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Abstract: The present study examined the effects of study schedule (interleaving vs. blocking) and
feature descriptions on category learning and metacognitive predictions of learning. Across three
experiments, participants studied exemplars from different rock categories and later had to classify
novel exemplars. Rule-based and information-based categorization was also manipulated by selecting
rock sub-categories for which the optimal strategy was the one that aligned with the extraction of a
simple rule, or the one that required integration of information that may be difficult to describe verbally.
We observed consistent benefits of interleaving over blocking on rock classification, which generalized
to both rule-based (Experiment 1) and information-integration learning (Experiments 1-3). However,
providing feature descriptions enhanced classification accuracy only when the stated features were
diagnostic of category membership, indicating that their benefits were limited to rule-based learning
(Experiment 1) and did not generalize to information-integration learning (Experiments 1-3). Fur-
thermore, our examination of participants” metacognitive predictions demonstrated that participants
were not aware of the benefits of interleaving on category learning. Additionally, providing feature
descriptions led to higher predictions of categorization even when no significant benefits on actual
performance were exhibited.

Keywords: category learning; interleaving effect; feature descriptions; study schedule

1. Introduction

Category induction happens when one learns to acquire the recurring pattern that
defines a concept or a category membership through studying their exemplars (Ashby
and O’Brien 2005; Carvalho and Goldstone 2015b; Noh et al. 2014). Inductive category
learning is an important skill, as it allows people to generalize their knowledge attained
from a limited amount of experience to a wider range of novel exemplars beyond the
original learning event (Ashby and O’Brien 2005). The importance of category induction
has been emphasized in various fields of study, such as art (Kornell and Bjork 2008), geology
(Whitehead et al. 2021), ornithology (Birnbaum et al. 2013; Wahlheim et al. 2011), medical
diagnoses (Chen et al. 2015; Hatala et al. 2003) and mathematics (Taylor and Rohrer 2010;
Rohrer et al. 2015). Much research, therefore, has focused on identifying the effective
learning techniques to promote category induction.

Research demonstrates that category induction can be executed via different learn-
ing systems depending on the category structure (Ashby et al. 1998; Ashby and Maddox
2005, 2011; Ashby and O’Brien 2005). Rule-based category learning takes place when the
category characteristics are easy to verbalize. Such a learning task is optimized by a hy-
pothesis testing learning system in which learners generate and test verbalizable rules. By
contrast, there are other categories that are not as easy to verbally define. Learners should
integrate information from numerous examples of a certain category to capture the category
membership. This process is thus referred to as information-integration category learning.
Learning information-integration categories requires a more holistic, procedural-based learn-
ing system in which students should implicitly associate the examples with a recurring
category-level pattern.
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The present research examines how different kinds of study schedules and the inclu-
sion of descriptive information promote category learning for categories that are inclined
more to rule-based category learning or more to information-integration categorization
processes. Here, “study schedule” refers to the way that exemplars are sequenced during a
study session. In a blocked schedule, the exemplars are grouped by category, whereas in an
interleaved schedule, the exemplars are randomly intermixed across categories. The study
schedule that optimizes learning depends on the nature of study materials (Carvalho and
Goldstone 2015a, 2019; Noh et al. 2016) and the learning processes through which students
learn the categories (Noh et al. 2016).

A great deal of research has focused on the effects of study schedules on category
induction (see Kang 2016 for an overview); that is, the participants learned different
categories by studying a series of exemplars but were not explicitly informed about the
rules or the characteristic features that defined category membership. Instead, they had to
induce the pattern by themselves (Birnbaum et al. 2013; Kornell and Bjork 2008; Wahlheim
et al. 2011). The present study extends the literature by examining how interleaving and
blocking schedules may affect category learning differently when students are explicitly
provided with verbal explanations that describe the important features of a category. We
sought to examine how these two study schedules may interact with feature descriptions
when participants learned to categorize different rock types. Feature descriptions are an
integral part of rock category learning and are often included in textbooks (e.g., Marshak
2019; Tarbuck and Lutgens 2018) and laboratory manuals (e.g., Cronin 2018). Research also
shows that feature descriptions can enhance rock identification and classification (Meagher
et al. 2022; Miyatsu et al. 2019). Therefore, the present study aimed to identify the learning
techniques that can optimize different category learning processes by combining different
study schedules with feature descriptions for rock category learning.

The final goal of the present study was to investigate whether learners are aware of
the factors that result in effective category learning. Metacognition is important to examine
because the way that participants judge their current learning can affect subsequent study
behaviors such as the amount of time that they allocate for studying and the specific items
they select to study (Efklides 2014; Metcalfe 2009). Research has demonstrated that learners
often suffer from various metacognitive biases, as they judge their learning status based
on undiagnostic cues such as the ease or difficulty of task processing (e.g., Reber and
Greifeneder 2017). Learners are also likely to misinterpret higher effort as an indicator of
poor learning (Kirk-Johnson et al. 2019; Onan et al. 2022). This can result in a preference for
ineffective study methods that generate a higher sense of fluency and require less effort, such
as a blocking schedule rather than interleaving (Kirk-Johnson et al. 2019; Onan et al. 2022;
also see de Bruin et al. 2023 for a review). The present investigation extends previous works
by examining the impact of different study schedules combined with feature descriptions
on metacognitive predictions about category learning. Specifically, we investigated how
study schedules and the presence or absence of feature descriptions affected participants’
metacognitive predictions of their future test performance.

2. Literature Review
2.1. Research on Study Schedule

Research suggests that blocking and interleaving schedules promote learning in differ-
ent ways, as they draw the learners’ attention to different aspects of category features (the
Sequential Attention Theory; Carvalho and Goldstone 2015a, 2017). Blocking exemplars by
category draws learners’ attention to the common features shared among the exemplars.
Hence, a blocking schedule has been shown to be more effective than interleaving when
the more challenging part of the materials to be learned is to identify the commonalities
among exemplars of one concept (Carvalho and Goldstone 2017, 2019; also see Brunmair
and Richter 2019). By contrast, an interleaving schedule is more advantageous than block-
ing in the learning of highly similar, therefore, confusable concepts, because interleaving
draws learners’ attention to the critical differences that separate one category from another
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(i.e., the discriminative-contrast hypothesis; Birnbaum et al. 2013; Kang and Pashler 2012).
Indeed, the facilitating effect of interleaving, referred to as the interleaving effect, has been
supported in many kinds of highly confusable categories, from natural rock categories
(Whitehead et al. 2021), bird and butterfly species (Birnbaum et al. 2013; Wahlheim et al.
2011) to scientific concepts in mathematics (Rohrer et al. 2015), chemistry (Eglington and
Kang 2017), and statistics (Sana et al. 2017).

Further, interleaving exemplars of different categories also creates a time gap or a tem-
poral spacing between the successive presentation of two exemplars from the same category.
This time gap requires learners to exert more cognitive effort in retrieving previously learned
information. Such extra effort can, in turn, strengthen the memory trace and improve the
retention of that information in the long-term (i.e., the spacing effect; see Carpenter 2014;
Carpenter et al. 2012 for reviews).

Research demonstrates that the attention- and memory-based accounts of the inter-
leaving effect can interact and together promote category learning. Specifically, under an
interleaving schedule, learners are more likely to notice the unique features of a category as
learners pay more attention to between-categories differences. Those features, once identi-
fied, can be remembered better due to the memory benefits of an interleaving schedule (i.e.,
the two-stage framework of sequencing effects; Yan et al. 2020; Yan and Schuetze 2022).

Study schedules have also been shown to affect different category learning processes.
Nobh et al. (2016) found that blocked schedule promoted rule-based category learning better
than interleaving because blocking exemplars by category allows learners to test their hy-
potheses about the underlying pattern of one category at a time. In contrast, an interleaved
schedule can improve information-integration category learning because it encourages stu-
dents to define category membership more comprehensively in relation to other categories.

Interestingly, blocking is believed by many learners to be more effective than inter-
leaving schedule even when the empirical evidence shows the opposite (see Kang 2016
for an overview). For example, Kornell and Bjork (2008) had participants learn painting
styles of twelve different artists through a series of their paintings. For half of the artists,
their paintings were arranged in a blocked manner across the study, and for the other
half, the paintings were interleaved. Participants later took a classification test in which
they were presented with new paintings and had to identify the artists who painted the
novel paintings. Results showed that the interleaving schedule led to better identification
accuracy as compared to blocking. Interestingly, only 22% of the participants accurately
judged interleaving to be more effective than blocking, suggesting that the interleaving
benefits seem counterintuitive. This phenomenon has been replicated many times in the
literature for a wide range of study materials, including both visual (e.g., Birnbaum et al.
2013; Kornell and Bjork 2008; Kornell et al. 2010) and text stimuli (e.g., Zulkiply et al. 2012;
Zulkiply and Burt 2013).

However, different types of metacognitive judgments may result in different findings.
For example, using the same paintings materials, Yan et al. (2016) found that when learn-
ers made category-learning judgments, they reported higher confidence in their ability to
classify new exemplars of the interleaved categories than of the blocked categories. How-
ever, similar to Kornell and Bjork’s (2008) findings, the majority of participants selected
blocking to be the more effective study schedule. The selection of the more effective study
schedule can be biased because it is affected by both participants’ prior knowledge and their
sense of fluency when learning, thus leading to more erroneous metacognitive judgments
(Yan et al. 2016). Further, even when participants were aware of improved learning for the
interleaved categories, many participants did not attribute better learning to the benefits of
the interleaving schedule but to other irrelevant factors (e.g., the relative difficulty level of
the categories or luck), and thus did not appreciate the interleaving effect (Yan et al. 2016).

It is worth noting that Yan et al. (2016) used a within-participant experimental design,
which can increase the accuracy of metacognitive predictions as participants can compare
cues that result from one condition of the study to the cues associated with another condi-
tion. The same results may not be observed in a between-participants design. The present
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study sought to further investigate the impact of study schedules on category learning and
metacognitive judgment when study schedules are combined with feature descriptions.

2.2. Research on Feature Descriptions

The question of the value of feature descriptions is important, especially when it comes
to the learning of natural concepts such as rock categories. Natural rock categories possess
complex structures and are sometimes difficult to differentiate and articulate (Nosofsky
et al. 2017). They differ from well-defined categories in scientific domains (e.g., mathematics,
statistics, or chemistry) as well as artificial laboratory categories because natural rock cate-
gories exhibit greater variations across multiple dimensions. Within each dimension, many
rock features demonstrate continuous variation rather than being characterized by discrete
features (e.g., blue vs. yellow vs. red colors; Nosofsky et al. 2017). Providing feature de-
scriptions (generated by experts in geoscience education) may facilitate category distinction
because they can draw learners’ attention to relevant dimensions that separate exemplars of
different rock categories. On the other hand, feature descriptions may not benefit all rock
categorization because learning the exemplars along with feature descriptions may bias
learners” attention to some specific dimensions rather than encouraging them to process the
rock exemplars in a more complex, multi-dimensional space (Miyatsu et al. 2019).

Much research has examined the effects of providing feature descriptions on rock
category learning, but empirical evidence has been inconclusive. Presenting feature de-
scriptions may or may not improve learning, depending on the learning tasks and study
materials. Miyatsu et al. (2019) investigated the effect of providing feature descriptions
in a series of rock categorization experiments. They had two groups of participants learn
exemplars from several rock categories in an interleaved order and compared learning in
the presence or absence of verbal descriptions. Results showed that verbal descriptions
improved category learning when the features were visually highlighted and linked directly
to aspects of specific images. When feature descriptions were provided separately below
the image, they did not improve category learning.

