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Abstract: Mathematical problem solving is a process involving metacognitive (e.g., judging progress),
cognitive (e.g., working memory), and affective (e.g., math anxiety) factors. Recent research en-
courages researchers who study math cognition to consider the role that the interaction between
metacognition and math anxiety plays in mathematical problem solving. Problem solvers can make
many metacognitive judgments during a math problem, ranging from global judgments such as,
“Do I care to solve this problem?” to minor cue-based judgments such as, “Is my current strategy
successful in making progress toward the correct solution?” Metacognitive monitoring can hinder ac-
curate mathematical problem solving when the monitoring is task-irrelevant; however, task-relevant
metacognitive experiences can lead to helpful control decisions in mathematical problem solving
such as checking work, considering plausibility of an answer, and considering alternate strategies.
Worry and negative thoughts (i.e., math anxiety) can both interfere with the accuracy of metacogni-
tive experiences as cues in mathematical problem solving and lead to avoidance of metacognitive
control decisions that could otherwise improve performance. The current paper briefly reviews and
incorporates prior literature with current qualitative reports (n = 673) to establish a novel framework
of regulated attention in mathematical problem solving (RAMPS).

Keywords: metacognition; working memory; math anxiety; mathematical problem solving; state
math anxiety; metacognitive experiences

1. Introduction

Why do some people seem to effortlessly solve math problems while other people
regularly run into mental roadblocks that keep them from producing solutions? Most
adults (approximately 60% of American adults reported by Handel 2016) report reasoning
with rational numbers in their daily jobs. Beyond the workplace, people of all ages use
mathematical reasoning to complete everyday tasks such as tipping at a restaurant, eval-
uating medical information, playing games, understanding sports statistics, and making
financial decisions. Incorporating quantitative information in decision-making is founda-
tional to daily life (Peters 2020), numerosity is one of the most basic dimensions upon which
humans perceive the world (Dehaene 2011), and solving mathematical problems is central
to learning math (Lester and Cai 2016; Passolunghi et al. 2019). The term “mathematical
problem solving” represents a variety of similar, yet different, stimuli. Here, we opera-
tionalize mathematical problem solving as any multi-step task that involves the use and
manipulation of numerical information. Given the prevalence of mathematical problem
solving in daily life and in educational contexts, understanding individual differences that
affect mathematical problem solving is of critical importance.

The current paper explores how individual differences, such as metacognitive ex-
periences, working memory (WM), and math anxiety (MA), are related to one another
and may predict success in mathematical problem solving. We discuss the online (i.e., in
the moment) cognitive (including WM) and metacognitive processes that are necessary
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for mathematical problem solving, and how these processes are affected by MA. Then,
we introduce a novel framework of regulated attention in mathematical problem solving
(RAMPS), focusing on the role of online metacognitive experiences to clarify the previously
proposed WM–MA relation (e.g., Ashcraft and Kirk 2001). Next, we present qualitative,
open-ended responses from two studies (n = 673) to elucidate the RAMPS framework
mechanism of in-the-moment mathematics anxiety (i.e., state MA). In the latter half of the
paper, we zoom in on the specific online relations between metacognitive experiences, MA,
and WM in a five-phase approach. We conclude by discussing how themes that emerged in
our qualitative data might inform future research and interventions.

Mathematical problem solving, broadly construed, involves cognitive (e.g., WM;
Peng et al. 2016), metacognitive (e.g., feeling of error; Ackerman and Thompson 2017),
and affective (e.g., MA, Hembree 1990) components. MA is closely linked to WM in the
math cognition literature because it has been proposed that MA works by disrupting
WM resources when one is attempting to solve math problems (i.e., disruption account).
Thus, a discussion of the link between WM and metacognition in the domain of math
would be incomplete without including MA. Özcan and Gümüş (2019, p. 122) previously
proposed a model in which mathematical problem solving was predicted by metacognition,
self-efficacy, motivation, and anxiety; yet, their model did not involve the role of WM,
and metacognitive experiences were operationalized only as retrospective judgments (i.e.,
metacognitive judgments made after completing a task, Dunlosky and Metcalfe 2009;
Rhodes 2019). The RAMPS framework builds on prior research to incorporate the role
of WM and operationalize in-the-moment metacognitive experiences. See Figure 1 for an
illustration of the proposed RAMPS framework.
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Figure 1. Regulated attention in mathematical problem solving (RAMPS) framework. Note: The
primary use of the RAMPS framework is a reference tool to discuss the proposed interrelations
between metacognitive experiences, MA, and WM during a math task. There are multiple recursive
loops within this framework; thus, it is better suited as a framework for future discussions and
testable models than as a testable path model.

2. The Role of Working Memory in Mathematical Problem Solving

Individuals vary in their mathematical resources and abilities; thus, what may be
an intensive tax on WM via a multi-step mathematical task for one person (i.e., mathe-
matical problem solving) may be a matter of simple recall for another person (Schoenfeld
[1985] 2016). Just as a chess expert’s recall of a correct move based on prior experience with
that exact situation (Schneider et al. 1993) would not be considered problem solving, a math
expert in a given domain will not be said to be problem solving if the answer constitutes a
recalled answer instead of a process. Evidence of expertise is demonstrated by automatic
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responses (recalling from long-term memory that 3 × 3 is 9) replacing algorithmic responses
(using WM resources to count 3 plus another 3 plus another 3).

