found,
provides evidence that the psychological constructs and organization of items to constructs
are the same across groups (Horn and McArdle 1992). Second, weak factorial invariance
adds the constraint of the equality of factor loadings and, if established, suggests that the
unit of measurement does not differ across groups, thus allowing for the generalization
of construct validity interpretations (Widaman and Reise 1997). Third, strong factorial
invariance adds the constraint of equality of intercepts across groups and, if found, permits
a meaningful comparison of latent factor mean scores across groups (Meredith 1993). Lastly,
strict factorial invariance adds the constraint of equality of residuals across groups and,
if established, implies that the common factors are the cause of any group differences in
means and variances (Widaman and Reise 1997).

The Wechsler Intelligence Scale for Children-Fifth Edition (WISC-V) is the latest edition
of the most widely used assessment of intelligence for children aged 6–16 in the world
(Kaufman et al. 2016). The current fifth edition of the WISC consists of 15 subtests in
the French and Spanish versions or 16 subtests in the US factor analytic version and, in
every national version, measures five factors or primary indexes of intelligence which
closely align with broad cognitive abilities in the CHC framework (Reynolds and Keith
2017; Schneider and McGrew 2018). See Table 1 for definitions of the WISC-V factors and
corresponding CHC broad abilities.
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Table 1. CHC Broad Abilities and WISC-V Factor Correspondence.

CHC Broad Ability Corresponding WISC-V Factor Broad Ability and Factor Definition

Comprehension
Knowledge (Gc) Verbal Comprehension (VC) The ability to comprehend and communicate culturally

valued knowledge

Visual Processing (Gv) Visual Spatial (VS) The ability to use mental imagery to perceive, discriminate, and
manipulate mental images to solve problems

Fluid Reasoning (Gf) Fluid Reasoning (FR) The use of deliberate and controlled mental processes requiring
focused attention to solve novel problems

Working Memory
Capacity (Gwm) Working Memory (WM) The ability to maintain and manipulate information

in active attention

Processing Speed (Gs) Processing Speed (PS) The ability to control attention to automatically, quickly, and
fluently perform simple repetitive cognitive tasks

Note. CHC definitions adapted from Schneider and McGrew (2018).

The current study is one in a series of studies of cross-national comparisons inves-
tigating the equivalence and generalizability of CHC psychological constructs using the
WISC-V. First, a systematic review exploring the cross-cultural generalizability of cognitive
ability measures concluded that the factor analytic models of cognitive ability assessments
consistently generalize across cultures and that the factor analytic models of intelligence
assessments are compatible with the CHC constructs (Wilson et al. 2023b). Second, the
equivalence of the psychological constructs, as measured by the WISC-V, was established
via strict metric factorial invariance, initially across Australia and New Zealand (A&NZ)
and the US (Wilson et al. 2023c) and then across the UK, A&NZ, and the US (Wilson et al.
2023a). These cross-national English-speaking factorial invariance results provide strong ev-
idence that the CHC-compatible constructs, as measured by the WISC-V, can be generalized
across A&NZ, the UK, and the US. However, few studies have explored the equivalence of
psychological constructs across non-English speaking nationally representative samples.

The measurement invariance of a five-factor CHC-aligned model using the WISC-IV
was investigated across the French standardization sample and a stratified French-speaking
Swiss sample (Reverte et al. 2015). While weak factorial invariance was established, sug-
gesting the CHC factors have the same meaning across samples, strong invariance was not
demonstrated, possibly because of the relatively modest sample size of the French-speaking
Swiss sample.

Further, factorial invariance was examined across English and Italian standardization
samples using the cognitive assessment system (CAS), which is based on the PASS (plan-
ning, attention, simultaneous, and successive) theory of intelligence (Naglieri et al. 2013).
The results supported strict factorial invariance across samples based on the guidelines
of interpreting adequate model fit of the root mean error of approximation (RMSEA) <.08
(Browne and Cudeck 1993). However, the findings of a joint CFA of the CAS and the
CHC broad abilities, as measured by the Woodcock-Johnson Test of Cognitive Abilities-3rd
edition, did not support the construct validity of the CAS as a measure of the PASS theory
of individual difference in intelligence but, rather, it has been suggested that the PASS
model may have significant overlap with CHC constructs (Keith et al. 2001; Schneider and
McGrew 2018).

Additionally, the factorial invariance of the three-factor structure of the Wechsler
Memory Scale-Revised was tested across standardization data sets from the US and Japan
(Omura and Sugishita 2004). The results supported the configural invariance of the three
memory dimensions (attention/concentration, immediate memory, and delayed recall),
providing evidence for the generalizability of the memory constructs; however, weak
factorial invariance was rejected.

Recently, the factorial invariance of cognitive abilities was explored using translated
versions of the NIH Toolbox Cognitive battery (NIHTB-CB) across adult community sam-
ples of three low- and middle-income countries; Guatemala, the Philippines, and South
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Africa (Wray et al. 2020). While configural invariance was concluded, weak invariance
could not be established, suggesting the unit of measurement of the factors was different
across samples.

Lastly, the NIHTB-BC was used to investigate the factorial invariance of English-
speaking and Spanish-speaking adults taken from the normative sample data set (Karr
et al. 2022). Strict invariance was found across languages for a two-factor model (labelled
crystallized cognition and fluid cognition) allowing for the direct comparison of latent
means across groups. However, both samples were recruited and assessed within the
United States, restricting the cross-cultural generalizability of the findings.