The benefit of providing feature descriptions, however, was not replicated in a later study
by Meagher et al. (2022) using the same learning task and materials. Meagher et al. (2022)
only found the benefits of highlighting feature descriptions when they changed the materials
to a series of rock pairs that were highly confusable from one another (e.g., Anthracite vs.
Obsidian, Basalt vs. Hornfels, etc.). Importantly, Meagher et al. (2022) also suggest that,
among the rock categories, some can be differentiated based on a few discrete features with
regard to one or two specific dimensions. Specifically, Meagher et al. (2022) had participants
rate each rock exemplars along several dimensions and found that some rock exemplars were
easier to differentiate along these explicit dimensions while others were not. These results
suggest that within the broad category of rocks, some sub-categories may be categorized using
rule-based criteria while others require a more comprehensive integration of information
across multiple dimensions. Given such possible differences in category learning processes, it
is important to examine the effect of study schedule and feature descriptions in the learning
of rule-based versus information-integration category learning.

Verbal descriptions of features that define a category membership are prevalent in
geoscience textbooks and laboratory manuals (e.g., Cronin 2018; Marshak 2019; Tarbuck and
Lutgens 2018). However, research revealed that providing feature descriptions is not always
beneficial in rock category learning (Kang et al. 2023; Meagher et al. 2022; Whitehead et al.
2021). We sought to further understand its impact on category learning by examining the
effect of providing feature descriptions on participants’ metacognitive judgment. To the
best of our knowledge, there have not been any studies yet to investigate how explicitly pro-
viding verbal explanation of category characteristics may affect participants” metacognitive
assessment of their learning. When feature descriptions are not provided, participants may
be required to invest more effort to abstract the category features that represent a category
membership. Learners may misinterpret higher effort as poor learning (de Bruin et al. 2023;
Onan et al. 2022), and thus feel less confident of their learning status. For that reason, when
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feature descriptions are explicitly provided, regardless of their actual benefits on category
distinction, participants may feel more confident about their learning, thus predicting higher
test performance. Providing feature descriptions may generate a metacognitive illusion that
explicit verbal explanations enhance learning even when they do not. Such a misbelief can
lead to nonoptimal study behaviors which may impair learning eventually.

2.3. Feature Descriptions Interact with Study Schedule

One major interest of the present study was to examine how explicitly providing fea-
ture descriptions may affect the effect of interleaving and blocking study schedules. Some
previous studies can contribute to answer this question using different learning materi-
als. For example, in a learning task of science categories (i.e., organic chemical compounds),
Eglington and Kang (2017) found the robust benefits of interleaving schedule over blocking
both when the rules that define category membership were and were not visually highlighted
on the exemplars. Using a learning task of Chinese characters, Yan and Schuetze (2022)
also found the positive effect of interleaving schedule, but this only emerged when the
category-level rules were visually highlighted to the participants. No benefits of interleaving
were found when the rules were not provided. It appears that when the rules are difficult
to notice, interleaving alone was not enough to promote better category learning. Rather,
these results suggest that category learning may improve when interleaving is paired with
feature descriptions, at least in situations where features are easy to verbalize and diagnostic
of category membership.

Altogether, previous findings demonstrate the possible interaction between the effect
of study schedule and understanding diagnostic features for category learning. However,
less research has investigated the relationship between these two factors in naturalistic
category learning. One recent study, using Miyatsu et al. (2019)’s rock materials, found that
feature descriptions did not offer any benefit to one study schedule over another in rock
categorization (Whitehead et al. 2021). The present study sought to re-examine the effect of
study schedule and feature descriptions by having participants learn the confusable rock pairs
from Meagher et al. (2022). Meagher et al. (2022) found that some rock pairs contain discrete
features that are relatively easier to verbalize, while others do not. If feature descriptions are
beneficial for rock category learning, providing them may boost the interleaving effect as they
draw learners’ attention to the relevant dimensions when learners compare exemplars from
different categories (Yan and Schuetze 2022). Further, interleaving schedule can also enhance
learning as it improves learners’ memory of the provided features (Yan et al. 2020; also see
Carpenter 2014). By using the rock materials from Meagher et al. (2022), we aimed to offer
more insights into the possible interaction between study schedule and feature descriptions
in different learning processes.

3. The Present Study

We examined the effect of study schedule and feature descriptions on rock category
learning and metacognitive predictions of learning in different settings across three ex-
periments. We used the rock-pair materials and feature descriptions from Meagher et al.
(2022). We divided the six rock pairs into three rule-based rock pairs and three information-
integration rock pairs. The rule-based rock pairs contain discrete features that can differenti-
ate or partially differentiate exemplars of the two rock categories. Thus, feature descriptions
that draw learners’ attention to these relevant features were diagnostic of category member-
ship. However, for the three information-integration rock pairs, feature descriptions were not
diagnostic of category membership (Meagher et al. 2022). For these categories, we expected
participants to benefit from interleaving but not necessarily from feature descriptions.

The purpose of Experiment 1 was to examine the effect of study schedule and fea-
ture descriptions as well as the interaction between the two factors in rule-based and
information-integration category learning. In Experiments 2 and 3, we focused only on
information-integration category learning and varied the way exemplars were presented to
the participants. We also examined the effect of study schedule and feature descriptions on
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participants’” predictions of future performance in Experiments 2 and 3. We aimed to illumi-
nate the impact of study schedules and of providing feature descriptions on participants’
metacognitive assessment of their learning.

4. Experiment 1
4.1. Method
4.1.1. Design

Our study was approved by the Institutional Review Board (IRB) of Tufts University.
We adopted a 2 x 2 x 2 mixed design with study schedule (interleaving vs. blocking) and
feature descriptions (FD present vs. FD absent) being manipulated between participants,
resulting in four different conditions. We had all the participants learn a series of rock
images from the twelve different rock categories adopted from Meagher et al. (2022). Cate-
gorization processes (rule-based vs. information-integration learning) were manipulated
within participants, meaning that participants learned all the twelve rock categories.

4.1.2. Participants

A priori power analysis was conducted using G*Power 3.1 (Faul et al. 2007) to deter-
mine the smallest sample size required for a 2 x 2 between-participants analysis of Variance
(ANOVA) with the power being set at 0.95, o« = 0.05, and Cohen’s f = 0.20. The analysis
suggested a sample size of 327 but we ended up recruiting 457 participants via Prolific,
an online platform for participant recruitment. We anticipated some level of attrition due
to technical problems and other unexpected situations that participants could possibly
encounter given the online platform.

All the participants in our sample were residing in the USA and were older than
18 years old at the time they participated in this study. The sample was stratified in terms of
age, sex and ethnicity' so that it represented the same proportion of the USA population.
This is referred to as a representative sample on Prolific. Data from 65 participants were
eliminated from data analysis. Among them, 16 participants did not have a normal or
corrected to normal vision. Twenty-one participants inaccurately identified one or two items
presented for attention check and one participant encountered a technical problem during
the study. Lastly, 27 participants showed some level of interruption during the study as
the total time they spent on the study were considered outliers based on the boxplot of the
data set (i.e., exceeding 70 min = upper quartile + 1.5 x interquartile range; Mdn = 41 min).
Elimination was not significantly predicted by condition; x* = 0.85, df = 1, p = .444.

This elimination process led to a final sample of 392 participants for data analysis
(Mage = 44.94, SDage = 15.95, age range from 18 to 84, 50% Female, 71% White) with 91 par-
ticipants in the FD absent, interleaving condition; 109 in the FD absent, blocking condition;
110 in the FD present, interleaving condition; and 82 in the FD present, blocking condition.

4.1.3. Materials

We adopted a series of 144 rock images, representing 144 rock exemplars, from 12 dif-
ferent rock categories (i.e., Anthracite, Basalt, Breccia, Conglomerate, Gabbro, Hornfels,
Marble, Micrite, Obsidian, Peridotite, Rock gypsum, and Shale) from Meagher et al.’s (2022)
study. The 12 rock categories consisted of 6 different rock pairs with each pair containing
2 rock categories that were deemed to be highly confusable from one another. The rock pairs
were generated by experts in the field of geoscience. Table 1 shows the six rock pairs and
their feature descriptions. Specifically, Anthracite was paired with Obsidian, Basalt with
Hornfels, Breccia with Conglomerate, Gabbro with Peridotite, Marble with Rock gypsum,
and Micrite with Shale. The feature descriptions included some common features that were
shared between two members of a rock pair and some distinctive features to distinguish
one member from another. For example, for the Anthracite/Obsidian pair, Anthracite was
described as dark, black, and shiny with rough, layered surfaces, whereas Obsidian was also
described as dark, black, and shiny but with smooth, scalloped surfaces (refers to Table 1).
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Table 1. The six rock pairs and their feature descriptions (FD) including the commonalities and differences between two rock categories of each pair.

1a. Anthracite 1b. Obsidian 2a. Breccia 2b. Conglomerate 3a. Gabbro 3b. Peridotite

Commonalities Dark, black, and shiny Cemented fragments Dark with coarse-grained crystals
Differences Rough, layered surfaces ~ Smooth, scalloped surfaces ~ Angular fragments Rounded fragments Green tinge
4a. Basalt 4b. Hornfels 5a. Marble 5b. Rock Gypsum 6a. Micrite 6b. Shale

Commonalities Dark, fine-grained Light-colored, crystals Fine-grained
Differences May have holes Layering and flat surfaces May have mt.erl‘ockmg crystals, Is often a single large crystal, may be Dense Often has thin, parallel layers
may have swirling veins cloudy/translucent

Note. Adapted from Meagher et al.’s (2022) Table 2 (p. 9) for the FD of the first five pairs and Appendix D for the FD of the last pair (p. 30). The first, second, and third pairs were assigned
to be the sub-categories that can benefit from rule-based learning. The fourth, fifth, and sixth pairs were assigned to be the sub-categories that can benefit more from information-integration
learning.
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The Anthracite/Obsidian, Breccia/Conglomerate, Gabbro/Peridotite pairs were as-
signed to be the sub-categories that should benefit from rule-based learning. Based on
participants’ ratings in Meagher et al. (2022), Anthracite/Obsidian exemplars appeared
to have clearly separated distribution in the rough/smooth surfaces dimension. Brec-
cia/Conglomerate also had clear distinction in terms of angular/rounded fragments. For
Gabbro/Peridotite, green tinting was a distinctive feature of Peridotite exemplars. One
Gabbro exemplar was rated 7 (out of 9) in terms of green tinting, which may be highly
confusable with Peridotite (Meagher et al. 2022). However, given the complex structure of
natural categories compared to artificial or scientific learning materials, we believed that
Gabbro/Peridotite was relatively more rule-based and can be partially differentiated based
on the provided rules compared to other rock pairs. Further, having a green tinting is a
discrete feature that can be relatively easy to verbalize.

The Basalt/Hornfels, Marble/Rock gypsum, and Micrite/Shale were assigned to be
the sub-categories that benefit from information-integration learning. There was much
overlapping distribution of feature ratings in the dimensions that the expert geoscientist
explicitly pointed out to be the differences of the Basalt/Hornfels and Marble/Rock gypsum
pairs (Meagher et al. 2022). There was no report of feature ratings for Micrite/Shale in
Meagher et al. (2022). However, the classification accuracy for this pair was relatively
lower than other rock pairs (with or without feature descriptions). This indicates that it was
difficult to verbalize the distinctive features of Micrite/Shale.

All the feature descriptions were presented as key words, instead of full sentences
to avoid inducing extraneous cognitive load on subjects’ working memory” (Mayer 2002,
2005). We randomly assigned 24 exemplars (2 exemplars x 12 rock categories) to the pretest,
72 exemplars (6 exemplars x 12 rock categories) to the study, and 48 exemplars (4 exemplars
x 12 rock categories) to the final transfer test. There were no overlapping rock stimuli
across the pretest, the study, and the final test.