Math problems vary in a wide variety of factors such as context, notation, and level
of difficulty. For example, fraction addition problems (e.g., 1/2 + 1/9 = ?), math word
problems (e.g., a bat and a ball cost $1.10 and the bat costs one dollar more than the
ball, how much does the ball cost?), and geometric proofs (e.g., prove that two circles
are concentric) are just three examples of the wide array of potential types of math that
are considered mathematical problem solving for the current paper. Research in math
cognition suggests that people have different affective reactions to different number types
as well. For example, both adults (Mielicki et al. 2022; Scheibe et al. 2023; Sidney et al.
2021) and children (Sidney et al. 2021) report disliking fractions significantly more than
other number types. It is certainly possible that differences exist in the antecedents for
predicting mathematical problem solving in one math sub-domain (e.g., fraction addition)
than another domain (e.g., geometric proofs).

Considering different types of math is particularly important because some forms
of math rely more heavily on WM resources than others. A recent meta-analysis of WM
and mathematics reported a medium correlation between the two constructs (r = 0.35;
Peng et al. 2016). Many forms of mathematical problem solving involve maintaining and
manipulating information to find a solution, similar to the attention-control theory of WM
(Engle 2002; see also Burgoyne and Engle 2020; Cowan 2017). The attention-control theory
of WM (Engle 2002) conceptualizes WM not as a number of items that can be recalled, but
the ability to inhibit task-irrelevant information and focus on task-relevant information.
Thus, differences in attention-control (sometimes termed the central executive; Baddeley
2001; Baddeley and Hitch 1974) are largely responsible for correlations between typical tests
of WM capacity and other higher-order cognitive functions (Burgoyne and Engle 2020).

Directed attention toward goals and subgoals is crucial to mathematical problem
solving. Note that mathematical problem solving goes beyond mathematics computation in
that it is a dynamic interaction between computational skills, reasoning, and metacognitive
regulation. An arithmetic computation such as 2 + 2 likely may not involve the use of
WM resources in adults, but mathematical problem solving that incorporates reasoning,
relevant information from memory, and metacognitive regulation is a process that requires
WM resources. Thus, it is unsurprising that from an individual-differences perspective,
mathematical problem solving ability is linked with WM (Ashcraft 2019; Chen and Bailey
2021; Peng et al. 2016; Widaman et al. 1989).

3. Processes Involved in Mathematical Problem Solving

Cognitive processes involve the acquisition, storage, transformation, and use of knowl-
edge (Matlin 2013). In mathematical problem solving, cognitive processes can be defined
as the active processing and manipulation of stimuli. The RAMPS framework (see Figure 1)
considers WM to be a cognitive process and math ability to be a composite of skills based
on factors such as prior knowledge, magnitude processing (Dehaene 2011), and numeracy
(Peters 2020). Beyond cognitive processes and math ability, several factors affect mathemat-
ical problem solving (Schoenfeld [1985] 2016). Problem solvers incorporate metacognitive
judgments (Ackerman and Thompson 2017; Efklides 2006; Nelson and Narens 1990) and
come into math environments with a rich history of attitudes toward math (Mielicki et al.
2022; Sidney et al. 2021) and affective reactions, such as anxiety prior to and during math
tasks (Ashcraft 2019; Dowker et al. 2016; Hembree 1990). Mathematical problem solving
never exists in a vacuum. Relations among constructs displayed in Figure 1 are discussed
in subsequent sections.

3.1. Metacognition and Mathematical Problem Solving

Metacognition—thoughts about one’s own thoughts and cognitions (Flavell 1979)—
is studied in a variety of ways and affects many facets of everyday life (Dunlosky and
Metcalfe 2009; Rhodes 2019). The RAMPS framework builds on previous work on general
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metacognitive frameworks (e.g., Nelson and Narens 1990) and metacognitive frameworks
in meta-reasoning (Ackerman and Thompson 2015, 2017; Efklides 2006). Meta-reasoning
is operationally defined as monitoring and control of reasoning and problem solving
(Ackerman and Thompson 2017). This definition is similar to the current definition of
mathematical problem solving; thus, models of meta-reasoning are ideal starting points
from which to create a framework of metacognition in mathematical problem solving.
Ackerman and Thompson (2015, 2017) proposed a model of meta-reasoning based on
Nelson and Narens’ (1990) seminal framework of metacognition in learning and memory
as well as Ackerman’s Diminishing Criterion Model (Ackerman 2014). Each of these
models describe metacognition as a two-facet construct involving both monitoring (i.e.,
self-assessments) and control (i.e., actions). Metacognition in math encompasses both
monitoring (e.g., “Is this solution correct?”) and control (e.g., making the deliberate choice
to check one’s work) dimensions.

Ackerman and Thompson’s (2015, 2017) model of meta-reasoning included a series of
metacognitive judgments during problem solving. These judgments (e.g., initial judgment
of solvability) map closely onto mathematical problem-solving processes due to the close
overlap between mathematical problem solving and domain-general problem solving.
In addition to judgments, problem solvers also experience less explicit metacognitive
reactions, termed “metacognitive feelings” (Efklides 2006). Metacognitive feelings are
elicited by nonconscious analytical processes (Efklides 2006; Koriat and Levy-Sadot 1999).
These feelings and emotions (i.e., affect produced while problem solving) provide people
with clues—some of which may be misleading—about the progress of cognitive processes
during a task (Efklides 2006). According to Efklides (2006), metacognitive feelings interact
with metacognitive judgments (i.e., judgments of learning, Dunlosky and Nelson 1992), to
provide people with a continuously updating sense of their likelihood to reach a satisfying
solution to the problem.

Metacognition is central to mathematical problem solving because online metacog-
nitive experiences or “concurrent metacognition”—specific online metacognitive feelings
and judgments that interact with WM (Bellon et al. 2019; Efklides 2006; Hertzog and Dixon
1994)—occur continuously during problem solving. We argue that these metacognitive
experiences interact with MA and WM to affect control decisions such as checking one’s
work or altering one’s strategy. Such control decisions directly affect performance in math
tasks. Additionally, retrospective metacognitive judgments may affect these same factors
and interact with them to predict future iterations of mathematical problem solving (see
Path K in Figure 1).