The present study aimed to investigate the generalizability of the CHC broad abil-
ity constructs, as measured by the WISC-V, across French, Spanish, and US nationally
representative samples. Based on the previous research investigating the factorial invari-
ance of the WISC-V across countries (see van de Vijver et al. 2019; Wilson et al. 2023a,
2023c), it was hypothesized that the WISC-V would display factorial invariance (i.e., weak,
strong, or strict factorial invariance) across French and US, Spanish and US, and French
and Spanish normative samples. Establishing factorial invariance across three different
language-speaking nationally representative samples would provide further support for
the cross-national and cross-cultural generalizability of the CHC model. The implications
of the construct validity of the WISC-V test scores across France, Spain, and the US, and the
WISC-V factor compatibility with Carroll’s three-stratum theory, will be discussed.

2. Methods
2.1. Participants

This study used three nationally representative standardization samples from the
normative data projects of the WISC-V France, WISC-V Spain, and WISC-V US. The French
sample included 1049 participants, stratified by parental level of education, gender, age, and
region, matched to the French census. The Spanish sample included 1008 children, stratified
by parental level of education, gender, age, and region, matched to the Spanish census.
The US sample was 2200 children representative of the US English-speaking population
by age, gender, race, parental education level, and geographic region, according to the
US census. All participants across the three samples were aged 6–16 and were divided
evenly into 11 age groups by year of age. See Table 2 for demographic information on
these nationally representative samples. Previous measurement invariance CFA analysis
on the WISC-V Australia and New Zealand determined that samples over 500 provide
a beta-power greater than the commonly accepted 0.80, alpha equal to 0.05, to achieve
minimal bias and adequate statistical power to identify a multifactorial structure (Wilson
et al. 2023c).

Table 2. Demographic Characteristics of the French, Spanish, and US Samples.

Variable France Spain US

Total Ns 1049 1008 2200
Female/males; n (%) 532/517 (49.3/50.7) 500/508 (50.4/49.6) 1100/1100 (50.0/50.0)

Mean age in years (SD) range 11.2 (3.1) 6–16 11.3 (3.2) 6–16 11.5 (3.2) 6–16

Note. Standardization data from the Wechsler Intelligence Scale for Children-Fifth Edition (WISC-V). Copyright ©
2014, 2015 NCS Pearson, Inc. Used with permission. All rights reserved.

2.2. Procedure

Participants in the French sample were administered all 15 subtests as part of the
French WISC-V standardization. French data collection ran from 2014 to 2015. All ex-
aminers were experienced and trained psychologists. For further information on the test
development and test procedures, see the WISC-V French Manual (Wechsler 2015b). Par-
ticipants in the Spanish sample were administered all 15 subtests as part of the Spanish
WISC-V normative development. Data collection for the standardization of the Spanish
WISC-V ran from 2014 to 2015. All examiners were trained and registered psychologists.



J. Intell. 2023, 11, 159 5 of 22

Additional information on the development of the Spanish WISC-V and study design can
be found in the WISC-V Spanish Manual (Wechsler 2015a). Lastly, the US standardiza-
tion sample participants were administered all 21 subtests of the WISC-V US normative
development. Six of the 21 subtests from the US WISC-V were not included as part of
published versions of the French and Spanish WISC-V (picture concepts, naming speed
literacy, naming speed quantity, immediate symbol translation, delayed symbol transla-
tions, and recognition symbol translation) and were thus excluded from all analyses. Data
collection for the normative development of the US WISC-V ran from 2013 to 2014. See the
technical and interpretative manual for full details on the development of the US WISC-V
(Wechsler 2014).

2.3. Analysis

Baseline estimation:
Subtest raw score data for the three samples were used for all analyses as any invari-

ance found in the raw scores will also apply to any transformed scores, such as scaled or
index scores (Widaman and Reise 1997). The use of raw score data instead of scaled score
data may result in higher factor correlations due to the extended range of scores (Bowden
et al. 2007). Data were cleaned and 22 cases from the French sample, seven cases from the
Spanish, and three cases from the US sample were removed because of missing data in
one or more subtests. Confirmatory factor analysis (CFA) using Mplus 8.5 (Muthén and
Muthén 2020) was first undertaken to establish the best fitting model in the French, Spanish,
and US normative samples independently to serve as a baseline model for further tests of
measurement invariance. CFA was used in preference to exploratory methods as CFA has
been shown to provide less biased estimates of the factor correlations (Little et al. 1999).
Maximum likelihood estimation was used as it is robust to minor departures in normality
(Brown 2015). All CFA models were identified by fixing the loading of the first subtest
(indicator) in each factor to unity by default to become the marker indicator.

A one-factor model, where all 15 subtests load onto a single factor (analogous to Spear-
man’s g), was investigated first in each sample to serve as a simple baseline comparison
for further, more complex models (Agelink van Rentergem et al. 2020; Kline 2016). A
previously published four-factor model using the WISC-IV was next examined for each
sample and the model fit was compared to the simple one-factor model. The four-factor
model comprised of a (i) verbal comprehension (Gc) factor which loaded onto similarities,
vocabulary, information, and comprehension; (ii) a perceptual organization (Gv and Gf
composite) factor which loaded onto block design, visual puzzles, matrix reasoning, and
figure weights; (iii) a working memory (Gwm) factor which loaded on to arithmetic, digit
span, picture span, and letter number sequencing; and (iv) a processing speed factor (Gs)
which loaded on coding, symbol search, and cancellation (Schneider and McGrew 2018;
Sudarshan et al. 2016; Weiss et al. 2013).