4.1.4. Procedure

Participants accessed the study via Prolific and then were redirected to Qualtrics to
participate in the experiment. First, we had them take a pretest to measure their prior
knowledge of the to-be-learned rock categories. This is a classification test asking partic-
ipants to identify the rock category of several rock exemplars, given one at a time. They
selected their answers from a list of 12 rock categories (i.e., the to-be-learned rock categories)
presented in alphabetical order. Participants were asked not to use outside sources while
taking the test. There was no time limit, and feedback was not provided.

After the pretest, participants were instructed that they will be learning twelve differ-
ent rock categories through a series of exemplars, and then later take a test on how well
they can identify the category of new exemplars. In addition, participants were informed
beforehand that there would be some images of unrelated objects randomly presented
during the study to check if they were paying attention to the study. They were instructed
to quickly write down the unrelated objects when they popped up (e.g., a bowl, a pencil,
etc.) because they would be asked what those objects were after they finished the study
phase. Participants were also explained that they would not have to remember any other
details about the unrelated objects and were asked not to take notes during the study,
except for the attention-check trials.

Table 2 shows examples of the first six trials from the FD absent, interleaving and FD
absent, blocking conditions (A) and an example of a trial from the FD present conditions
(B). We had the participants passively study the individual exemplars, meaning that every
exemplar was presented along with its corresponding category name. One exemplar was
presented at a time for six seconds and were arranged in an interleaved or a blocked order de-
pending on the conditions. Also, the feature descriptions of the corresponding rock category
were provided along with the rock image or not provided at all, according to the conditions.
The feature descriptions, if available, were provided below the rock image (see Table 2B).
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Table 2. Examples of sequential presentation of rock exemplars from Experiments 1 and 2.

A. FD Absent

B. FD Present

Interleaving

Blocking

Breccia

Basalt

Obsidian Micrite Shale Rock Gypsum Breccia

Basalt Basalt Basalt Basalt Basalt

Cemented
fragments, angular
fragments

Note. In (A) are the first six trials from the FD absent, interleaving and FD absent, blocking conditions in Experiment
1. In (B) is an example of a trial from the FD present conditions in Experiment 1. FD indicates feature descriptions.

Under the interleaved schedule, all study stimuli were divided into six blocks with a
block containing one exemplar from each of the 12 categories. The rock exemplars were
presented in a fixed randomized order in which no exemplar from the same category were
presented consecutively (refers to Table 2A). We presented the participants with the whole
six blocks and then repeated them again in the same order (i.e., 12 exemplars x 6 blocks X
2 times).

Under the blocked schedule, a study block consists of all the six exemplars of one
category. The six exemplars in a block were presented to the participants one by one (refer
to Table 2A), and then the whole block was repeated again in the same order. After studying
the exemplars of one category twice, participants were moved to study another category
(i.e., 6 exemplars x 2 times x 6 blocks).

Two irrelevant images of a chair and a fork were presented randomly during the study
phase for attention check. After finishing the study, participants were asked to identify
these two unrelated objects among a list of ten different objects (e.g., a table, a chair, a book,
a radio, etc.).

We then had the participants complete a simple calculation task, containing 35 addition
and subtraction problems, for five minutes (e.g., 35 + 19 = ?). They were asked not to use
any calculator. Participants were automatically forwarded to the following screen after five
minutes. Participants were instructed that they would now take an identification test on
the twelve rock categories, which they just had learned, and that there would be no time
limit and no feedback. Participants were asked not to consult outside sources. The format
of the final test was maintained to be the same as the pretest. All the final test items were
novel rock images that participants did not encounter in the pretest nor in the study phase,
making it a transfer test.

After finishing the final transfer test, participants were asked to answer a few survey
questions, about if they have a normal or corrected to normal color vision, their age, gender
identity, and race/ethnicity. Finally, participants were thanked for their participation in the
present study and were rewarded approximately USD 8 per hour for their participation.

4.1.5. Data Analysis

Experiment 1 sought to examine the effect of study schedule and feature descriptions
on the learning of rock categorization. We did not predict a three-way interaction between
study schedule, feature descriptions, and different learning processes. Interleaved study
and feature descriptions have potential benefits to promote rock categorization through
both rule-based and information-integration learning (Meagher et al. 2022; Miyatsu et al.
2019; Whitehead et al. 2021). The present study aimed to examine the extent to which
interleaving schedule and feature descriptions can facilitate the two learning processes.
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We took out two subsets of data according to the two different learning processes that
the rock categories may elicit (rule-based vs. information-integration). For each subset, we
conducted a logistic generalized linear mixed-effects model (GLMM) analysis to predict
whether participants correctly or incorrectly identified the rock category of a given rock
image on each trial. We included study schedule (interleaving coded as 1 vs. blocking as 0),
feature descriptions (FD present as 1 vs. FD absent as 0), and their two-way interaction
as the predictors. Participants’ classification accuracy for each rock category in the pretest
was also included in the model as a covariate. Furthermore, we incorporated two random
effects for the interception to our model: one for participants (1 | Participant ID) and another
one for items nested within rock categories (1 | Rock Category/Item) to account for the
random variation across participants and across test items, respectively. We estimated the
model using the Ime4 packages in R (Bates et al. 2015).

We performed Wald chi-square tests, using Type Il ANOVA function in R, to evaluate
the significance of the effects of the predictors. We also report Hedges’ ¢ and the odds ratios
(OR) to interpret the effect size of the predictors. An OR larger than 1 indicates that a one-
unit higher score on the predictor is associated with higher odds of correct identification. An
OR smaller than 1 demonstrates that a one-unit higher score on the predictor is associated
with lower odds of correct identification. When an OR is not significantly different than 1,
the odds of correct identification do not vary as a function of the predictor variable.

4.2. Results

Table 3 shows the means and standard deviations of the final classification test perfor-
mance in Experiment 1. The results are also displayed in Figure 1.

(A) (B)
Final Test: Rule-based Categories Final Test: Information-Integration Categories

Study Schedule Blocking Interleaving Study Schedule Blocking Interleaving

-
o
o
-
o
o

©
-~
[}
©
-~
[}

Proportion of Correct Responses
o
(9}
o

Proportion of Correct Responses
o
(9}
o

0.25 0.25
0.00 0.00
Absent Present Absent Present
Feature Descriptions Feature Descriptions
Note. Mean proportions and SE reported. Note. Mean proportions and SE reported.

Figure 1. The final classification test performance as a function of study schedule (interleaving vs.
blocking) and feature descriptions (FD absent vs. FD present) in Experiment 1 (12 rock categories).
In (A,B) are the final classification test performance for rule-based and information-integration
category learning, respectively. The horizontal bars represent the mean accuracy proportions. The
data points indicate the distribution of individual performance across the sample. The errors bars
indicate standard errors (SE).
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Table 3. The final classification test performance according to four different conditions in Experiment 1.

Feature Descriptions Study Schedule Rule-Based . Informatlon-lnteg-ratlon
Category Learning Category Learning
FD Absent Interleaving 0.51 (0.19) 0.36 (0.16)
Blocking 0.42 (0.15) 0.31 (0.13)
FD Present Interleaving 0.61 (0.20) 0.38 (0.16)
Blocking 0.47 (0.19) 0.28 (0.13)

Note: In the parentheses are the standard deviations of the means. FD indicates feature descriptions.

4.2.1. Rule-Based Category Learning

We used dummy coding for the predictor variables. Therefore, the logistic GLMM
analysis on the final classification test accuracy illustrated the main effect of one predictor
variable when it was equal to 1 while the value of the other predictor was equal to 0 (e.g.,
the effect of interleaving schedule when feature descriptions were absent). Specifically, the
results demonstrated the significant effect of study schedule on rock category identification
accuracy when feature descriptions were absent: xz(l) =10.47,p=.001, g =0.53, OR = 1.60,
and 95% CI [1.20, 2.12]. This means that the participants who studied under the interleaved
schedule were 1.60 times more likely to classify novel exemplars into one of the studied rock
categories than those who studied under the blocked schedule, when feature descriptions
were not provided (M = 0.51, SD = 0.19, and M = 0.42, SD = 0.15, respectively; refer to
Table 1). The effect of providing feature descriptions was also significant: x2(1) = 4.20,
p =.040, ¢ =0.30, OR = 1.36, and 95% CI [1.01, 1.82]. This indicates that participants were
1.36 times more likely to identify the correct rock category when they were provided with
feature descriptions (M = 0.47, SD = 0.19) relative to when they were not provided with
feature descriptions (M = 0.42, SD = 0.15), under the blocked schedule. The interaction
between study schedule and feature descriptions was not significant: x*(1) = 1.97 and
p =.160.

4.2.2. Information-Integration Category Learning

The logistic GLMM analysis showed that the interaction between study schedule and
feature descriptions was significant: x2(1) =3.92, p =.048, OR = 1.34, and 95% CI [1.003, 1.78].
This suggests that the effect of study schedule varied depending on if the feature descriptions
were provided or not. Several follow-up contrasts were performed to shed light on their
interaction.

When we did not provide feature descriptions, the odds that a participant identified
the correct rock category was not significantly higher in the interleaving condition (M = 0.36,
SD = 0.16) compared to the blocking condition (M = 0.31, SD = 0.13): OR =1.29 and 95% CI
[0.996, 1.68]. However, when feature descriptions were provided, participants under the
interleaving condition (M = 0.38, SD = 0.16) were more likely to identify the correct rock
category than those under the blocking condition (M = 0.28, SD = 0.13): g = 0.68, OR = 1.73,
and 95% CI [1.32, 2.27].

Providing feature descriptions did not increase the odds of correct classification, when
the exemplars were blocked (M = 0.28, SD = 0.13 for the FD present, blocking condition
vs. M =0.31, SD = 0.13 for the FD absent, blocking condition): OR = 0.83 and 95% ClI
[0.63, 1.10]; or when the exemplars were interleaved (M = 0.38, SD = 0.16 for the FD present,
interleaving condition vs. M = 0.36, SD = 0.16 for the FD absent, interleaving condition):
OR =1.11 and 95% CI [0.86, 1.44].

4.2.3. Further Analysis of Individual Rock Categories

We generated a confusion matrix that reveals participants’ responses for each rock
category. Appendix A shows the confusion matrix table of participants’ responses in the
final classification test of Experiment 1. These results are also presented in Appendix B.
We created the confusion matrix only for exploration purposes, without conducting any
statistical tests for significance.
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4.3. Discussion
4.3.1. The Effect of Study Schedule and Feature Descriptions for Rule-Based
Category Learning

The results from Experiment 1 demonstrated the advantage of interleaving schedule
over blocking for the rock categories that can benefit from rule-based category learning.
Specifically, participants were more likely to correctly classify novel exemplars to one of the
studied rock categories after an interleaved study than after a blocked study. Our results
also highlighted the benefits of providing feature descriptions on classification accuracy
when the rock categories possess discrete features that separate them from other categories.
Explicit instructions that directed learners’ attention to these features were beneficial as the
provided features were diagnostic of category membership.

4.3.2. The Effect of Study Schedule and Feature Descriptions for Information-Integration
Category Learning

For information-integration categories, the interleaving schedule did not lead to better
classification performance than the blocking schedule when participants studied the rock
exemplars without feature descriptions. The interleaving benefits only emerged under a
learning environment in which participants were provided with feature descriptions. Pro-
viding feature descriptions to participants, however, did not improve the final classification
test performance when the stated features were not diagnostic of category members. This
result held true for both blocked and interleaved studies.

Our findings are consistent with the prior literature demonstrating the positive effect
of interleaving over blocking on rock categorization (Whitehead et al. 2021). We extended
the literature by showing the interleaving benefits for both rule-based and information-
integration category learning. Our results also suggest that providing feature descriptions
was most useful when the to-be-learned categories contain discrete features that can be ver-
balized. The stated features are helpful because they are diagnostic of category membership.