Note that both explicit metacognitive judgments and implicit metacognitive feelings
are encompassed in “metacognitive experiences”. Metacognitive feelings represent an
important component of the RAMPS framework because solving math problems is often
an emotionally charged experience (Ashcraft 2002; Dowker et al. 2016). Although problem
solvers may not often make explicit judgments about their emotional state (e.g., “What
level of math anxiety am I experiencing at this moment?”), feelings and emotions clearly
run concurrently with the cognitive processing of mathematical stimuli. The variety of
metacognitive experiences illustrates the potential for investigating many open questions
in the domain of mathematical problem solving.

3.2. Math Anxiety and Mathematical Problem Solving

Metacognitive experiences (i.e., judgments and feelings) occur continuously during
mathematical problem solving. These metacognitive experiences not only affect control
decisions (e.g., checking one’s work or giving up), but they can also dictate changes in affect.
Carver (2003) and Carver and Scheier (1998) proposed a two-loop feedback model of affect
in problem solving that highlights how positive affect can broaden the scope of attention.
People incorporate metacognitive experiences, whether consciously or unconsciously, that
affect their online control decisions. For example if a person notices that they are struggling
with a complicated problem, they might work harder through an approach process (see
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Carver and Scheier 1998). However, a math anxious individual will likely be more prone to
avoidance and would be likely to spend less time attempting to complete the problem than
they otherwise might have in the absence of a negative affective reaction, especially if the
individual is metacognitively aware of negative affect. People often become anxious while
solving math problems (Ashcraft 2002), so much so that MA is often likened to a specific
phobia (Ashcraft and Ridley 2005).

4. Working Memory and Math Anxiety

A consistent, moderate relation between math performance and MA is regularly cited
in math cognition literature (Barroso et al. 2021; Caviola et al. 2022; Hembree 1990; Ma 1999;
Namkung et al. 2019; Zhang et al. 2019). Seminal research on MA (e.g., Dreger and Aiken
1957; Richardson and Suinn 1972) treated MA as a stable personality construct. Similarly,
in the RAMPS framework, we consider trait MA to be a personality construct. However,
MA is also a cognitive construct (Ashcraft 2019) in that worry or fear during a math task
is an internal process that disrupts the cognitive system while problem solving (Eysenck
1992; Eysenck and Calvo 1992). The most common construct posited to mediate the math
performance–MA relation is WM (Pellizzoni et al. 2021), because MA during a math task is
posited to disrupt WM resources (Ashcraft and Kirk 2001). Thus, little debate remains in
the literature that both (a) WM is important in mathematical problem solving and (b) WM
interacts with MA in some way to predict math outcomes. However, many open questions
remain regarding this interaction. One open question is how metacognition—specifically
online metacognitive experiences—affects the WM–MA interaction. A proposed framework
is presented in Figure 1.

Of course, further research will be required on MA and WM to completely operational-
ize both constructs. Often in WM research, the term “working memory” is used without a
clear definition (Cowan 2017). Yet, as Cowan points out, at least nine different definitions of
WM and short-term storage currently are used in the WM literature (Cowan 2017, p. 1159).
Perhaps a main reason that the mechanism by which MA exerts its influence is yet to
be fully understood is because of the vast variability in the operationalization of related
constructs, such as WM. WM in math cognition is often referred to as both a system and a
capacity or resource (e.g., Beilock and Carr 2005; Justicia-Galiano et al. 2017; Ng and Lee
2019; Passolunghi et al. 2019; Peng et al. 2016; Ramirez et al. 2013). From our perspective, it
may be easiest to consider WM from an attention-control model (e.g., Engle 2002; Unsworth
and Engle 2007) or a multicomponent system (e.g., Baddeley 2001; Baddeley and Hitch
1974) for the purposes of considering the MA–math performance relation (see the Discus-
sion section for an extended argument and recommendations for researchers). WM is often
referred to as a processing resource or capacity in the MA literature (e.g., Passolunghi et al.
2019); thus, we adopt an attention-control perspective on WM (e.g., Engle 2002).

4.1. The Mechanism of State Math Anxiety

Our primary focus is on the relation between WM and metacognitive experiences
in mathematical problem solving; however, because MA interacts with WM to predict
mathematical problem-solving accuracy, elucidating the mechanism of MA is relevant to
the current argument. Discussions of interventions specifically for MA are outside the
scope of the current paper (but see Barroso et al. 2021; Dowker et al. 2016; Ganley et al. 2021;
Mammarella et al. 2019; Ramirez et al. 2018; Scheibe et al. 2023), but clarifying the causes of
state MA can help explicate the relation between WM and metacognitive experiences in
mathematical problem solving. We focus on WM (as opposed to other executive functions,
Miyake et al. 2000) because WM is the postulated mechanism in the disruption account of
math anxiety; thus, WM is a central component of the RAMPS framework.

4.1.1. The Disruption Account of Math Anxiety

At least three theoretical models of MA currently exist in the math cognition literature.
The most highly cited model of MA (Ramirez et al. 2018) is the “disruption account”



J. Intell. 2023, 11, 117 6 of 18

championed by Ashcraft and colleagues (Ashcraft 2002; Ashcraft and Faust 1994; Ashcraft
and Kirk 2001; Ashcraft and Krause 2007; Faust et al. 1996). This account treats MA as a
cognitive construct and builds on prior work outside the domain of math: the processing
efficiency theory (Eysenck 1992; Eysenck and Calvo 1992). The primary tenets are that
cognitive worry is an internalized process that consumes cognitive resources during an
anxious reaction (Ashcraft 2019). Importantly, Ashcraft (2019) notes that MA can be
disruptive at a dual-task level (e.g., cognitive worry creating task-irrelevant thoughts) or at
a metacognitive level (e.g., failure to inhibit attention to worries, also creating task-irrelevant
thoughts). Note that prior work in math cognition does not clearly label the latter negative
effect of MA as metacognitive, but by the most parsimonious definition of metacognition
(i.e., thinking about thinking; Flavell 1979), directing attention to cognitive worries is
inherently metacognitive. We extend this prior work to explicitly address the differences
between cognitive worry creating a dual-task paradigm and meta-level task-irrelevant
cognitions caused by anxious reactions (see Section 4.2.2 on Phase 2: Progress Evaluations).