Next, the five-factor scoring model of the WISC-V, published in the respective manuals
for France and Spain, was investigated in the French, Spanish, and US samples, comprising
verbal comprehension (VC or Gc), visual spatial (VS or Gv), fluid reasoning (FR or Gf),
working memory (WM or Gwm), and processing speed (PS or Gs) factors (see Table 1 for
CHC broad abilities to WISC-V factors correspondence).

To determine the best fitting baseline model for further tests of measurement invari-
ance, the chi-square test was reported; however, the test has been shown to be overly
sensitive in large samples, so the emphasis was placed on the alternative fit indices, namely,
root mean error of approximation (RMSEA), comparative fit index (CFI), Tucker–Lewis in-
dex (TLI), standardized root mean square residual (SRMR), gamma hat, Akaike information
criterion (AIC), and Bayesian information criterion (BIC), in line with current recommen-
dations (Brown 2015; Cheung and Rensvold 2002; Marsh et al. 2004; Meade et al. 2008).
Like chi-square, AIC, BIC, SRMR and gamma hat (a modified version of the goodness-of-fit
index) indices, are absolute fit indices that do not use an alternative model as a base for
comparison (Hu and Bentler 1999). Good fit of the baseline model was supported by an
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SRMR value below 0.080, an RMSEA below 0.060, and CFI, TLI, and gamma hat values
greater than 0.950 (Brown 2015; Hu and Bentler 1999). In regard to AIC and BIC fit indices,
the models with the lowest values were considered to fit the data better compared to the
other models (Brown 2015). The difference in chi-square was reported to test if the more
complex factor solution showed significantly better fit compared to the less complex nested
model (Gorsuch 2003).

When determining the baseline model for further tests of measurement invariance,
second-order models were not reported due to the statistical limitations of second-order
model identification. A model must be identified in order for the unknown parameters
in the model to be estimated. Underidentification, where there are more parameters than
correlations, can lead to improper solutions such as standardised values over 1.0 or negative
error variances, sometimes called Heywood cases (Bentler and Chou 1988; Chen et al. 2001).
Negative error variances are impossible values in the population and are a symptom of
structural misspecification (Kolenikov and Bollen 2012). While model identification is a
common problem in factor analysis, no sufficient conditions of model identification are
known (Bollen and Davis 2009). However, a distinction exists between algebraic underiden-
tification and empirical underidentification. Empirical underidentification occurs when,
in principle, the system of equations may be algebraically identified (i.e., positive degrees
of freedom); however, in practice, there is no solution for a parameter due to insufficient
covariance information (Kenny 1979; Kenny and Milan 2012; Rindskopf 1984). Empirical
underidentification in factor analysis can occur if a factor loading approaches zero, the
correlations between two factors is high (e.g., higher than 0.9), or a model is specified with
a factor with only two indicators in a larger model, such as higher order models (Bentler
and Chou 1988; Kenny 1979; Rindskopf 1984). While empirical underidentification can
be difficult to identify (Bentler and Chou 1988), it is suggested that when the analytic
software “declares a model unidentified that is algebraically identified, the most likely
cause is empirical under-identification” (Rindskopf 1984, p. 117). Further, the software
may produce statistically impossible population estimates such as negative variances or
correlations greater than one (Kenny and Milan 2012). Encountering errors in software
outputs, such as negative variances, should not be ignored and reflects an improper so-
lution, and is usually a consequence of poor model identification (Newsom et al. 2023).
When negative estimates of error variances occur, researchers are encouraged to screen for
empirical underidentification (Chen et al. 2001; Kenny 1979; Rindskopf 1984).

In this current study, an inspection of higher order model outputs in all three samples
revealed negative residual variance on the fluid reasoning factor and a correlation greater
than one between the second-order ‘g’ and the fluid reasoning factor. Further, the output
produced a warning describing the covariance matrix as not positive definite and an
‘undefined’ fluid reasoning factor. Inspection of factor correlations found several factor
correlations above 0.9, approaching 1, suggesting multicollinearity resulting in unstable
parameter estimates when running a higher order model. As such, we concluded the higher
order model was empirically underidentified and was not investigated further in this study.

However, statistical underidentification does not invalidate any theoretical higher
order ‘g’ models or use of the FSIQ (Bowden et al. 2008a; Rindskopf and Rose 1988; Wilson
et al. 2023c); instead, it only illustrates that the data conditions do not provide an optimal
opportunity to estimate and evaluate higher order models. Importantly, if measurement
invariance is established in any first-order model, then measurement invariance is implied
to hold for any second-order factor or summary score that is based on the same first-order
factor pattern (Widaman and Reise 1997).

Further, bifactor models, where all subtests additionally load onto an uncorrelated
(orthogonal) higher order ‘g’ factor, were not explored as bifactor models in these dataalso
have the issue of empirical underidentification leading to statistical estimation problems.
Such estimation problems typically require arbitrary fixing of parameter values to obtain
admissible solutions (Canivez et al. 2017, 2020, 2021; Decker 2020; Fenollar-Cortés and
Watkins 2019; Markon 2019; Wilson et al. 2023c). Ideally, well-identified factor analytic
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models require at least three indicators per factor for the identification of higher order
models. However, additional indicators would necessitate the development of additional
subtests which load onto the relevant factor, with the consideration that testing time
constraints will often make higher order model specification impractical (Bowden et al.
2008b; Rindskopf and Rose 1988). Further, both higher order and bifactor models have
been shown to have the same pattern of relations as the first-order models between subtests
and factors using the WISC-V US standardization sample (Reynolds and Keith 2017).