However, one limitation of Experiment 1 was the low classification accuracy of the
rock categories that required information-integration learning process (see Table 3). Such
low performances could have affected our results as they may not demonstrate the true
variation between participants according to study schedule and the presence or absence of
feature descriptions. Experiment 2 was designed to address this problem.

5. Experiment 2

In the present experiment, we aimed to replicate the findings from Experiment 1 while
attempting to improve the overall performance of our participants. To achieve these goals,
we carried out three main changes to the design of Experiment 1. First, we had participants
learn only the six rock categories that can benefit from information-integration category
learning process (Meagher et al. 2022). Second, we increased the number of study items
during the study phase from six to eight exemplars per category. Third, for the interleaving
schedule, we juxtaposed the rock exemplars more often according to rock pairs, instead
of randomly intermixing them as in the previous experiment. For instance, an exemplar
of Marble was often followed by another exemplar of Rock gypsum as Marble and Rock
gypsum were in the same rock pair.

Research suggests that an interleaved schedule enhances learning as it allows partici-
pants to compare and contrast the exemplars of different categories, thus facilitating category
discrimination (Birnbaum et al. 2013; Eglington and Kang 2017; Kang and Pashler 2012).
For that reason, we aimed to boost the interleaving benefits and to improve participants’
final classification test performance by providing them more opportunities to compare and
contrast the exemplars of highly confusable rock pairs during the study phase.

Furthermore, we sought to investigate participants’ metacognitive assessment of their
ability to correctly classify novel exemplars to one of the studied rock categories. We asked
participants to make a global prediction of future classification test performance which
can reflect the overall confidence of their learning status. Both study schedule and feature
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descriptions can impact participants’ prediction of performance because blocking schedule
(rather than interleaving) and providing feature descriptions can increase participants’ sense
of fluency during learning, thus potentially leading to higher learning confidence under
these conditions (Onan et al. 2022). The effects of study schedule on metacognitive judgment
are often examined when the category-level rules are not explicitly provided. We aimed to
extend the literature by examining how participants’ metacognitive judgment varied as a
function of study schedule combined with the presence or absence of feature descriptions.

5.1. Method
5.1.1. Design

Similar to the previous experiment, we manipulated study schedule (interleaving vs.
blocking) and feature descriptions (FD absent vs. FD present) between participants. In
Experiment 2, we focused primarily on the rock categories that required an information-
integration category learning process.

5.1.2. Materials and Procedure

We used the same rock images from six different rock categories that involved information-
integration category learning as in Experiment 1. The six rock categories were also divided
into three different rock pairs: Basalt/Hornfels, Marble/Rock gypsum, Micrite/Shale. We
increased the number of rock images that participants learned for each rock category by
re-presenting the 12 rock stimuli that were used in the pretest again during the study phase
(2 exemplars x 6 rock categories). That means, participants learned 48 rock images (8 exem-
plars x 6 rock categories) in total, instead of 36 rock images as in Experiment 1. Similar to
Experiment 1, the rock exemplars were presented one by one for six seconds each. The final
test contained only new exemplars and also remained in the same format as in Experiment 1.

Another difference from Experiment 1 was the way we presented the rock exemplars
across the study phase in Experiment 2. Specifically, under the interleaved schedule, all
the study stimuli were divided into eight blocks, with each block containing six exemplars,
one exemplar from each of the six categories. The exemplars were presented one by one for
six seconds each, similar to Experiment 1 (see Table 2). For the first and second blocks, all
the exemplars were presented according to the pre-determined rock pairs. For example,
one exemplar of Basalt was followed by an exemplar of Hornfels, one Marble followed by
a Rock gypsum, and then one Micrite followed by a Shale. In the third, fourth, and fifth
blocks, we only juxtaposed exemplars by rock pair two times (e.g., Hornfels—Micrite—
Shale—Basalt—Marble—Rock gypsum). That means, two exemplars of one rock pair were
not juxtaposed (e.g., Hornfels and Basalt). In the sixth, seventh, and eighth blocks, we
juxtaposed exemplars by rock pair only one time (e.g., Micrite—Shale—Rock gypsum—
Basalt—Marble—Hornfels). In total, exemplars from the same rock pairs are juxtaposed
exactly five times across the eight study blocks. We presented participants with the whole
eight study blocks and then repeated them again in the same order (i.e., 6 exemplars x
8 blocks x 2 times).

Under the blocked schedule, there were six study blocks with a block consisting of all
the eight exemplars of one category. The study exemplars were presented to participants
one by one, and then repeated again in the same order. After studying the exemplars of
one category twice, participants were moved to study another category (i.e., 8 exemplars x
2 times x 6 blocks).

We had participants make a prediction of future classification test performance after
they finished the study phase by reporting how likely they feel they would be able to
correctly identify the rock category of new exemplars. The specific instruction was as
follows: “In the final test, new examples from the same six rock categories will be presented.
How likely do you feel you will be able to correctly put a new rock example in one of the
categories that you just learned?” Participants were asked to respond on a 1-4 Likert scale
(1 = very unlikely, 4 = very likely). Other than adding the metacognitive question after the
study phase, we kept the rest of the procedure similar to Experiment 1.
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Note. Mean proportions and SE reported.

5.1.3. Participants

We recruited a representative sample of 401 participants from Prolific. Seventy-five
participants were removed from data analysis. Among them, 22 participants failed the
attention check. Thirty participants reported not to have normal or corrected to normal color
vision. Lastly, we removed 23 participants who were considered outliers in terms of the
duration time based on the boxplot of our data set (i.e., exceeding 49 min; Mdn = 28 min).
Elimination was not significantly predicted by condition: x> = 0.15, df =1, and p = .817.

After elimination, we had a final sample of 326 participants for data analysis (Mage =
43.81, SDage = 14.79, age range from 18 to 82, 58% Female, 73% White) with n = 72 partici-
pants in the FD absent, interleaving condition; n = 86 in the FD absent, blocking condition;
n = 88 in the FD present, interleaving condition; and 7 = 80 in the FD present, blocking
condition.

5.2. Results

Means and standard deviations of the final classification test performance and metacog-
nitive judgment from Experiment 2 are presented in Table 4. The results are visualized in
Figure 2A. We also generated a confusion matrix that reveals participants’ responses for
each rock category. Appendix C shows the confusion matrix table of participants’ responses
in the final classification test of Experiments 2 and 3.
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Figure 2. The final classification test performance as a function of study schedule (interleaving vs.
blocking) and feature descriptions (FD absent vs. FD present) in Experiment 2 (sequential presentation)
(A) and Experiment 3 (simultaneous presentation) (B). The horizontal bars represent the mean accuracy
proportions. The data points indicate the distribution of individual performance across the sample.
The errors bars indicate standard errors (SE).
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Table 4. The final classification test performance and metacognitive judgment according to four different
conditions in Experiment 2.

Feature Descriptions Study Schedule Final Test Metacognition
FD Absent Interleaving 0.50 (0.16) 2.65 (0.70)
Blocking 0.40 (0.13) 2.55(0.71)
FD Present Interleaving 0.48 (0.14) 2.74 (0.60)
Blocking 0.43 (0.15) 2.81 (0.64)

Note: In the parentheses are the standard deviations of the means. FD indicates feature descriptions.

5.2.1. Final Classification Test Performance

A logistic GLMM analysis was performed to evaluate the effects of study schedule and
feature description as well as their interaction on rock category identification accuracy. Re-
sults revealed a significant effect of study schedule: x2(1) =21.10, p<.001,¢=0.72,OR = 1.64,
and 95% CI [1.33, 2.03]. This indicates that the interleaved schedule (M = 0.50, SD = 0.16)
increased the odds of accurate rock-category identification by 1.64 times compared to the
blocked schedule (M = 0.40, SD = 0.13) when participants were not provided with feature
descriptions. The effect of providing feature descriptions was not significant: x*(1) = 1.92
and p = .166. This indicated that the participants who studied feature descriptions along
with the rock exemplars under the blocked schedule did not significantly perform better in
the final test as compared to those who did were not provided with feature descriptions
(M =043,5D =0.15and M = 0.40, SD = 0.13, respectively). The interaction between study
schedule and feature descriptions was not significant: x*(1) = 2.61 and p = .106.

5.2.2. Metacognitive Judgment

A 2 x 2 between-subjects ANOVA on participants’ prediction of performance revealed
that the main effect of study schedule was not significant: F(1, 322) = 0.05 and p = .826.
This indicated that the participants who studied under the interleaved schedule (M = 2.70,
SD =0.64) did not feel more confident about their learning as compared to those under
the blocked condition (M = 2.67, SD = 0.69), regardless of the absence or presence of
feature descriptions. The main effect of feature descriptions, however, was significant:
F(1,322) =5.73, p=.017, and g = 0.27. This means that the participants who studied the rock
images along with feature descriptions during the study phase felt that they would be more
likely to identify the correct rock category of new exemplars in the final test than those
who studied without feature descriptions (M =2.77, SD = 0.62 and M =2.59, SD =0.71,
respectively), regardless of study schedule. The interaction between study schedule and
feature descriptions was not significant: F(1, 322) = 1.50 and p = .221.

5.3. Discussion
5.3.1. Final Classification Test Performance

We replicated the findings from the previous experiment and demonstrated that inter-
leaving rock exemplars promoted better rock categorization for information-integration
category learning. However, different from Experiment 1, the interleaving effect emerged
even when participants were not provided with feature descriptions. The results from
Experiment 2 were similar to those of Whitehead et al. (2021), showing that the benefits
of interleaving did not vary according to the presence or absence of feature descriptions
even when we used highly confusable rock pairs. Furthermore, similar to our results from
Experiment 1 and to prior studies, providing feature descriptions did not enhance rock
categorization when the rock categories do not seem to have discrete features that can be
easily verbalized (Meagher et al. 2022).

5.3.2. Metacognitive Judgment

Our results suggest that the participants who studied under the interleaved schedule
were not aware of the interleaving benefits. The interleaved group of participants showed a
comparable level of confidence that they would be able to identify the correct rock category
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of novel exemplars compared to the blocked group. Interestingly, the participants who
studied the rock categories along with feature descriptions felt more confident about their
ability to classify rock exemplars than those who were not provided with such descriptions.
It appears that providing feature description did not enhance the final classification test
performance but may lead to inaccurate metacognitive assessment of learning.

The lack of interaction between study schedule and feature descriptions, however,
could be due to the way the exemplars were presented during the study phase. In Exper-
iments 1 and 2, only one exemplar was presented on every trial during the study phase.
The sequential presentation of rock exemplars did not allow participants to directly com-
pare and contrast the exemplars. The rock categories that require information-integration
categorization process is complex and vary across multiple dimensions. Learning a series
of isolated exemplars may prevent some participants from interpreting the feature descrip-
tions that we provided. The interaction between study schedule and feature descriptions
may become more robust when we make it easier for participants to process the provided
information. We designed Experiment 3 to test this hypothesis.

6. Experiment 3

We aimed to re-examine the effect of study schedule and feature descriptions in the
learning of rock categorization that involved information-integration learning process.
Similar to Experiment 2, we had participants learn the same six rock categories. The only
difference was that we simultaneously presented two rock images on every trial instead of
sequentially presenting them one by one as in previous experiments.

Simultaneous presentation of rock exemplars has been demonstrated to facilitate rock
categorization learning (Meagher et al. 2017). Allowing participants to study two stimuli
from the same category can emphasize the characteristic features that are shared among
the category members (Goldwater and Schalk 2016; Kurtz et al. 2001). On the other hand,
allowing participants to simultaneously study the information from two different rock
categories may highlight the discriminative features that separate one category from another
(Andrews et al. 2011; Carvalho and Goldstone 2014). Given the promising benefits of the
simultaneous presentation method, we adopted this format for Experiment 3 and sought to
re-investigate the effect of study schedule and feature descriptions on rock categorization.