Because WM is a processing resource, any moderation of WM on the MA–math
performance relation would be expected to be in-the-moment (i.e., “state”) effects. Thus,
because the disruption account proposes decreased math task performance due to increased
MA through decreased WM resources (see Figure 1), this account would predict state WM
to largely, if not entirely, account for the MA–math performance relation (although see
Ashcraft 2019 for a discussion of MA as a multifaceted phenomenon). Math cognition
researchers disagree regarding the nature of the MA–math performance link in terms of
causal direction (Ashcraft 2019; Carey et al. 2016; Dowker et al. 2016; Mammarella et al.
2019; Ramirez et al. 2018). For example, one explanation is that MA causes a decrease in
math performance due to its in-the-moment effects on mathematical problem solving (the
disruption account; Ashcraft and Kirk 2001). Another explanation is that when people
are not good at math, that deficit causes MA (the deficit account; Maloney 2016). A third
explanation is that the MA–math performance link is driven by how one interprets math
situations (the interpretation account; Ramirez et al. 2018).

We address the disruption account’s state effects of MA on math performance through
WM; however, other accounts (e.g., the deficit approach and the interpretation account; see
Ashcraft 2019; Ramirez et al. 2018) may be better suited to explain how math experiences
inform trait MA. Such relations (e.g., math self-concept predicts MA; Ahmed et al. 2012)
are important in influencing trait MA and trait math ability but are outside the scope of the
current paper and thus are not modeled in Figure 1. Instead, we incorporate qualitative
data and a novel framework to argue for how competing theories of MA might exist
more harmoniously.

4.1.2. Factors Inducing State Math Anxiety

Where do online MA feelings originate? Scheibe et al. (2023)1 collected two samples
of open-ended responses about MA experiences from college students (total n = 673 inde-
pendent participants). The primary aim of Scheibe et al. (2023) was to assess the efficacy of
different MA interventions (e.g., expressive writing). However, as part of those two studies,
participants answered several open-ended questions about MA, such as: “What types of
situations make you feel the most anxious about math and why?” Open-ended responses to
these questions were analyzed and coded for several different potential causes of MA. As
shown in Table 1, 46.1% of students reported that testing situations or high stakes situations
induced anxiety, 30.5% reported that social pressure or fear of embarrassment induced
anxiety, and 20.3% reported that specific number types induced anxiety.

These qualitative data provide a data-driven perspective on what factors induce
anxiety during math situations. Participants’ responses also provide insights into the
interrelations displayed in Figure 1. For example, one of the primary reasons participants
reported MA is that they were fearful of social judgment, i.e., of embarrassment due to
peer evaluation. It may be much easier to identify as “not a math person” than to put forth
one’s best effort on mathematical problem solving in social situations, make an error, and
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“look like an idiot,” as one participant described it. Thus, it appears that one primary way
that MA might be alleviated in the future is to foster learning environments, both formal
and informal, that allow learners to be incorrect. Fear of failure appears to be a primary
motivator for MA, which often leads to math avoidance (Erickson and Heit 2015; Morsanyi
et al. 2016). Consider for example, one participant’s anecdote:

“For me, it’s being called on by a teacher. Just remembering this now, I remember
one day in elementary I had this one teacher who called on me to answer a
simple fraction problem and I didn’t know the answer to it. The teacher became
frustrated at this, and she kept demanding the right answer. Every single time, I
would guess and get the answer wrong, eventually to the point where she started
yelling at me and I started crying. I think from this point on, I just avoided
being picked on, even if I knew the answer, it really took a toll on my confidence
towards math.”

Table 1. Coding of Participants’ Open-Ended Math Anxiety Responses in (Scheibe et al. 2023).

Code Code Definition Examples Prevalence

Testing
or

High Stakes

Any mention of (a) testing
situations or (b) high-stake

ramifications inducing anxiety.

“Important exams and [the] ACT
because the grade matters a lot.” 46.1%

“Exams. I hate tests.”

Social
Pressure

or Embarrassment

Any mention of (a) being
watched, (b) being judged, or
(c) being embarrassed due to

social comparison
inducing anxiety.

“When people depend on me or
people are watching me because I
don’t want to disappoint them.”

30.5%“When I have to express my
math abilities to others. It’s easy

to mess up, and that would
be embarrassing.”

Specific
Type

of Math

Any mention of a specific type
of math inducing anxiety (as
opposed to math anxiety as

more of a generality).

“Anything that requires
percentages and needs to be

quickly determined.”

20.3%“Fractions and word problems. I
have never been good at fractions

and word problems can be
very confusing.”

Surprise or
Lack of Preparation

Any mention of being put on
the spot to complete math or

having to do math without the
chance for proper preparation

inducing anxiety.

“When I am put on the spot
because I do my best work when I
have time to prepare and study.” 10.4%

“Pop quizzes because it
is unexpected.”

Time Constraints

Any mention of a specific
allotted amount of time

inducing anxiety.

“Anything that requires
percentages and needs to be

quickly determined.” 7.7%
“When I have to do it in a

time limit.”