Despite these statistical limitations, researchers have reported second-order and bifac-
tor models across some of the different versions of the WISC-V. However, in one example,
the researchers failed to describe how five-factor, bifactor models with only two indicators
loading onto a first-order factor were able to achieve convergence, making replication
difficult (Lecerf and Canivez 2018). Alternatively, researchers have reported arbitrarily
constraining to equality parameter estimates for factors with only two indicators per factor
to achieve the identification of five-factor bifactor models (Canivez et al. 2017, 2020, 2021;
Fenollar-Cortés and Watkins 2019). For example, when investigating the construct validity
of the WISC-V US, the researchers imposed equality constraints to achieve convergence
with five-factor bifactor models where “Some first-order factors were underidentified be-
cause they were measured by only two subtests. In those CFA, the two subtests were
constrained to equality before estimating bifactor models to ensure identification” (Canivez
et al. 2017, p. 461). Paradoxically, on the next page in the same article, an equality constraint
to facilitate the convergence of five-factor higher order models was described as follows “this
‘only masks the underlying problem’ (Hair, Anderson, Tatham, and Black, 1998, p. 610)
indicating that these models ‘should not be trusted’ (Kline 2016, p. 237). Accordingly, nei-
ther fit indices nor loadings for these models are reported” (Canivez et al. 2017, p. 462). In
other words, the very authors reporting bifactor models of WISC-V data acknowledge that
the estimation problems produce models that should not be trusted to be good solutions.
In addition, the above studies all fail to test whether simpler, first-order, and identified
models without post hoc ‘fixes’, provided good fit to the data.

Further, an exploratory factor analysis (EFA) was not undertaken in this current
research. Firstly, CFA provides many advantages over EFA, such as the ability to undertake
significance testing between competing models (Brown 2015; Gorsuch 2003). Additionally,
CFA uses previous research and theory to apply theory-based solutions (Gorsuch 2003).
Further, CFA offers more flexibility over EFA and facilitates the investigation of a much
greater variety of models (Widaman 2012). Other advantages of CFA over EFA include
the ability to test more parsimonious solutions and, importantly for this current study the
ability to evaluate the equivalence of measurement models across groups (Brown 2015).
Lastly, with respect to the replication crisis in psychological research, CFA allows for the
direct comparison of different models, whereas EFA does not.

Factorial invariance analysis:
Once the first-order baseline model was established across French, Spanish, and

US samples, a multigroup CFA was then used to test for factorial invariance. First, the
French and US samples were compared, followed by the Spanish and US, and, lastly, the
French and Spanish. We used the increasingly restrictive hierarchical approach to factorial
invariance, whereby we started with an unconstrained model, other than holding the
pattern of factor loadings identical as a test of configural invariance (Bontempo and Hofer
2007; Meredith and Teresi 2006; Widaman and Reise 1997). If configural invariance was
established, we added the constraint of equal factor loadings as a test of weak invariance.
If weak invariance was found, we added the constraint of equality of intercepts as a test of
strong invariance. Lastly, if strong invariance was concluded, we tested for strict invariance
by additionally holding the indicator residuals to equality across samples. Configural
invariance was supported by fit indices showing a CFI, TLI, and Gamma-hat greater than
0.950 and an SRMR of less than 0.080 (Hu and Bentler 1999; Marsh et al. 2004). Evidence
for weak, strong, and strict invariance would be supported by changes in CFI or TLI of not
greater than 0.010, change in RMSEA of less than or equal to 0.015, or changes in SRMR
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less than or equal to 0.030 (Chen 2007; Cheung and Rensvold 2002; French and Finch 2006).
However, poorer measurement quality, for example, the magnitude of the factor loadings,
has been shown to lead to worse data-model fit and, as such, the quality of measurement
was also considered when testing invariance across groups (Kang et al. 2016). Further,
strict factorial invariance, which assumes equivalent residual variances across groups, may
be overly restrictive and is unnecessary for construct generalization (Horn and McArdle
1992). Next, structural invariance was investigated across the three pair-wise comparisons.
Additional constraints were placed on the strict invariance model, first, equality of factor
variances; second, equality of factor variances and factor covariances; and, last, equality
of latent means (Widaman and Reise 1997). Loss of model fit was compared to the strict
invariance model using the same criteria for the assessment of factorial invariance.

3. Results
3.1. Confirmatory Factor Analysis Baseline Model Estimation

The results of the baseline model are shown in Table 3. The French, Spanish, and US
samples were investigated independently. The one-factor model, whereby all 15 subtests
loaded onto a Spearman’s ‘g’ factor, used as a baseline for more complex models, did not
fit the data well in all three samples.

Table 3. Goodness-of-Fit Statistics for the Baseline Model Estimation of the WISC-V French, Spanish,
and US Samples.