6.1. Method
6.1.1. Materials and Procedure

We used the same series of rock images from Experiment 2. Table 5 demonstrates
examples of simultaneous presentation of rock exemplars from Experiment 3. Under the
interleaved schedule, the rock images were divided into eight study blocks. Each block
contained three trials, with each trial consisting of two exemplars. Every trial was presented
for ten seconds. For the first and second blocks, each trial consisted of two exemplars from
the two rock categories that were considered a pair (e.g., Marble and Rock gypsum). For
the third, fourth, and fifth blocks, two trials followed the rule of those in the first two blocks,
while the remaining trial included two rock exemplars from two rock categories that were
not in the same pair (e.g., Shale and Basalt). For the sixth, seventh, and eighth blocks,
only one trial contained two different exemplars from a rock pair, whereas for the other
two trials, two rock images from two unpaired rock categories were presented together.
After participants learned all the eight blocks, they studied them again in the same order
(i.e., 2 exemplars x 3 trials x 8 blocks x 2 times).
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Table 5. Examples of simultaneous presentation of rock exemplars from Experiment 3.

A. FD Absent B. FD Present
Trial 1 Trial 2 Trial 3 Trial 1
-4 Basalt Hornfels Marble Rock Gypsum Micrite Shale Basalt Hornfels
£ ’
[+
_
8
S
Trial 1 Trial 3
Basalt Basalt Basalt Basalt Basalt Basalt
- Dark,

Dark,

. . fine-grained
fine-grained, . )
with layering
may have and flat
holes
surfaces

Note. In (A) are the examples of the first three trials from the FD absent, interleaving and FD absent, blocking
conditions. In (B) is an example of the first trial from the FD present, interleaving condition. FD indicates feature
descriptions.

Blocking

Under the blocked schedule, there were six study blocks. Each block contained all the
rock exemplars of a rock category divided into four trials. Each trial consisted of two rock
exemplars from the same rock category (e.g., two exemplars from Basalt). After participants
learned a block of rock images from one rock category, they studied them again in the same
order (i.e., 2 exemplars x 4 trials x 2 times X 6 blocks). The rest of the procedure remained
the same as in Experiment 2.

6.1.2. Participants

We recruited a representative sample of 398 participants from Prolific. Fifty-eight
participants were removed from data analysis. Among them, 18 failed the attention check.
Seventeen participants did not have normal or corrected to normal color vision, and twenty-
three participants were considered as outliers in terms of the duration time based on the
boxplot of our data set (i.e., spending more than 42 min on the study; Mdn = 25 min).
Elimination was not significantly predicted by condition: x? = 0.003, df = 1, and p = 1.000.

After elimination, we ended up having 340 participants for data analysis (Mage = 43.25,
SD,ge = 15.32, age range from 18 to 77, 56% Female, 74% White). They included n = 76
participants in the FD absent, interleaving condition; n = 86 in the FD absent, blocking
condition; n = 94 in the FD present, interleaving condition; and #n = 84 in the FD present,
blocking condition.

6.2. Results

Means and standard deviations of the final test performance and metacognitive judg-
ment from Experiment 3 are presented in Table 6. The results are also displayed in Figure 2B.

Table 6. The final classification test performance and metacognitive judgment according to four
different conditions in Experiment 3.

Feature Descriptions Study Schedule Final Test Metacognition
FD Absent Interleaving 0.45 (0.15) 2.51(0.72)
Blocking 0.40 (0.12) 2.55 (0.73)
FD Present Interleaving 0.47 (0.13) 2.62 (0.61)
Blocking 0.43 (0.13) 2.79 (0.60)

Note: In the parentheses are the standard deviations of the means. FD indicates feature descriptions.

6.2.1. Final Classification Test Performance

A logistic GLMM model on the classification accuracy revealed a significant effect
of study schedule: x%(1) =5.68, p=.017,¢=0.37, OR = 1.26, and 95% CI [1.04, 1.52]. This
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implied a benefit of the interleaved schedule over blocking for the participants who did not
study with feature descriptions (M = 0.45, SD = 0.15 and M = 0.40, SD = 0.12, respectively).
The effect of feature descriptions was not significant: x?(1) = 2.60 and p = .107. This means
that providing feature descriptions did not lead to better classification performance than not
providing them under the blocked schedule (M = 0.43, SD = 0.13 and M = 0.40, SD = 0.12,
respectively). The interaction between study schedule and feature descriptions was not
significant: x2(1) =0.10 and p =.753.

6.2.2. Metacognitive Judgment

A 2 x 2 between-subjects ANOVA on participants’ prediction of performance demon-
strated that the main effect of study schedule was not significant: F(1, 336) = 1.95 and p = .164.
Results showed that participants reported an equivalent rate of confidence in how likely
they would be able to identify the correct rock category of novel exemplars after a blocked
(M =2.66, SD = 0.67) and an interleaved study (M = 2.57, SD = 0.66), regardless of the ab-
sence or presence of feature descriptions during the study phase. Furthermore, a significant
effect of providing feature descriptions was observed: F(1, 336) = 5.62, p = .018, and g = 0.26.
This suggested that the participants who studied the rock images along with their feature
descriptions felt that they will be more likely to identify the correct rock category of new
exemplars in the final test (M = 2.70, SD = 0.61) than those who were not provided with
feature descriptions (M = 2.53, SD = 0.72), regardless of study schedule. The interaction
between study schedule and feature descriptions was not significant: F(1, 336) = 0.88 and
p =.350.

6.3. Discussion
6.3.1. Final Classification Test Performance

Our results again highlighted the positive effect of interleaving schedule on rock
categorization learning when participants studied two rock images simultaneously on
every trial. The interleaved group of participants performed better than the blocked group
in the final classification test. Providing feature descriptions did not improve categorization
learning nor boost the interleaving effect despite the simultaneous presentation of rock
exemplars during the study phase.

6.3.2. Metacognitive Judgment

Even though their final classification accuracy was higher, the participants who stud-
ied under the interleaved schedule did not report a higher level of confidence that they
would likely identify the correct rock category of novel exemplars as compared to those
who studied under the blocked schedule. Furthermore, consistent with the results from
Experiment 2, participants felt more confident about their ability to classify novel exem-
plars when they studied the rock exemplars along with feature descriptions. This finding
indicates that participants were at risk of making faulty metacognitive judgments when
studying with feature descriptions.

7. General Discussion

A great deal of research has examined the effect of study schedule on category induc-
tion. We extended the literature by investigating how the effect of interleaving and blocking
schedules varied when combined with verbal descriptions of category features. Across three
experiments, we manipulated study schedule (interleaving vs. blocking) and feature descrip-
tions (FD present vs. FD absent) as participants studied exemplars of rocks from different
categories. In general, we found that interleaving promoted both rule-based and information-
integration category learning to a greater extent than blocking, which is consistent with prior
studies (Whitehead et al. 2021; also see Brunmair and Richter 2019). Further, we replicated
the prior literature showing that feature descriptions facilitated category learning when the
categories contain discrete features that are easy to verbalize (Meagher et al. 2022). However,
limited benefits of feature descriptions were found when the categories do not possess such
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distinct features, and thus should benefit from information-integration learning. Finally,
our results highlighted participants” metacognitive biases with regard to the effect of study
schedule and feature descriptions.

7.1. The Effect of Study Schedule and Feature Descriptions on Rock Categorization

Across the three experiments, we demonstrated the facilitative effect of interleav-
ing (relative to blocking) for both rule-based and information-integration category learn-
ing. Interleaved study consistently led to better final classification test performance than
blocked study for categories that are best learned through rule-based (Experiment 1) and
information-integration learning processes (Experiments 1-3). Our findings are consistent
with Whitehead et al. (2021) who found the advantages of interleaved study in rock catego-
rization and with a recent meta-analysis showing robust benefits of interleaved practice
for visual stimuli (Brunmair and Richter 2019). In addition, we extended the literature by
emphasizing the interleaving effect for a representative sample of participants. The majority
of prior research on the interleaving effect investigated college student samples (Brunmair
and Richter 2019). Less evidence demonstrating the advantages of interleaving in other
age groups such as children or adolescents (e.g., Rau et al. 2013; Rohrer et al. 2014, 2015)
and older adults (Kornell et al. 2010) have been found. The present study replicates the
positive effect of interleaving across a wide age range throughout the three experiments
(i.e., 18-84 years old). We highlight the generalizability of the interleaving benefits for rock
categorization learning to a large population of adult learners.

We also replicated the findings that feature descriptions can facilitate rock catego-
rization when the rock categories contain discrete features that can be easily verbalized
(Meagher et al. 2022). Providing verbal descriptions of these features can draw learners’
attention to the relevant dimension, which improved the classification accuracy of novel
exemplars (Experiment 1). The replication of such benefits is important because the effect
of feature descriptions for rock category learning were not consistent and subject to vari-
ous factors in prior studies (Meagher et al. 2022; Miyatsu et al. 2019). The present study
suggested that descriptions of relevant features can foster learning even when they were
not visually highlighted on the rock images as in the previous literature (e.g., Meagher
et al. 2022; Miyatsu et al. 2019). When the rock categories possess discrete features, the
descriptions of these features are diagnostic of category membership. Thus, presenting
them verbally alongside rock exemplars can also promote better rock categorization. How-
ever, it is worth noting that we only found the benefits of providing diagnostic feature
descriptions in Experiment 1 for the rock categories that can be learned best via rule-based
category learning. The effect of providing feature descriptions for rock classification was
inconclusive when the stated features were not diagnostic of category membership.

For categories that require information-integration learning, participants may benefit
from engaging in a more holistic procedural-based process that requires an implicit map-
ping between rock exemplars and underlying category-level pattern (Ashby and Maddox
2011; Maddox and Ashby 2004; Meagher et al. 2022; Noh et al. 2016). Participants may take
advantage of the feature descriptions while integrating information across all the exem-
plars to develop a comprehensive category representation. However, learning complex
information-integration categories may require more training and practice for participants
to make sense of the feature descriptions and explicitly recognize the category-level pattern.
Providing feature descriptions may still benefit information-integration learning when the
stated features are more deeply processed and combined with other effective techniques
such as lab-based chemical analyses and microscopic examinations (Meagher et al. 2022).

Alternatively, earlier research suggests that explicitly providing feature descriptions
may not facilitate an information-integration learning system (e.g., Ashby and Maddox 2011;
Noh et al. 2016). This is because the presence of such information may prevent participants
from implicitly associating exemplars with a more complex, unverbalizable pattern—a
reflexive, procedural-based process that was found to promote information-integration
learning (Ashby and Maddox 2011). Research suggests that when explicit instructions
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are provided, participants are less likely to think beyond the provided rules and tend to
continue using rule-based reflective strategies even when they can learn better from an
information-integration reflexive learning process (Chandrasekaran et al. 2016). Further-
more, our participants learned the rock categories through a passive learning paradigm.
That means, participants always learned the rock exemplars along with their category label.
Passive learning may prompt participants to a partially rule-based learning method (Ashby
et al. 1998; Hughes and Thomas 2021). Under a passive learning environment, participants
may not be able to abandon a rule-based strategy especially when feature descriptions are
explicitly presented on every learning trial. That could be one of the reasons why providing
feature descriptions did not facilitate information-integration learning. Our study, however,
was not designed to directly test this hypothesis. Further research is needed to examine it
in more detail.