Note. The codes were not mutually exclusive. That is, a participant’s answer could be coded for none of the five
codes, one of the codes, or a combination of multiple codes. An example of this overlap in the coding scheme is
included in the “Time Constraints” and “Specific Type of Math” examples. Authors DAS and CAT coded 25% of
the data with an interrater reliability of 0.95. The authors discussed the few disagreements, and author DAS did
the remaining coding based on the high initial level of agreement between coders.

Note the closing sentence of this anecdote. This participant is demonstrating clear
metacognitive control to avoid math situations due to anxiety based on prior situations.
This is just one example of how intrusive thoughts regarding fear of judgment and ensuing
embarrassment can either (a) disrupt online WM or (b) cause the problem solver to avoid
putting in effort on the problem altogether.
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One way that the induction of MA can affect the WM-metacognitive experiences rela-
tion is that online feelings of MA (i.e., state MA) appear to often be driven by metacognitive
judgments. For example, in line with prior research on time-limited testing and anxiety
(Boaler 2014; Devine et al. 2012; Kellogg et al. 1999), qualitative evidence suggests that one
main cause of MA might be time constraints during mathematical problem solving (see
Table 1). In order for problem solvers to feel state MA due to time constraints, they must
make some judgment comparing how much time they have to complete the math task and
how much time they require to complete the task under current conditions. To illustrate this
point, consider two different time constraints. Both scenarios involve solving 20 fraction
addition problems. In scenario A, the time constraint is three hours. In scenario B, the
time constraint is 20 min. In order for the time constraint to be relevant to the problem
solver in scenario A, their average time to complete one fraction addition problem must be
6 min or more. However, to complete all problems in scenario B, the problem solver must
complete one problem per minute. Thus, it could be predicted that whether MA due to
time constraints is experienced should be a function of the problem solver’s evaluation
regarding if they have adequate time. Following this initial assessment, the astute problem
solver will likely re-evaluate their initial assessment based on their progress. For example,
in scenario A, if the problem solver completes the first fraction addition problem in 60 s
and is metacognitively aware that they are well ahead of the schedule they must maintain
to complete all problems on time, they should dismiss the time constraint as a factor, or
at least re-assess at a later point. Note, however, that if the problem solver in scenario B
completes the first problem in 60 s, that would likely induce anxiety due to being exactly
on pace, with little room for error. Thus, metacognitive judgments affect MA both at the
beginning of, and throughout mathematical problem solving.

4.2. Phase Approach to Relations between Working Memory and Metacognitive Experiences

Nelson and Narens’ (1990) seminal framework of metacognition posited that metacog-
nition is a series of evaluations (monitoring) and decisions (control) that connect the meta
level and the object level (Ackerman and Thompson 2015). We applied this framework
to mathematical problem solving with special attention to metacognitive experiences and
the relation between MA and WM (see Figure 1). From an attention-control perspective
of WM (e.g., Engle 2002; Burgoyne and Engle 2020), WM resources are necessary for both
working through the math problem (object level) and the maintenance and updating of
progress (meta level). Metacognitive experiences cannot simply be broken into one con-
struct in a path model (e.g., Figure 1) because these experiences vary in several aspects
including time (i.e., predictive, concurrent, and postdictive) and type of processing (i.e.,
explicit or implicit). Thus, we propose a path model (see Figure 1) that can be revised
and tested, but we also propose a 5-phase framework (see Figure 2) based on monitoring
and control processes (Nelson and Narens 1990). By combining the big picture path ap-
proach and the microanalysis of the 5-phase approach, we present a wide range of open
empirical questions.

One facet of metacognition, metacognitive monitoring, is a crucial component in
mathematical problem solving because online metacognitive judgments inform and pre-
dict whether a person will initiate, terminate, or change effort in a cognitive task (i.e.,
metacognitive control; Ackerman and Thompson 2017). Metacognition is often studied
by examining judgments given after the problem solving (cf. Özcan and Gümüş 2019).
These retrospective judgments are often more accurately aligned with performance than
are predictive judgments (Dunlosky and Metcalfe 2009; Rhodes 2019); thus, retrospective
judgments are often used as a, if not the, measure of metacognition in empirical studies
(Özcan and Gümüş 2019). Retrospective judgments are displayed in Figure 1 by Path K,
but note that Path K does not encompass all possible online metacognitive experiences. A
rich variety of meta-reasoning judgments and metacognitive control decisions coincide
with the temporal evolution of solving a cognitive task. It is this cycling of judgments
and metacognitive feedback loops (i.e., online judgments) during mathematical problem
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solving that the proposed framework in Figure 2 highlights. An important note about
Figure 2: This figure was designed to apply Nelson and Narens’ framework to the path
model displayed in Figure 1 by incorporating the data from Table 1. In other words, traits
certainly affect problem solvers (e.g., paths B, C, and D in Figure 1), but Figure 2 applies a
phase approach to the online relations between WM, MA, and metacognitive experiences
(i.e., paths E, F, G, and J in Figure 1) that affect problem-solving performance. Each phase of
Figure 2 will be broken down separately with mention of specific metacognitive experiences
based on prior work (Ackerman and Thompson 2017; Efklides 2006). For an example to
illustrate the phases, we present the following problem taken from the cognitive reflection
test (Frederick 2005): If it takes 5 machines 5 min to make 5 widgets, how long would it
take 100 machines to make 100 widgets?
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4.2.1. Phase 1: Initial Evaluation

What cues do people use to evaluate a problem when they are first presented with it?
Depending on the time constraints and how much problem solvers are motivated to make
their best effort on a problem, a variety of explicit judgments and implicit feelings might
be employed. The primary monitoring judgment displayed in Figure 2 is “Can I solve
this?” This judgment can occur explicitly or implicitly—a common theme for metacognitive
judgments during mathematical problem solving is that they are often automatized (thus,
becoming not metacognitive by most definitions, Flavell 1979; Hacker 1998). However,
whether an explicit question to the self or an implicit metacognitive feeling (Efklides 2006),
the answer to this initial monitoring evaluation will dictate whether the problem solver
attempts the problem. If the individual believes themself to be entirely incapable of solving
the problem, what use is there to try? But how do people make this initial evaluation?