Baseline
Model χ2 df ∆χ2 ∆df CFI TLI Gamma-

Hat SRMR
RMSEA (Lower
Bound, Upper
Bound; 95%)

AIC BIC

One factor
France 1334.350 * 90 0.912 0.898 0.861 0.043 0.116 (0.111, 0.122) 93,910.184 94,132.232
Spain 1225.464 * 90 0.916 0.902 0.869 0.042 0.112 (0.107, 0.118) 90,618.389 90,839.283

US 2917.176 * 90 0.914 0.899 0.853 0.042 0.120 (0.116, 0.123) 199,978.585 200,234.853

Four factors
France 431.911 * 84 902.439 ** 6 0.975 0.964 0.956 0.027 0.064 (0.058, 0.069) 93,019.745 93,271.399
Spain 380.619 * 84 844.845 ** 6 0.978 0.973 0.963 0.024 0.059 (0.053, 0.066) 89,785.545 90,035.891

US 714.006 * 84 2203.170 ** 6 0.981 0.976 0.964 0.021 0.058 (0.055, 0.062) 197,787.414 198,077.851

Five factors
France 357.634 * 80 74.277 ** 4 0.980 0.974 0.965 0.025 0.058 (0.052, 0.064) 92,953.468 93,224.860
Spain 273.884 * 80 106.735 ** 4 0.986 0.981 0.975 0.022 0.049 (0.043, 0.056) 89,686.809 89,956.791

US 517.620 * 80 196.386 ** 4 0.987 0.982 0.974 0.019 0.050 (0.046, 0.054) 197,599.029 197,912.246

Note. CFI = comparative fit index; TLI = Tucker–Lewis index; SRMR = standardized root mean square residual;
RMSEA = root mean square error of approximation, AIC = Akaike information criterion; BIC = Bayesian informa-
tion criterion. * p < 0.05 for χ2 test. ** p < 0.05 for ∆χ2 compared to the previous model. Standardization data are
from the Wechsler Intelligence Scale for Children-Fifth Edition (WISC-V). Copyright ©2014, 2015 NCS Pearson,
Inc. Used with permission. All rights reserved.

Next, the four-factor model was investigated and displayed improved model fit for all
three samples compared to the one-factor model. Further, the fit indices showed that the
four-factor model was a good fit to the data.

Lastly, the published five-factor scoring model was compared for all three norma-
tive samples. The five-factor model displayed significantly improved fit compared to the
four-factor model in all comparisons. Further, the evaluation of fit indices showed that the
five-factor scoring model provides an excellent fit to the data in the French, Spanish, and
US samples; for example, the CFIs were 0.980, 0.986, and 0.987, respectively. Examination
of local fit revealed no evidence of indicator misfit. Thus, the first-order five-factor pub-
lished scoring model (see Figure 1) was chosen as the baseline model for tests of factorial
invariance across the three samples.
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Figure 1. WISC-V European Scoring Factor Structure used as the Baseline Model. (Note. This
first-order five-factor model was the best-fitting model in all samples independently and was the
basis for testing of measurement invariance. ε = unique variances of the indicators. VC = Verbal
Comprehension (Gc), VS = Visual Spatial (Gv), FR = Fluid Reasoning (Gf), WM = Working Memory
(Gwm), PS = Processing Speed (Gs)).

3.2. Measurement and Structural Invariance across France and the US

Results of the factorial invariance analysis across France and the US are presented in
Table 4. For all tests of factorial invariance, the French sample was the reference sample.
Configural invariance, where only the equality of the pattern of the five-factor model is
held across samples, was first tested. The configural invariance model displayed excellent
fit with a CFI of 0.985 and an RMSEA of 0.053, allowing for further restrictive tests of
measurement invariance.

Next, weak invariance was tested by additionally holding the factor loadings to
equality in both groups. The weak invariance model displayed no substantial loss of fit
compared to the configural model across the French and US samples. Next, the strong
invariance model also held the intercepts to equality across samples. Inspection of change
in model fit showed a change of fit below the recommended cut off as evidence of strong
invariance. As a final test of factorial invariance, strict invariance was investigated across
the French and US samples by additionally holding the indicator residuals to equality. The
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results of the analysis showed no appreciable loss of fit compared to the strong invariance
model with a change in RMSEA less than 0.001. Thus, it was concluded that the WISC-V
displays strict factorial invariance across the French and US standardization samples.

Next, the structural components were analyzed for invariance across the French and
US samples. First, using the strict invariance model, the factor variances were held to
equality in both groups. The equality of variances model displayed no appreciable loss of
fit compared to the strict invariance model. Additionally, equality of factor covariances
was added to the equality of variances model. The change in model fit was again compared
to the strict invariance model, with the results again suggestive of no loss of it. Finally, the
equality of latent factor means was tested on the strict invariance model across French and
US samples. No substantial loss of fit was found, providing evidence of the equality of
latent means across the French and US standardization samples.

3.3. Factorial and Structural Invariance across Spain and the US

The same stepwise, increasingly restrictive hierarchical approach described above was
used to assess factorial and structural invariance across the Spanish and US samples. The
results of the invariance models are shown in Table 5. The configural invariance model
displayed excellent fit with a CFI of 0.986 and RMSEA of 0.050. Next, an inspection of the
change of fit across CFI, SRMR, and RMSEA indicated no substantial loss of fit for tests of
weak, strong, and strict invariance. Thus, it was concluded that WISC-V displayed strict
factorial invariance across Spanish and US standardization samples. Further, the equality of
variances, equality of covariances, and equality of means models all showed no appreciable
change in model fit compared to the strict invariance model.

3.4. Factorial and Structural Invariance across France and Spain

Lastly, the same approach to factorial and structural invariance was tested using the
French and Spanish samples. The results of the invariance models are presented in Table 6.
Again, the configural invariance model displayed excellent fit, with a CFI of 0.983 and
RMSEA of 0.054. Next, an evaluation of the change in model fit was undertaken for the
weak invariance, strong invariance, and strict invariance models. The results showed
no discernible loss of fit, suggesting that the WISC-V displays strict factorial invariance
across the French and Spanish standardization samples. Next, tests of structural invariance
were tested compared to the strict invariance model. The results show that the French
and Spanish samples displayed equality of factor variances and covariances. However,
there was a significant loss of fit when the latent factor means were held to equality across
samples. The results, therefore, suggest that in the French and Spanish standardization
sample, latent factor means lack invariance.