The present study also contributed to the literature by investigating how different
study schedules may interact with feature descriptions in the learning of rock categorization.
There has been insufficient evidence showing the relationship between these two factors
in a naturalistic category learning. To the best of our knowledge, Whitehead et al. (2021)
was the first to investigate the interaction between study schedule and feature descriptions
using the rock materials from Miyatsu et al. (2019). They did not find a significant impact of
providing feature descriptions on rock classification and thus eliminated this factor from
their analyses. We extended their findings by re-examining the dynamic interaction between
study schedule and feature descriptions on the learning of highly confusable rock pairs that
may benefit from different learning processes, adopted from Meagher et al. (2022).

7.2. The Effect of Study Schedule and Feature Descriptions on Metacognitive Judgment

Our examination of participants” metacognitive judgments demonstrated that par-
ticipants were not sensitive to the advantage of interleaved study over blocking on rock
categorization. Participants under blocked and interleaved conditions predicted an equiva-
lent likelihood to correctly classify rock exemplars before taking the final test. However,
the final test performance showed that the interleaved-group participants achieved higher
classification accuracy than did the blocked-group participants.

Much prior research demonstrated participants’ erroneous metacognitive belief that
blocking schedule is more effective than interleaving, although actual learning performance
demonstrated the opposite (Kornell and Bjork 2008; Kornell et al. 2010; Yan et al. 2016;
Zulkiply et al. 2012). Participants may believe that blocking schedule facilitates inductive
learning better than interleaving due to their prior knowledge, and also because it may
feel easier to study one category at a time than to simultaneously process the examples of
multiple categories as in an interleaved schedule (Yan et al. 2016). However, Yan et al. (2016)
suggested that participants may be more sensitive to the interleaving benefits when making
category-level judgments. We did not replicate such sensitivity when having participants
make a global judgment, but we also did not observe a preference towards either direction,
blocking or interleaving, in the present study. Importantly, the pair-based confusion matrices
for each experiment revealed that the interleaving benefits did not always emerge for all the
rock categories. These results suggest that category-level effects may impact learning and
likely metacognitive predictions. Future research may elaborate on our findings by having
participants make a prediction of how likely they feel they would be able to correctly identify
new exemplars of a specific rock category rather than making a global judgment. Further
investigation that adopts category-level predictions and that uses statistical techniques
which can account for category-level variation may be useful moving forward.

We used highly confusable rock pairs that likely benefited from the interleaving sched-
ule as it promoted comparison of exemplars from different categories. However, participants
may not be able to recognize the facilitative effect of interleaving due to its small improve-
ment in terms of classification accuracy compared to the blocking schedule (Rivers et al.
2022). Furthermore, our study had a between-participants design, and thus may not be as
effective as a within-participant manipulation to capture the subtle differences associated
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with the effect of interleaved and blocked study on metacognitive judgment of learning
(Carroll 2008). A within-participant design may allow participants to compare from their
own experience with both study schedules, and thus may produce more accurate assessment
of learning (Carroll 2008; Yan et al. 2016).

The metacognitive predictions also reveal that providing feature descriptions led to
higher learning confidence. Adding the descriptions of nondiagnostic features did not
enhance classification accuracy but seemed to boost participants” confidence in their ability
to later categorize new exemplars. To the best of our knowledge, our study is the first to
show empirical evidence on the effect of feature descriptions on metacognitive judgment.
Our study demonstrated a metacognitive risk, in which providing feature descriptions
may not always improve classification performance for information-integration category
learning but can cause an illusion of learning. Inaccurate metacognitive judgment may have
a negative impact on subsequent learning behaviors (Efklides 2014; Metcalfe 2009), thus
may eventually hinder learning. The present study highlights the importance of considering
metacognitive judgment alongside categorization accuracy when examining the effect of
study schedule and feature descriptions in category learning.

7.3. Limitations and Suggestions for Future Research

We acknowledge a limitation of our study as we used a passive learning paradigm
in which participants learned the rock exemplars along with the name of their rock type.
Passive learning may reduce participants” attention for blocked study because participants
learned six exemplars of one rock type consecutively and restudied them again in the same
order (e.g., Wahlheim et al. 2011). Thus, the subtle differences in classification performance
between the interleaved and blocked groups may be due to a gap in the amount of attention
that participants had on their study in the two conditions. However, we reduced the
contribution of variable attention by requiring participants to spend a fixed amount of
study time on each trial regardless of the conditions. We also removed all the participants
who failed to identify the two unrelated objects appearing during the attention-check trials.
All participants included in our data analysis correctly pointed out the two unrelated objects
even though they were presented randomly across the study phase, thus guaranteeing a
comparable level of attention for all those who were included.

Future studies should re-examine the effect of study schedule in rock categoriza-
tion using a more active learning environment to increase attention for blocked condi-
tions. An active learning environment can also benefit the learning of complex and multi-
dimensional categories as it may encourage a procedural thinking process that is effective
for an information-integration learning system (Carvalho and Goldstone 2015a; Hughes
and Thomas 2021). For example, researchers should allow participants to engage in the
study more actively by guessing the rock type of exemplars on every trial (Carvalho and
Goldstone 2015a; Meagher et al. 2022). Doing so may motivate participants to think beyond
the provided features and search for other discriminate features, thus enhance category
distinction (Carvalho and Goldstone 2015a).

7.4. Practical Implications for Education

Our study demonstrates the advantage of interleaved study over blocking in rock
categorization. We also found the benefits of providing feature descriptions when the
given features were diagnostic of category membership and learners could benefit from
a rule-based category learning process. We therefore suggest instructors and students to
interleave their study for effective learning. Instructors may also provide learners with
some descriptions of the diagnostic features that help learners discriminate between the
confusable categories. Although not investigated in the present research, previous studies
suggest that instructors should create only short verbal descriptions to avoid overloading
learners’ working memory (Firth et al. 2021).

However, our study shows that feature descriptions may have limited benefits for
learners when the provided features are not diagnostic of category membership. That said,
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providing feature descriptions may facilitate interleaved learning when participants really
struggle and fail to identify the discriminative and characteristic features of complex
categories (e.g., Yan and Schuetze 2022). Thus, it is important for instructors and students
to keep track of the learning process to execute an appropriate study technique. Further,
instructors and students should be aware of the metacognitive consequences of providing
feature descriptions. Although studying such information may not always enhance later
performance, it may inflate students’ confidence on their learning status. Instructors and
students should be aware of this phenomenon to adjust their subsequent teaching and
learning behaviors.

8. Conclusions

The present study provided evidence showing how study schedule and feature descrip-
tions may affect category induction differently according to different learning environments
and learning processes. We extended the literature by showing their impact on both par-
ticipants’ categorization performance and their metacognitive judgment of their ability to
do so. Our results highlighted both the benefits and the risks of using these techniques in
category learning. Future study should extend our findings by investigating the effects of
study schedule and feature descriptions in other circumstances to better understand their
possible interaction and the underlying mechanism of the two factors.
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Appendix A
Table Al. The confusion matrix showcasing participants’ responses in the final classification test of Experiment 1.
FD present, interleaving
Experiment 1: Rule-Based Categories Experiment 1: Information-Integration Categories
1a. 1b. 2a. 2b. 3a. 3b. 4a. 4b. 5a. 5b. 6a. 6b.
Anthracite Obsidian Breccia Conglomerate Gabbro Peridotite Basalt Hornfels Marble Rock gypsum Micrite Shale

Anthracite 57.7 11.1 7.7 0.5 8.4 2 5.2 7 1.1 0.2 14 3.6
Obsidian 30.7 82.7 4.8 0.5 0.9 0 0.7 2 14 3 0.9 0.2
Breccia 0.9 0.2 52 11.6 14.8 2.7 3.6 3.2 1.6 0.7 1.1 1.8
Conglomerate 0.7 0.5 13.9 72.5 8.9 2.3 0.2 0.5 14 0.2 1.1 1.6
Gabbro 0.9 0.5 5 41 311 15.7 9.3 15.5 8 1.8 34 48
Participants’ Peridotite 1.1 0.7 1.4 5.9 5.2 68.9 11 15 0.7 0.5 1.6 14
Responses Basalt 1.8 0.5 2 1.6 15 2 38.6 13.2 4.1 1.1 6.8 9.1
Hornfels 2.7 0.2 2 0.9 7.5 1.8 20.9 26.6 3.6 2.3 10.5 232
Marble 0 1.6 4.5 0.7 0.5 11 0 14 36.4 25 8.4 0.7
Rock gypsum 0.9 0.2 3 0.9 2 0.9 1.8 1.6 27.7 51.6 9.3 0.5
Micrite 14 1.1 23 0.5 3.9 2.5 82 5.2 8.4 73 34.3 11.1

Shale 1.1 0.7 14 0.5 1.8 0 10.2 8.9 5.7 6.4 21.1 42

FD absent, interleaving
Experiment 1: Rule-Based Categories Experiment 1: Information-Integration Categories
1a. 1b. 2a. 2b. 3a. 3b. 4a. 4b. 5a. 5b. 6a. 6b.
Anthracite ~ Obsidian Breccia Conglomerate Gabbro Peridotite Basalt Hornfels Marble Rock gypsum Micrite Shale

Anthracite 48.9 10.2 44 2.7 5.2 3.6 47 5.8 3 2.2 0.3 3.8
Obsidian 39 81 7.1 0.3 1.6 0.3 1.6 1.1 0.3 1.6 0.5 0.8

Breccia 0 0.8 33.8 18.1 16.8 5.8 14 3.6 2.5 14 19 3

Conglomerate 0.3 0 30.2 65.1 6.9 0.5 14 0.8 0.8 0.3 0.5 1.1
Gabbro 0.8 0 3.8 3.8 22.8 20.1 8 12.9 8 14 2.7 4.4