According to prior research on meta-reasoning, people make an initial judgment of
solvability (Ackerman and Thompson 2017; Thompson 2009; Topolinski and Strack 2009) at
the onset of a problem. Importantly, this judgment is not only that the problem is solvable
(i.e., it is possible that an expert could solve the problem), but that the problem is solvable by
the problem solver (i.e., it is possible that that person can solve the problem; Ackerman and
Thompson 2017). We argue that people use many cues to inform this decision in the domain
of mathematical problem solving, such as: (a) feeling of familiarity, (b) initial feeling of
difficulty, and (c) math self-perceptions. Feeling of familiarity refers to the sense of previous
occurrence with a stimulus (Efklides 2006; Nelson et al. 1998). Feeling of difficulty is a
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sense of challenge associated with a particular problem due to perceived likelihood of error,
lack of available response, or the need to invest more time or effort (Efklides 2006; Efklides
et al. 1999). Feeling of familiarity tends to be associated with positive affect and feeling of
difficulty tends to be associated with negative affect (Efklides 2006). That is, people tend to
like familiar stimuli, and dislike challenging stimuli. Finally, math self-perceptions are an
aggregated individual difference specific to the domain of math that influences people’s
motivation to interact with math stimuli (Lee 2009). These self-perceptions include math
self-concept (Ahmed et al. 2012), math self-efficacy (Pajares and Miller 1996), and math
attitudes (Mielicki et al. 2022; Sidney et al. 2021). Math self-perceptions act as a phase 1
cue. Even if the other feelings are at odds with math self-perceptions, math self-perceptions
might override them. For example, consider a person who feels that the machines and
widgets problem is both unfamiliar and difficult, yet they consider themself to be good
at math, so they evaluate it as solvable anyway, despite the conflict between the cues.
Interpretation of these feelings leads to a decision on the initial judgment of solvability,
which directly affects the control decisions in phase 1. That is, an individual who judges
that they are 100% capable of solving a problem is much more likely to not only attempt
the problem, but to attempt it with a motivated effort. At this point, the problem solver is
ready to choose a strategy and begin the problem.

4.2.2. Phase 2: Progress Evaluation

During phase 2, problem solvers attempt to start making progress toward the solution
and metacognitive and affective influences contribute. The problem solver can advance
toward the solution by engaging in appropriate mathematical steps (cognitive processes),
ideally while evaluating the efficacy of the steps (metacognitive processes) and inhibiting
task-irrelevant distractors (e.g., MA) that can interfere with WM resources necessary for
solving the problem (recall that we define WM as a processing resource of limited capacity;
Baddeley and Logie 1999).

Metacognitive processes in phase 2 center on the question, “Am I making progress
toward the solution?” (see Figure 2). Two facets involved in feelings of difficulty are
estimates of effort and estimates of time required for problem solving (Efklides 2006;
Efklides et al. 1999). Problem solvers generate feelings about these factors, whether implicit
or explicit, during phase 1 while attempting to generate a judgment of solvability. Thus, by
phase 2, problem solvers have an existing expectation for how long they feel the problem
should be taking them to solve and how much effort it should require. These estimates
during phase 1 are informed by a variety of factors specific to the problem solver (e.g., math
self-efficacy; Pajares and Miller 1996), the stimulus type (e.g., fractional components versus
whole number components; Mielicki et al. 2022), and environmental factors (e.g., time
constraints; Scheibe et al. 2023, mood; Efklides and Petkaki 2005). All of these factors are
considered, typically implicitly, and the problem solver develops feelings about appropriate
effort and timing. During phase 2, these feelings and expectations are compared to the
progress being made on the problem.

Comparison to expectations can elicit positive affect (e.g., elation, eagerness, relief,
or calmness; Carver and Scheier 1998) or negative affect (e.g., sadness, depression, fear,
or anxiety; Carver and Scheier 1998). For example, if progress toward the solution comes
quickly and easily to an individual who was expecting the problem to take a lengthy
amount of time to solve, that person may experience positive affect due to being above
their expected baseline in terms of effort and timing. The opposite is unfortunately also
true. Underperforming against expectations of effort and timing often leads to negative
affect, particularly MA. Feelings of fear or apprehension related to math stimuli (i.e., MA,
Richardson and Suinn 1972) often are paired with physiological responses (Pizzie and
Kraemer 2021), similar to other forms of anxiety (Dowker et al. 2016). Anxious responses
include hands shaking, palms sweating, heart racing, limbs bouncing, and feeling like one’s
brain is overwhelmed. These reactions are particularly important for two reasons. First, by
the disruption account of MA (Ashcraft 2019; Ashcraft and Kirk 2001; Faust et al. 1996), MA
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depletes available WM resource by introducing task-irrelevant thoughts, thereby causing
decreased math performance. We also extend the argument of the disruption account
to posit that MA not only affects available WM resources, but MA itself, in the form of
physiological responses, is a metacognitive cue for problem solvers. That is, state MA is a
dual burden in that it directly taxes WM resources with task-irrelevant processing, but it
can also be an observable cue that may lead to further distractions from the task.