Standardized parameter estimates of the three strict invariance analyses are available
in the appendices, see Figures A1–A3.

3.5. Latent Means Comparisons

Establishing strong factorial invariance across all three pair-wise evaluations allowed
for a statistically meaningful comparison of latent means across the French, Spanish, and
US samples. As there were multiple comparisons, we applied the Bonferroni correction
using a nominal alpha of 0.05, resulting in an adjusted alpha of 0.01. The French and US
samples were again compared first and the results are presented in Table 7. The latent mean
values were taken from the standardized output of the strict invariance model, with the
French means set to zero and factor variances set to one in both samples. The results show
small yet significant differences in the VC, FR, WM, and PS latent factor means, with the
US performing higher across all four factors compared to the French sample. No significant
difference was found in the VS factor.
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Table 4. Summary of Tests of Measurement Invariance between the WISC-V France and the US.

Invariance Model χ2 df ∆χ2 ∆df CFI ∆CFI TLI Gamma-
Hat SRMR ∆SRMR

RMSEA (Lower
Bound, Upper
Bound; 90%)

∆RMSEA

Configural Invariance 875.255 * 160 0.985 0.980 0.943 0.021 0.053 (0.049, 0.056)
Weak Invariance 1012.451 * 170 137.196 ** 10 0.982 0.003 0.978 0.936 0.037 0.016 0.055 (0.052, 0.059) 0.002
Strong Invariance 1480.941 * 180 468.49 ** 10 0.972 0.010 0.968 0.903 0.044 0.007 0.067 (0.064, 0.070) 0.012
Strict Invariance 1607.015 * 195 126.074 ** 15 0.970 0.002 0.968 0.895 0.046 0.002 0.067 (0.064, 0.070) <0.001

Equality of Variances 1648.829 * 200 41.814 ** 5 0.969 0.001 0.968 0.893 0.054 0.008 0.067 (0.064, 0.070) <0.001
Equality of Covariances 1752.929 * 210 145.914 ** 15 0.967 0.003 0.967 0.885 0.054 0.008 0.068 (0.065, 0.070) 0.001

Equality of Means 1883.881 * 200 276.866 5 0.964 0.006 0.962 0.879 0.055 0.009 0.072 (0.069, 0.075) 0.005

Note. CFI = comparative fit index; ∆ = change in, TLI = Tucker–Lewis index; SRMR = standardized root mean square residual; RMSEA = root mean square error of approximation.
* p < 0.05 for χ2 test. ** p < 0.05 for ∆χ2 compared to previous model. Standardization data are from the Wechsler Intelligence Scale for Children-Fifth Edition (WISC-V). Invariance
models Equality of Variances, Equality of Variances and Covariances, and Equality of Means stepwise changes were compared to the Strict Invariance model. Copyright ©2014, 2015
NCS Pearson, Inc. Used with permission. All rights reserved.

Table 5. Summary of Tests of Measurement Invariance between the WISC-V Spain and the US.

Invariance Model χ2 df ∆χ2 ∆df CFI ∆CFI TLI Gamma-
Hat SRMR ∆SRMR

RMSEA (Lower
Bound, Upper
Bound; 90%)

∆RMSEA

Configural Invariance 791.504 * 160 0.986 0.982 0.949 0.020 0.050 (0.046, 0.053)
Weak Invariance 886.295 * 170 94.791 ** 10 0.985 0.001 0.981 0.944 0.034 0.014 0.051 (0.048, 0.055) 0.001
Strong Invariance 1256.890 * 180 370.595 ** 10 0.977 0.008 0.973 0.918 0.038 0.004 0.061 (0.058, 0.064) 0.010
Strict Invariance 1367.956 * 195 111.066 ** 15 0.975 0.002 0.973 0.912 0.044 0.006 0.061 (0.058, 0.064) <0.001

Equality of Variances 1389.969 * 200 22.013 ** 5 0.974 0.001 0.973 0.910 0.061 0.017 0.061 (0.058, 0.064) <0.001
Equality of Covariances 1467.929 * 210 99.973 ** 15 0.973 0.002 0.973 0.906 0.061 0.017 0.061 (0.058, 0.064) <0.001

Equality of Means 1540.774 * 200 172.818 ** 5 0.971 0.004 0.970 0.899 0.048 0.004 0.065 (0.062, 0.068) 0.004

Note. CFI = comparative fit index; ∆ = change in, TLI = Tucker–Lewis index; SRMR = standardized root mean square residual; RMSEA = root mean square error of approximation.
* p < 0.05 for χ2 test. ** p < 0.05 for ∆χ2 compared to previous model. Standardization data are from the Wechsler Intelligence Scale for Children-Fifth Edition (WISC-V). Invariance
models Equality of Variances, Equality of Variances and Covariances, and Equality of Means stepwise changes were compared to the Strict Invariance model. Copyright ©2014, 2015
NCS Pearson, Inc. Used with permission. All rights reserved.
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Table 6. Summary of Tests of Measurement Invariance between the WISC-V France and Spain.