Participants’ Peridotite 1.4 0.5 5.5 5.2 9.6 53.3 25 6.9 4.1 1.6 0.8 1.1
Responses Basalt 11 19 1.6 0.8 16.5 5.8 324 21.7 5.2 1.6 8.5 11.8
Hornfels 3 0.5 2.2 0.3 124 3 18.7 25.3 3.6 14 7.1 12.9
Marble 0.8 14 5.8 0.5 0.5 19 0.8 11 35.4 32.7 12.4 22
Rock gypsum 0.3 1.1 2.2 19 2.2 2.5 3.3 2.7 26.1 47.3 9.6 2.5
Micrite 2.5 14 19 11 44 3 8.5 6.9 8 6.6 26.6 7.7
Shale 19 1.1 14 0 1.1 0.3 16.8 11.3 3 19 28.8 48.6
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FD present, blocking
Experiment 1: Rule-Based Categories Experiment 1: Information-Integration Categories
1a. 1b. 2a. 2b. 3a. 3b. 4a. 4b. 5a. 5b. 6a. 6b.
Anthracite Obsidian Breccia Conglomerate Gabbro Peridotite Basalt Hornfels Marble Rock gypsum Micrite Shale
Anthracite 37.8 9.1 43 1.5 8.2 2.7 7.3 9.8 3.4 4 4 52
Obsidian 39 72.9 7.6 0 2.1 0.9 1.8 1.5 1.2 0.9 0.9 2.7
Breccia 0.6 0.9 35.1 15.2 14.6 49 49 7 2.4 0.9 2.7 43
Conglomerate 0.3 0 20.1 65.9 7.9 2.1 0.9 0.3 0.3 0.9 0.3 1.5
Gabbro 3.4 1.2 8.2 3 15.9 10.1 9.1 12.5 7.9 2.7 3.7 49
Participants’ Peridotite 0.9 0.6 24 6.1 7 56.7 2.7 12.2 2.4 1.5 2.7 3
Responses Basalt 24 24 34 1.8 23.5 6.1 33.8 17.7 4.6 1.2 7.9 12.5
Hornfels 6.1 4 5.5 1.5 9.1 4.6 13.7 12.2 4.6 3.7 6.1 11.9
Marble 1.8 34 4.6 0.6 0.3 2.1 0.3 2.7 26.5 29.9 15.9 2.7
Rock gypsum 0.6 0.6 4.3 2.7 3 43 3.7 4 27.4 41.2 13.4 2.7
Micrite 4.3 2.1 2.7 1.2 6.4 4.6 8.5 8.8 11 55 18 14.6
Shale 2.7 2.7 1.8 0.3 1.8 0.9 13.1 11.3 8.2 7.6 24.4 33.8
FD absent, blocking
Experiment 1: Rule-Based Categories Experiment 1: Information-Integration Categories
1a. 1b. 2a. 2b. 3a. 3b. 4a. 4b. 5a. 5b. 6a. 6b.
Anthracite Obsidian Breccia Conglomerate Gabbro Peridotite Basalt Hornfels Marble Rock gypsum Micrite Shale
Anthracite 36 124 5.3 1.1 94 34 8.3 6 2.8 1.6 3.2 2.5
Obsidian 45.2 75.7 6.7 0.7 1.6 0.7 1.8 2.3 0 2.1 1.6 1.4
Breccia 0 0.9 22.5 14.2 14 10.6 2.3 55 53 0.5 2.8 3.7
Conglomerate 0.2 0.2 32.8 65.6 8 2.5 14 0.9 11 0 14 14
Gabbro 0.7 0.7 6.4 4.1 124 14.2 6.9 8.9 6.9 2.3 3.2 4.8
Participants’ Peridotite 1.8 0.9 9.6 7.3 12.6 41.5 4.6 6.4 7.6 25 2.1 25
Responses Basalt 4.8 1.1 2.8 0.2 21.6 10.3 31.7 22.5 5.7 2.3 7.8 13.5
Hornfels 3.4 1.6 3.9 1.6 8.3 5.3 14.2 21.1 4.6 0.7 6 11.7
Marble 0.7 1.8 6 0.7 1.1 1.1 0.9 1.8 36.7 35.8 10.8 0.9
Rock gypsum 1.4 1.4 1.1 0.7 2.8 3.7 3 3.7 18.6 37.2 15.4 3.9
Micrite 3.2 1.6 25 2.8 6.2 6.2 7.6 7.1 6.9 8.7 16.5 9.2
Shale 2.5 1.6 0.5 0.9 2.1 0.5 17.4 13.8 3.9 6.4 29.4 445

Note. The data points showed the percentage of responses in the final classification test. For example, under the FD present, interleaving condition, when Anthracite exemplars were
given, on average 57.7% of the responses were correct, whereas 30.7% of participants’ responses were Obsidian. Blue color indicates the percentage of correct response. Red color

represents the percentage of near error (i.e., choosing the other rock category in the same pair).
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Figure Al. The confusion matrix showcasing participants’ responses in the final classification test from Experiment 1.
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Appendix C

Table A2. The confusion matrix showcasing participants’ responses in the final classification test of Experiments 2 and 3.

FD present, interleaving

Experiment 2: Information-Integration Categories Experiment 3: Information-Integration Categories

4a. 4b. 5a. 5b. 6a. 6b. 4a. 4b. 5a. 5b. 6a. 6b.
Basalt Hornfels Marble  Rock gypsum  Micrite Shale Basalt Hornfels Marble  Rock gypsum  Micrite Shale
Basalt 49.4 224 6.3 1.4 3.1 8.2 40.7 22.9 51 1.3 53 7.7
Hornfels 28.7 42 2.6 0.9 14.8 28.4 31.4 42 2.9 1.3 10.1 30.1
Participants’ Marble 0.3 2 51.7 24.1 8 1.7 0 3.7 54.5 26.1 9.8 21
Responses Rock gypsum 0.6 2.8 27.8 62.2 9.1 2.6 1.6 3.7 25.8 63.3 8.8 3.2
Micrite 114 18.5 6.3 8.2 40.1 15.9 13.3 18.6 5.6 4.8 37.2 12.2
Shale 9.7 12.2 5.4 3.1 25 43.2 13 9 6.1 32 28.7 44.7
FD absent, interleaving
Experiment 2: Information-Integration Categories Experiment 3: Information-Integration Categories
4a. 4b. 5a. 5b. 6a. 6b. 4a. 4b. 5a. 5b. 6a. 6b.
Basalt Hornfels Marble  Rock gypsum  Micrite Shale Basalt Hornfels Marble  Rock gypsum  Micrite Shale
Basalt 48.3 16.3 5.2 1 5.6 11.1 48.4 17.4 5.9 3 6.9 10.2
Hornfels 21.2 56.6 1.7 21 5.6 253 21.7 44.4 3.9 3.6 8.6 22.7
Participants’ Marble 0.7 2.8 51 25.7 8.3 14 0.7 7.6 43.4 25.7 11.8 0.7
Responses Rock gypsum 42 49 24 58 9 2.8 2 6.9 30.3 54.6 11.2 53
Micrite 8 11.5 15.3 10.1 39.2 12.5 9.2 14.8 11.8 9.9 28.9 12.8
Shale 17.7 8 2.8 3.1 32.3 46.9 18.1 8.9 4.6 3.3 32.6 48.4
FD present, blocking
Experiment 2: Information-Integration Categories Experiment 3: Information-Integration Categories
4a. 4b. 5a. 5b. 6a. 6b. 4a. 4b. 5a. 5b. 6a. 6b.
Basalt Hornfels Marble  Rock gypsum  Micrite Shale Basalt Hornfels Marble  Rock gypsum  Micrite Shale
Basalt 46.9 22.2 5.6 0.6 44 10 47.9 23.8 6.8 0.9 6.5 8.6
Hornfels 27.2 36.9 3.4 5 14.4 25 22.3 37.5 2.7 4.5 15.2 25.6
Participants’ Marble 0.6 41 51.2 28.4 10.6 1.9 0 4.2 51.5 25.6 14.6 2.7
Responses Rock gypsum 3.1 8.4 22.8 46.6 14.7 5.3 3 7.1 26.2 51.2 13.1 6.8
Micrite 12.2 18.1 9.7 12.2 34.7 17.5 122 17.3 10.4 11 28.9 15.5
Shale 10 10.3 7.2 7.2 21.3 40.3 14.6 10.1 2.4 6.8 21.7 40.8
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Table A2. Cont.

FD absent, blocking
Experiment 2: Information-Integration Categories Experiment 3: Information-Integration Categories
4a. 4b. 5a. 5b. 6a. 6b. 4a. 4b. 5a. 5b. 6a. 6b.
Basalt Hornfels Marble  Rock gypsum  Micrite Shale Basalt Hornfels Marble  Rock gypsum  Micrite Shale
Basalt 47.7 20.3 3.8 0.3 7.8 13.1 47.4 28.5 7.6 1.2 10.8 154
Hornfels 20.1 33.7 5.5 2.6 10.2 22.1 18.9 34.6 4.9 4.4 15.1 20.1
Participants’ Marble 0.6 3.8 54.9 41.9 13.7 2.6 0 2.3 52.9 38.4 9.6 1.7
Responses Rock gypsum 41 11 20.6 37.2 17.4 10.8 6.1 8.7 22.1 38.7 15.1 8.4
Micrite 12.2 16.9 7.3 9.3 28.8 16.3 11.6 15.4 7.8 10.8 27 16.6
Shale 15.4 14.2 7.8 8.7 221 35.2 16 10.5 4.7 6.7 22.4 37.8

Note. The data points showed the percentage of responses in the final classification test. For example, under the FD present, interleaving condition, when Basalt exemplars were given,
on average 49.4% of the responses were correct, whereas 28.7% of participants’ responses were Hornfels. Blue color indicates the percentage of correct response. Red color represents the
percentage of near error (i.e., choosing the other rock category in the same pair).
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Notes

! The sample was divided into different subgroups according to age (i.e., the age range 18-27, 28-37, 38-47, 48-57, and 58-150), sex

(i.e., female and male) and ethnicity (i.e., White, Black, Asian, Mixed, and Other).

The feature descriptions for the Micrite-Shale pair were originally explained in full sentences in Meagher et al. (2022). In the
present study, they were edited and presented to participants as key words (i.e., Micrite as “fine-grained, dense” and Shale as
“fine-grained, often has thin, parallel layers”).

References

Andrews, Janet K., Kenneth R. Livingston, and Kenneth J. Kurtz. 2011. Category learning in the context of co-presented items. Cognitive
Processing 12: 161-75.

Ashby, E. Gregory, and Jeffrey B. O’Brien. 2005. Category learning and multiple memory systems. Trends in Cognitive Sciences 9: 83-89.

Ashby, F. Gregory, and W. Todd Maddox. 2005. Human category learning. Annual Review of Psychology 56: 149-78.

Ashby, F. Gregory, and W. Todd Maddox. 2011. Human category learning 2.0. Annals of the New York Academy of Sciences 1224: 147-61.

Ashby, F. Gregory, Leola A. Alfonso-Reese, and Elliott M. Waldron. 1998. A neuropsychological theory of multiple systems in category
learning. Psychological Review 105: 442-81.

Bates, Douglas, Martin Machler, Ben Bolker, and Steve Walker. 2015. Fitting Linear Mixed-Effects Models Using Ime4. Journal of
Statistical Software 67: 1-48.

Birnbaum, Monica S., Nate Kornell, Elizabeth L. Bjork, and Robert A. Bjork. 2013. Why interleaving enhances inductive learning: The
roles of discrimination and retrieval. Memory & Cognition 41: 392—-402.

Brunmair, Matthias, and Tobias Richter. 2019. Similarity matters: A meta-analysis of interleaved learning and its moderators. Psychological
Bulletin 145: 1029-52.

Carpenter, Shana K. 2014. Spacing and interleaving of study and practice. In Applying the Science of Learning in Education: Infusing
Psychological Science into the Curriculum. Washington, DC: Society for the Teaching of Psychology, pp. 131-41.

Carpenter, Shana K., Nicholas J. Cepeda, Doug Rohrer, Sean H. K. Kang, and Harold Pashler. 2012. Using spacing to enhance diverse
forms of learning: Review of recent research and implications for instruction. Educational Psychology Review 24: 369-78.

Carroll, Marie. 2008. Metacognition in the classroom. In Handbook of Metamemory and Memory. New York: Psychology Press, pp. 411-27.

Carvalho, Paulo E, and Robert L. Goldstone. 2014. Putting category learning in order: Category structure and temporal arrangement
affect the benefit of interleaved over blocked study. Memory & Cognition 42: 481-95.

Carvalho, Paulo F,, and Robert L. Goldstone. 2015a. The benefits of interleaved and blocked study: Different tasks benefit from different
schedules of study. Psychonomic Bulletin & Review 22: 281-88.

Carvalho, Paulo F,, and Robert L. Goldstone. 2015b. What you learn is more than what you see: What can sequencing effects tell us
about inductive category learning? Frontiers in Psychology 6: 505.

Carvalho, Paulo E,, and Robert L. Goldstone. 2017. The sequence of study changes what information is attended to, encoded, and
remembered during category learning. Journal of Experimental Psychology: Learning, Memory, and Cognition 43: 1699-719.

Carvalho, Paulo F,, and Robert L. Goldstone. 2019. When does interleaving practice improve learning? In The Cambridge Handbook of
Cognition and Education. Edited by John Dunlosky and Kathrine A. Rawson. Cambridge: Cambridge University Press, pp. 411-36.

Chandrasekaran, Bharath, Han-Gyol Yi, Kirsten E. Smayda, and W. Todd Maddox. 2016. Effect of explicit dimensional instruction on
speech category learning. Attention, Perception, & Psychophysics 78: 566-582.