To illustrate this point, consider an individual who notices that they are struggling
with the machines and widgets problem. They thought they would probably be able to
solve it without much time or effort (phase 1 monitoring judgment), but now that they
have begun to try and solve the problem, they do not know where to begin. After several
moments of not making any progress, they notice that their leg is bouncing and their brain
suddenly feels clogged. These anxious physiological responses are an activation of the
autonomic nervous system, and although the math problem presents no physical danger,
the problem solver has a decision to make: fight or flight.

Control decisions based on monitoring evaluations of not making progress during
phase 2 include giving up or skipping (flight) the current problem (more likely with
individuals experiencing high levels of state MA; Bellon et al. 2021), or pivoting to a
different strategy (fight; Berardi-Coletta et al. 1995). If instead problem solvers evaluate that
they are making progress, they are likely to continue taking steps with their current strategy.

4.2.3. Phase 3: Intermediate Evaluation

At phase three, problem solvers generate an initial response and must decide whether
to provide that response as their answer, or continue working on the problem (see Ackerman
and Thompson 2017, Figure 1, p. 611). Prior research on meta-reasoning by Ackerman,
Thompson, and colleagues (Ackerman and Thompson 2017; see also Ackerman 2014;
Ackerman and Beller 2017; Thompson 2009; Thompson and Johnson 2014; Thompson et al.
2011, 2013) proposed different possibilities for how problem solvers develop a final answer.
Two of these possibilities are the Metacognitive Reasoning Theory (see Thompson 2009) and
the Diminishing Criterion Model (see Ackerman 2014). The Diminishing Criterion Model
(Ackerman 2014; Ackerman and Thompson 2017) informs the mechanism of how problem
solvers reach a final answer. During phase 3, problem solvers make one or more internal
evaluations about the accuracy of potential solutions (Ackerman and Thompson 2017).
These evaluations are captured by judgments of intermediate confidence. According to the
Diminishing Criterion Model (Ackerman 2014), as time passes during the problem-solving
process, problem solvers are increasingly more likely to provide a final response that they
endorse with less confidence.

Meta-reasoning research has involved tasks that are more mathematical (e.g., cog-
nitive reflection task; Frederick 2005) and less mathematical (e.g., remote associates test;
Mednick 1962). We argue that meta-reasoning research effectively informs metacognitive
research in mathematics because math is fundamentally relational in nature (Thompson
et al. 2023). Thus, even though many people treat math differently than other academic
subjects (Erickson and Heit 2015), and it has been argued that MA might be similar to a
specific phobia (Ashcraft and Ridley 2005), the RAMPS framework is informed by several
existing parallels from prior research in neighboring domains.

4.2.4. Phase 4: Second Progress Evaluation

Phase 4 is a combination and extension of phase 2 and phase 3. This phase is similar to
phase 2 in that it involves active problem solving with monitoring components focused on
evaluations of progress. These evaluations are based on similar cues to phase 2: comparison
to expectations of ease, effort, and time required, and monitoring of physiological reactions
(e.g., MA). The same interactions between metacognitive experiences, MA, and WM that
are present in phase 2 are also present in phase 4. These are the active problem-solving
phases. Based on the metacognitive judgments and feelings in phase 4, problem solvers can
continue working on the problem based on their current strategy, change strategy again, or
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give up. Note that phases 3 and 4 can repeat in multiple sequential loops depending on how
many different strategies the problem solver attempts prior to reaching the diminishing
criterion for confidence (Ackerman 2014). Eventually, a final answer is provided, which
takes the problem solver to phase 5.

4.2.5. Phase 5: Final Answer Evaluation

Phase 5 is all about the final answer. Problem solvers engage in several possible
solutions during problem solving that could become the final solution, but if more active
problem solving or strategy switching takes place following coming up with the solution,
such efforts would fall under phases 3 and 4; not phase 5. Phase 5 is the retrospective
counterpart to the predictive phase 1. Just as in phase 1 problem solvers make judgments
about solvability, how hard the problem might be, how prepared they are to attempt to
solve the problem, how familiar they are with the problem features, etc. Problem solvers
are capable of making explicit metacognitive judgments in phase 5 based on implicit
judgments and feelings. Common examples of retrospective metacognitive judgments are
confidence judgments (e.g., “How confident are you in your answer, from 0% = Not at all
confident to 100% = Completely confident?”; Dunlosky and Metcalfe 2009; Fitzsimmons
et al. 2020; Rhodes 2019; Scheibe et al. 2022). But what cues do participants use to make
these judgments, and why are they important?

According to Ackerman and Thompson (2017), problem solvers make judgments
including final confidence, feeling of error, and final judgment of solvability. Further
metacognitive feelings include judgment of solution correctness (Efklides 2006) and feeling
of satisfaction (Efklides 2002, 2006). Collectively, problem solvers have a sense of whether
they committed an error, they might be right, or they are certainly right (Ackerman and
Thompson 2017; Efklides 2006; Fitzsimmons et al. 2020; Gangemi et al. 2015). These feelings
are not foolproof; indeed, even though retrospective judgments are better predictors of task
accuracy than predictive judgments, they are rarely perfectly aligned with accuracy (Rhodes
2019). Problem-solvers’ feelings about their final solution may affect task performance and
more broadly their own self-perceptions.

For example, consider an individual who has spent approximately a minute trying
to solve the widgets and machines problem. That person considered multiple different
strategies and attempted the problem from multiple angles, yet is still not confident with
the solution they chose. A relevant task-specific effect might be that they have multiple
different problems to solve and will approach the next problem differently based on their
low confidence about their answer to the widgets and machine problem (see Path K in
Figure 1). If multiple low-confidence judgments are made during one session, it is also
possible that the individual will assimilate these judgments into their self-perceptions (e.g.,
“I thought I was good at math, but I did not know how to solve any of these problems, so
maybe I am not as good as I thought”). Both the task-specific and downstream implications
are discussed in future directions.