Invariance Model χ2 df ∆χ2 ∆df CFI ∆CFI TLI Gamma-
Hat SRMR ∆SRMR

RMSEA (Lower
Bound, Upper
Bound; 90%)

∆RMSEA

Configural Invariance 631.518 * 160 0.983 0.978 0.941 0.024 0.054 (0.050, 0.058)
Weak Invariance 664.610 * 170 33.092 ** 10 0.982 0.001 0.978 0.938 0.030 0.006 0.054 (0.049, 0.058) <0.001
Strong Invariance 922.192 * 180 257.582 ** 10 0.973 0.009 0.969 0.910 0.037 0.007 0.064 (0.060, 0.068) 0.010
Strict Invariance 1040.416 * 195 118.224 ** 15 0.969 0.004 0.967 0.901 0.036 0.001 0.065 (0.062, 0.069) 0.001

Equality of Variances 1091.164 * 200 50.748 ** 5 0.968 0.001 0.966 0.896 0.060 0.024 0.066 (0.062, 0.070) 0.001
Equality of Covariances 1185.723 * 210 145.307 ** 15 0.965 0.004 0.965 0.885 0.061 0.025 0.068 (0.064, 0.071) 0.003

Equality of Means 1578.114 * 200 537.698 ** 5 0.950 0.019 0.948 0.848 0.068 0.032 0.082 (0.079, 0.086) 0.016

Note. CFI = comparative fit index; ∆ = change in, TLI = Tucker–Lewis index; SRMR = standardized root mean square residual; RMSEA = root mean square error of approximation.
* p < 0.05 for χ2 test. ** p < 0.05 for ∆χ2 compared to previous model. Standardization data are from the Wechsler Intelligence Scale for Children-Fifth Edition (WISC-V). Invariance
models Equality of Variances, Equality of Variances and Covariances, and Equality of Means stepwise changes were compared to the Strict Invariance model. Copyright ©2014, 2015
NCS Pearson, Inc. Used with permission. All rights reserved.



J. Intell. 2023, 11, 159 13 of 22

Table 7. France and US Means of Latent Factors Scaled to the Unit of the French Sample.

Factor PE SE Est./SE p

Verbal Comprehension 0.354 0.037 9.498 <0.001
Visual Spatial −0.061 0.041 −1.485 0.137

Fluid Reasoning 0.146 0.040 3.661 <0.001
Working Memory 0.162 0.041 3.960 <0.001
Processing Speed 0.137 0.037 3.649 <0.001

Note. The top row shows parameter estimates (PE) and standard error (SE), scaled in the unit of the French sample.
Standardization data are from the Wechsler Intelligence Scale for Children-Fifth Edition (WISC-V). Copyright
©2014, 2015 NCS Pearson, Inc. Used with permission. All rights reserved.

Next, the Spanish and US sample latent factor means were compared. The results
are shown in Table 8. The results were taken from the standardized output of the strict
invariance model, with the Spanish means set to zero and variances set to one in both
samples. The output shows a small but significant difference in the VC factor, with the
Spanish sample performing higher. No significant differences were found across VS, FR,
WM, or PS.

Table 8. Spain and US Means of Latent Factors Scaled to the Unit of the Spanish Sample.

Factor PE SE Est./SE p

Verbal Comprehension −0.183 0.037 −4.952 <0.001
Visual Spatial 0.036 0.039 0.927 0.354

Fluid Reasoning 0.069 0.039 1.777 0.076
Working Memory 0.014 0.038 0.378 0.705
Processing Speed −0.044 0.040 −1.121 0.262

Note. The top row shows parameter estimates (PE) and standard error (SE), scaled in the unit of the Spanish
sample. Standardization data are from the Wechsler Intelligence Scale for Children-Fifth Edition (WISC-V).
Copyright ©2014, 2015 NCS Pearson, Inc. Used with permission. All rights reserved.

Lastly, the French and Spanish sample latent factor means were compared, and the
results are presented in Table 9. Again, latent mean values were taken from the standardized
output of the strict invariance model, with French sample latent means set to zero and
variances set to one in both samples. The results show a medium and significant difference
in the VC factor across French and Spanish samples, with the Spanish sample performing
higher. This result supports the earlier finding of a lack of invariance across latent factor
means across the French and Spanish samples. Small but significant differences were also
found across WM and PS latent mean factors, again with the Spanish sample performing
higher. No statistical differences were observed for the VS or FR factors across the French
and Spanish samples.

Table 9. France and Spain Means of Latent Factors Scaled to the Unit of the French Sample.

Factor PE SE Est./SE p

Verbal Comprehension 0.586 0.048 12.161 <0.001
Visual Spatial −0.109 0.051 −2.142 0.032

Fluid Reasoning 0.081 0.049 1.659 0.097
Working Memory 0.164 0.051 3.209 0.001
Processing Speed 0.167 0.047 3.584 <0.001

Note. The top row shows parameter estimates (PE) and standard error (SE), scaled in the unit of the French sample.
Standardization data are from the Wechsler Intelligence Scale for Children-Fifth Edition (WISC-V). Copyright
©2014, 2015 NCS Pearson, Inc. Used with permission. All rights reserved.

4. Discussion

This study explored the generalizability of CHC constructs as measured by the WISC-
V across French, Spanish, and US nationally representative samples. Invariance analysis
supported the strict factorial invariance across (i) France and the US, (ii) Spain and the US,
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and (iii) France and Spain. The finding of strict factorial invariance provides strong evidence
that the latent factors and the latent variable model, as measured by the WISC-V, measure
the same psychological constructs which align with CHC theory across the three different
language-speaking countries. Further, establishing factorial invariance of the WISC-V
across France, Spain, and the US adheres to the guidelines set out by the International
Test Commission on the use of translated and adapted tests (ITC 2017). Translating and
adapting a test may change the meaning of an item or item difficulty, or cultural differences
may cause an item to score differently across populations; however, the finding of strict
metric invariance implies the constructs are equivalent across cultures and are estimated in
equivalent scales.