Chen, Ruth, Lawrence Grierson, and Geoffrey Norman. 2015. Manipulation of cognitive load variables and impact on auscultation test
performance. Advances in Health Sciences Education 20: 935-52.

Cronin, Vincent S. 2018. Laboratory Manual in Physical Geology, 11th ed. Alexandria: American Geological Institute. Northfield: National
Association of Geoscience Teachers. London: Pearson.

de Bruin, Anique B., Felicitas Biwer, Luotong Hui, Erdem Onan, Louise David, and Wisnu Wiradhany. 2023. Worth the Effort: The
Start and Stick to Desirable Difficulties (52D2) Framework. Educational Psychology Review 35: 41.

Efklides, Anastasia. 2014. How does metacognition contribute to the regulation of learning? An integrative approach. Psihologijske
Teme 23: 1-30.

Eglington, Luke G., and Sean H. Kang. 2017. Interleaved presentation benefits science category learning. Journal of Applied Research in
Memory and Cognition 6: 475-85.

Faul, Franz, Edgar Erdfelder, Albert-Georg Lang, and Axel Buchner. 2007. G* Power 3: A flexible statistical power analysis program for
the social, behavioral, and biomedical sciences. Behavior Research Methods 39: 175-91.

Firth, Jonathan, Ian Rivers, and James Boyle. 2021. A systematic review of interleaving as a concept learning strategy. Review of Education 9:
642-84.

Goldwater, Micah B., and Lennart Schalk. 2016. Relational categories as a bridge between cognitive and educational research. Psychological
Bulletin 142: 729-57.

Hatala, Rose M., Lee R. Brooks, and Geoffrey R. Norman. 2003. Practice makes perfect: The critical role of mixed practice in the acquisition
of ECG interpretation skills. Advances in Health Sciences Education 8: 17-26.

Hughes, Gregory 1., and Ayanna K. Thomas. 2021. Visual category learning: Navigating the intersection of rules and similarity.
Psychonomic Bulletin & Review 28: 711-31.



J. Intell. 2023, 11, 153 30 of 31

Kang, Sean H. 2016. The benefits of interleaved practice for learning. In From the Laboratory to the Classroom. Edited by Jared Horvath,
Jason Lodge and John Hattie. New York: Routledge, pp. 91-105.

Kang, Sean H., and Harold Pashler. 2012. Learning painting styles: Spacing is advantageous when it promotes discriminative contrast.
Applied Cognitive Psychology 26: 97-103.

Kang, Yewon, Hyorim Ha, and Hee Seung Lee. 2023. When More Is Not Better: Effects of Interim Testing and Feature Highlighting in
Natural Category Learning. Educational Psychology Review 35: 51.

Kirk-Johnson, Afton, Brian M. Galla, and Scott H. Fraundorf. 2019. Perceiving effort as poor learning: The misinterpreted-effort hypothesis
of how experienced effort and perceived learning relate to study strategy choice. Cognitive Psychology 115: 101237.

Kornell, Nate, Alan D. Castel, Teal S. Eich, and Robert A. Bjork. 2010. Spacing as the friend of both memory and induction in young
and older adults. Psychology and Aging 25: 498-503.

Kornell, Nate, and Robert A. Bjork. 2008. Learning concepts and categories: Is spacing the “enemy of induction”? Psychological Science
19: 585-92.

Kurtz, Kenneth J., Chun-Hui Miao, and Dedre Gentner. 2001. Learning by analogical bootstrapping. Journal of the Learning Sciences 10:
417-46.

Maddox, W. Todd, and F. Gregory Ashby. 2004. Dissociating explicit and procedural-learning based systems of perceptual category
learning. Behavioural Processes 66: 309-32. [PubMed]

Marshak, Stephen. 2019. Earth: Portrait of a Planet, 6th ed. New York: W.W. Norton.

Mayer, Richard E. 2002. Multimedia learning. In Psychology of Learning and Motivation. Cambridge, MA: Academic Press, vol. 41,
pp- 85-139.

Mayer, Richard E. 2005. Introduction to multimedia learning. In The Cambridge Handbook of Multimedia Learning. Edited by Richard E.
Mayer. New York: Cambridge University Press.

Meagher, Brian J., Mark A. McDaniel, and Robert M. Nosofsky. 2022. Effects of feature highlighting and causal explanations on
category learning in a natural-science domain. Journal of Experimental Psychology: Applied 28: 283-313. [CrossRef]

Meagher, Brian J., Paulo F. Carvalho, Robert L. Goldstone, and Robert M. Nosofsky. 2017. Organized simultaneous displays facilitate
learning of complex natural science categories. Psychonomic Bulletin & Review 24: 1987-94.

Metcalfe, Janet. 2009. Metacognitive judgments and control of study. Current Directions in Psychological Science 18: 159-63. [PubMed]
Miyatsu, Toshiya, Reshma Gouravajhala, Robert M. Nosofsky, and Mark A. McDaniel. 2019. Feature highlighting enhances learning of
a complex natural-science category. Journal of Experimental Psychology: Learning, Memory, and Cognition 45: 1-16. [PubMed]
Noh, Sharon M., Veronica X. Yan, Michael S. Vendetti, Alan D. Castel, and Robert A. Bjork. 2014. Multilevel induction of categories:

Venomous snakes hijack the learning of lower category levels. Psychological Science 25: 1592-99. [CrossRef] [PubMed]

Noh, Sharon M., Veronica X. Yan, Robert A. Bjork, and W. Todd Maddox. 2016. Optimal sequencing during category learning: Testing a
dual-learning systems perspective. Cognition 155: 23-29. [CrossRef] [PubMed]

Nosofsky, Robert M., Craig A. Sanders, Alex Gerdom, Bruce J. Douglas, and Mark A. McDaniel. 2017. On learning natural-science
categories that violate the family-resemblance principle. Psychological Science 28: 104-14.

Onan, Erdem, Wisnu Wiradhany, Felicitas Biwer, Eva M. Janssen, and Anique B. H. de Bruin. 2022. Growing out of the experience:
How subjective experiences of effort and learning influence the use of interleaved practice. Educational Psychology Review 34:
2451-84. [CrossRef]

Rau, Martina A., Vincent Aleven, and Nikol Rummel. 2013. Interleaved practice in multi-dimensional learning tasks: Which dimension
should we interleave? Learning and Instruction 23: 98-114. [CrossRef]

Reber, Rolf, and Rainer Greifeneder. 2017. Processing fluency in education: How metacognitive feelings shape learning, belief
formation, and affect. Educational Psychologist 52: 84-103. [CrossRef]

Rivers, Michelle L., John Dunlosky, and Mason McLeod. 2022. What constrains people’s ability to learn about the testing effect through
task experience? Memory 30: 1387-404. [CrossRef] [PubMed]

Rohrer, Doug, Robert F. Dedrick, and Kaleena Burgess. 2014. The benefit of interleaved mathematics practice is not limited to
superficially similar kinds of problems. Psychonomic Bulletin & Review 21: 1323-30.

Rohrer, Doug, Robert F. Dedrick, and Sandra Stershic. 2015. Interleaved practice improves mathematics learning. Journal of Educational
Psychology 107: 900-8. [CrossRef]

Sana, Faria, Veronica X. Yan, and Joseph A. Kim. 2017. Study sequence matters for the inductive learning of cognitive concepts. Journal
of Educational Psychology 109: 84-98. [CrossRef]

Tarbuck, Edward J., and Frederick K. Lutgens. 2018. Earth Science, 15th ed. London: Pearson.

Taylor, Kelli, and Doug Rohrer. 2010. The effects of interleaved practice. Applied Cognitive Psychology 24: 837-48. [CrossRef]

Wahlheim, Christopher N., John Dunlosky, and Larry L. Jacoby. 2011. Spacing enhances the learning of natural concepts: An investigation of
mechanisms, metacognition, and aging. Memory & Cognition 39: 750-63.

Whitehead, Peter S., Amanda Zamary, and Elizabeth J. Marsh. 2021. Transfer of category learning to impoverished contexts. Psychonomic
Bulletin & Review 29: 1035-44.

Yan, Veronica X., and Brendan A. Schuetze. 2022. Not just stimuli structure: Sequencing effects in category learning vary by task
demands. Journal of Applied Research in Memory and Cognition 11: 218-28. [CrossRef]

Yan, Veronica X., Brendan A. Schuetze, and Luke Glenn Eglington. 2020. A review of the interleaving effect: Theories and lessons for
future research. PsyArXiv. [CrossRef]


https://www.ncbi.nlm.nih.gov/pubmed/15157979
https://doi.org/10.1037/xap0000369
https://www.ncbi.nlm.nih.gov/pubmed/19750138
https://www.ncbi.nlm.nih.gov/pubmed/29698049
https://doi.org/10.1177/0956797614535938
https://www.ncbi.nlm.nih.gov/pubmed/24966070
https://doi.org/10.1016/j.cognition.2016.06.007
https://www.ncbi.nlm.nih.gov/pubmed/27343480
https://doi.org/10.1007/s10648-022-09692-3
https://doi.org/10.1016/j.learninstruc.2012.07.003
https://doi.org/10.1080/00461520.2016.1258173
https://doi.org/10.1080/09658211.2022.2120204
https://www.ncbi.nlm.nih.gov/pubmed/36093735
https://doi.org/10.1037/edu0000001
https://doi.org/10.1037/edu0000119
https://doi.org/10.1002/acp.1598
https://doi.org/10.1016/j.jarmac.2021.09.004
https://doi.org/10.31234/osf.io/ur6g7

J. Intell. 2023, 11, 153 310f31

Yan, Veronica X., Elizabeth Ligon Bjork, and Robert A. Bjork. 2016. On the difficulty of mending metacognitive illusions: A priori theories,
fluency effects, and misattributions of the interleaving benefit. Journal of Experimental Psychology: General 145: 918-33. [CrossRef]

Zulkiply, Norehan, and Jennifer S. Burt. 2013. The exemplar interleaving effect in inductive learning: Moderation by the difficulty of
category discriminations. Memory & Cognition 41: 16-27.

Zulkiply, Norehan, John McLean, Jennifer S. Burt, and Debra Bath. 2012. Spacing and induction: Application to exemplars presented
as auditory and visual text. Learning and Instruction 22: 215-21. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


https://doi.org/10.1037/xge0000177
https://doi.org/10.1016/j.learninstruc.2011.11.002

	Introduction 
	Literature Review 
	Research on Study Schedule 
	Research on Feature Descriptions 
	Feature Descriptions Interact with Study Schedule 

	The Present Study 
	Experiment 1 
	Method 
	Design 
	Participants 
	Materials 
	Procedure 
	Data Analysis 

	Results 
	Rule-Based Category Learning 
	Information-Integration Category Learning 
	Further Analysis of Individual Rock Categories 

	Discussion 
	The Effect of Study Schedule and Feature Descriptions for Rule-Based Category Learning 
	The Effect of Study Schedule and Feature Descriptions for Information-Integration Category Learning 


	Experiment 2 
	Method 
	Design 
	Materials and Procedure 
	Participants 

	Results 
	Final Classification Test Performance 
	Metacognitive Judgment 

	Discussion 
	Final Classification Test Performance 
	Metacognitive Judgment 


	Experiment 3 
	Method 
	Materials and Procedure 
	Participants 

	Results 
	Final Classification Test Performance 
	Metacognitive Judgment 

	Discussion 
	Final Classification Test Performance 
	Metacognitive Judgment 


	General Discussion 
	The Effect of Study Schedule and Feature Descriptions on Rock Categorization 
	The Effect of Study Schedule and Feature Descriptions on Metacognitive Judgment 
	Limitations and Suggestions for Future Research 
	Practical Implications for Education 

	Conclusions 
	Appendix A
	Appendix B
	Appendix C
	References