5. Conclusions and Future Directions

We proposed the RAMPS framework based on prior work on metacognition (Efklides
2006; Nelson and Narens 1990) and meta-reasoning (Ackerman and Thompson 2017). For
the remainder of the paper, we discuss why the domain of math is a logical extension of
meta-reasoning research, future extensions of the RAMPS framework, and how it could
inform future interventions.

5.1. Extending Meta-Reasoning into Mathematics

Meta-reasoning researchers have argued that the processes of thinking and reasoning
might easily be described using models of memory (Thompson and Feeney 2015, p. 7).
We argue that this logic can be extended to the domain of mathematics. Indeed, meta-
reasoning research often overlaps with mathematical concepts (e.g., cognitive reflection;
Ackerman and Thompson 2017). The close connections between metacognitive processes
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and meta-reasoning are likely due to an underlying factor in both: relational reasoning.
Both reasoning tasks and math tasks often involve the ability to apply rules and transfer
knowledge to novel domains. Thus, the RAMPS framework significantly relies on prior
work in meta-reasoning to draw extensions into the domain of math.

The RAMPS framework is novel in that it incorporates a path model involving state
and trait MA, as well as metacognitive experiences and WM in predicting mathematical
problem solving. We also offered a five-phase framework to zoom in on the central, yet
recursive, components of the RAMPS framework to describe the cues that problem solvers
may use. Focusing solely on retrospective judgments may provide valuable post-hoc infor-
mation about problem solving, but doing so overlooks the wealth of cues and judgments
made during phases 1–4 (see Figure 2). Additionally, WM is crucial to mathematical prob-
lem solving (Ashcraft and Kirk 2001; Peng et al. 2016). The RAMPS framework adopts
an attentional-control (Engle 2002) model of WM. Indeed, we refer to the focal point of
our framework as regulated attention. Attention-control is just one of several WM models,
however (Cowan 2017), and future research should investigate the best model(s) of WM to
employ (e.g., Ng and Lee 2019) for research at the nexus of metacognition, math cognition,
and cognitive science.

5.2. Extensions, Interventions, and Future Directions

A primary aim is to propose clarifying relations between metacognitive experiences,
WM, and MA in mathematical problem solving. Theoretical contributions to elucidate
these relations are valuable; but could this work be extended to improve mathematical
problem-solving outcomes? That is, could metacognitive experiences be manipulated to
decrease state MA and thus relieve the task-irrelevant taxing of WM? These and many other
open questions should be investigated using experimental methods to explore and test
the RAMPS framework. For example, to date, light-touch MA interventions have mostly
been unsuccessful (Ganley et al. 2021; Scheibe et al. 2023). It is possible that understanding
metacognitive processes and developing interventions based on this understanding might
be a promising new frontier in MA interventions (Morsanyi et al. 2019). Future research
can manipulate the number of metacognitive experiences or draw participants’ attention to
specific metacognitive experiences during problem solving to attempt to affect participants’
task performance and task interpretation. Indeed, the recently proposed interpretation
account of MA (Ramirez et al. 2018) focuses not on the math situations or an individual’s
mathematical ability, but meta-level interpretation of math stimuli to be the cause of
anxious reactions. We posit that the RAMPS framework may help to bridge the gap and
help interdisciplinary researchers understand interrelations at the nexus of metacognitive
research, cognitive research, clinical research, and research specifically on math cognition.

Future research should target specific components of the RAMPS framework. One
way to do this is to test the RAMPS from a structural equation modeling approach. A
challenge in conducting this type of research is that operationalizing metacognitive regula-
tion in mathematical problem solving can be difficult (Zepeda and Nokes-Malach 2023).
Researchers must develop creative designs to tap both explicit and implicit processes. Re-
call that what might be an explicit step-by-step process for a novice problem solver might
be an implicit recall process for an expert. Thus, individual differences in mathematical
problem-solving ability pose unique research challenges that future research should aim
to address. Additionally, future research could delve into the five-phase approach to em-
pirically test or manipulate the cues used in mathematical problem solving. For example,
Fitzsimmons and Thompson (2022, 2023) presented participants with familiar or unfamiliar
fractions in order to manipulate the cues (e.g., familiarity) participants used to determine
their confidence with predicting where to place the fractions on a number line. This is
one of many ways to manipulate participants’ reliance on individual cues that are used
during mathematical problem solving. Similar procedures could be used to manipulate
the salience or presence of cues used in mathematical problem solving to test different
elements of the RAMPS framework.
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Future research could also use the RAMPS framework to investigate other open
questions in math cognition, such as why women often report greater levels of MA (Devine
et al. 2012) and lower levels of confidence (Rivers et al. 2020) than do men, despite having
equal math abilities. It is possible that research methodologies inspired by the RAMPS
framework might lead to a deeper understanding of this issue. Gender differences are just
one example of a long-discussed topic in math cognition that could potentially benefit from
research derived from the RAMPS framework.

5.3. Final Thoughts

The current paper has offered a novel framework for future research at the nexus of
math cognition, WM, and metacognition. Many open questions remain in the RAMPS
framework, and many empirical studies must be conducted to test the claims we have made
herein. It is our hope that the current conceptualization of relations between WM, MA,
and metacognitive experiences during mathematical problem solving will be provocative
and facilitate future interdisciplinary work. Morsanyi et al. (2019) recently proposed
that research on metacognitive processes, MA, and WM has the potential to “significantly
expand the scope of metacognitive investigations and provide novel insights into individual
differences in the metacognitive regulation of learning and problem solving” (Morsanyi
et al. 2019, p. 147). We thoroughly endorse this view, and hope that interested readers will
join us in seeking empirical answers to the open questions.
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