Establishing factorial invariance across the three nationally representative samples also
permits the comparison of latent mean differences (Meredith and Teresi 2006). When latent
factor means were contrasted across the three samples, statistically significant differences
were found of small and medium magnitude. Specifically, a medium and significant
difference was found across the French and Spanish samples on the VC (comprehension
knowledge; Gc) factor, with the French sample performing higher. Gc can be defined as
the ability to understand and communicate culturally valued knowledge (Schneider and
McGrew 2018). The language-based, culturally shared knowledge that is tested in Gc is
learned through education and one’s environment (McGrew and Flanagan 1998; Weiss
et al. 2019). Therefore, comparatively higher scores in comprehension knowledge may
be the consequence of a relatively more cognitively enriching environment (e.g., parental
education and income), which has been found to be a mediator of IQ, as well a relatively
higher investment in formal education (Weiss and Saklofske 2020). Further, the difference
may be attributable to the relatively higher government expenditure on education as a
percentage of GDP between the two countries (UNESCO Institute for Statistics 2022).

However, findings of small latent mean differences on nationally representative sam-
ples are not uncommon (Bowden et al. 2008c; Wilson et al. 2023a, 2023c). As these results are
based on nationally representative samples, any differences may be due to real differences
across the three countries, differences in the sample recruitment methodology, or both. For
example, a cross-cultural analysis using the WISC-V found that latent factor mean differ-
ences across countries aligned with country-level indicators of affluence and education
(van de Vijver et al. 2019). The findings of the current study thus support the continued
development of local normative data for high-stakes assessments, such as the WISC-V.

As demonstrated in a recent systematic review of the relevant cross-cultural literature
(Wilson et al. 2023b), these results support and advance the research of Carroll (1993)
by providing further evidence for the universality of the factorial constructs of the CHC
model across a range of different language-speaking populations. The expanding literature
supports the CHC model as a method of describing and understanding the structure of
human cognitive ability and provides a common nomenclature and blueprint for future
researchers and test developers (Jewsbury et al. 2016; McGrew 2009).

However, researchers exploring and expanding on the CHC framework should con-
tinue to apply best psychometric practice so as not to misconstrue model results. First,
researchers are encouraged to use the more contemporary method of confirmatory factor
analysis (CFA) over exploratory factor techniques which has been shown to provide impre-
cise and data-specific factor solutions leading to models that may be difficult to replicate.
In contrast, a confirmatory approach has been shown to describe the true factor–indicator
relationships and provide less biased results (Brown 2015; Gorsuch 2003; Jewsbury and
Bowden 2017; Little et al. 1999; Widaman 2012). The continued use of EFA in studies of
published tests is one of the key ingredients in the poor replicability of factor analytic
studies, as noted by many previous authors (Brown 2015; Byrne 1989; Floyd and Widaman
1995; Henson and Roberts 2006; Kline 2016; Widaman 2012).

Further, researchers undertaking factor analysis should be aware of misspecifying
models due to statistical underidentification, for example, by applying higher order models
to a just-identified first-order model, which may lead to statistically inadmissible (though
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not theoretically inadmissible) results open to misinterpretation (Kline 2016; Rindskopf
and Rose 1988). Moreover, to encourage further research of the hierarchical model of
intelligence, it is important to note that demonstration of a fully measurement invariant
first-order factor model implies invariance of a second-order ‘g’ or FSIQ factor model
as long as the same transformations are applied by way of the so-called ‘any rescaling
factor’ (ARF, Widaman and Reise 1997) invariance. However, researchers have cautioned
against the use of bifactor models in cognitive ability research unless theoretically and
statistically justified (Decker 2020). The overwhelming factor analytic evidence on the
Wechsler and other scales describes a CHC model with oblique, multidimensional, and
highly correlated broad abilities (Chen et al. 2015; Flanagan et al. 2013; Schneider and
McGrew 2018; van de Vijver et al. 2019; Weiss et al. 2013; Wilson et al. 2023c). Further,
bifactor models often have model identification problems that cannot be resolved without
arbitrary model restrictions, potentially leading to bifactor solutions with uncertain validity
and an unknown degree of statistical bias (Canivez et al. 2017; Markon 2019; Reynolds
and Keith 2017; Schneider and Newman 2015; Wilson et al. 2023c). In addition, bifactor
models present prima facie interpretation problems for clinicians (which factor does a test
score represent?) and have been used to perpetuate a contradiction (if the higher order, the
general factor is the only sensible or more ‘reliable’ score on which to base an interpretation,
why not show that a single-factor model fits the respective data sets best?).

A limitation of this research is that WISC-V was developed to measure five factors
aligned with the CHC’s broad abilities (Weiss et al. 2019). Future researchers should
extend the measurement invariance and construct validity of the CHC literature and
explore the possible inclusions of other broad abilities. Additionally, further research is
required to explore more diverse nationally representative samples as the present study
analyzed representative samples from France, Spain, and the US, which are all Western
or industrialized populations. The results leave open the question of whether or not
the CHC constructs, as measured by the WISC-V, will generalize across non-Western or
developing countries.

In conclusion, the factor analytic model underlying the WISC-V was demonstrated
to be invariant across the French, Spanish, and US normative samples. As the WISC-V
is aligned with the CHC structure of intelligence, the results provide further evidence of
the generalizability of the CHC model across broad populations and allow for a common
meaning and interpretation of cognitive ability test scores across those populations.
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