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Abstract: Optimizing HPC systems based on performance factors and bottlenecks is essential for
designing an HPC infrastructure with the best characteristics and at a reasonable cost. Such insight
can only be achieved through a detailed analysis of existing HPC systems and the execution of their
workloads. The “Quinde I” is the only and most powerful supercomputer in Ecuador and is currently
listed third on the South America. It was built with the IBM Power 8 servers. In this work, we
measured its performance using different parameters from High-Performance Computing (HPC) to
compare it with theoretical values and values obtained from tests on similar models. To measure
its performance, we compiled and ran different benchmarks with the specific optimization flags for
Power 8 to get the maximum performance with the current configuration in the hardware installed
by the vendor. The inputs of the benchmarks were varied to analyze their impact on the system
performance. In addition, we compile and compare the performance of two algorithms for dense
matrix multiplication SRUMMA and DGEMM.

Keywords: supercomputer; performance; benchmark; IBMPower8; HPC; Cluster; DGEMM;
SRUMMA; Parallel Computing

1. Introduction

Today’s computational methods such as modeling and simulations are the core tools
for finding solutions to various biological to engineering problems that can only be solved
by an HPC platform. Performance evaluation and analysis have been a core topic in HPC
research. Formally, a benchmark is a program or set of programs executed on a single
machine or cluster to obtain the maximum performance of a given function under certain
conditions and to compare the performance results with the measured values of similar
machines or the theoretically expected values. High-Performance Linpack (HPL) bench-
mark, used in the TOP500 list as a long-established standard for measuring computational
performance, has been challenged in recent years [1,2] . The LINPACK (HPL) benchmark
was the defacto metric for ranking HPC systems, measuring the sustained floating point
rate (GFLOPs/s) for solving a dense system of linear equations using double precision
floating point arithmetic. The use of HPCC in performance modeling and prediction has
already been investigated in the following work: Refs. [1-4]. In particular, Pfeiffer et al. [5]
applied linear regression to adjust the execution time of scientific applications based on the
speeds and latencies of the HPCC cores. Their models for the HPL and G-FFTE benchmarks
in HPCC also derive the functional dependencies of problem size and core count from
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complexity analysis. On the other hand, Chen et al. [6] demonstrated a statistical approach
that combines Variable Clustering (VarCluster) and Principal Component Analysis (PCA)
to rigorously compare the adequacy and representativeness of a benchmark for real-world
HPC workloads. It was investigated which metrics are the best predictors of scientific appli-
cation performance, and predicting the bandwidth of strided accesses to main memory or
the bandwidth of random accesses to the L1 cache provides more accurate predictions than
floating-point-operations-per-second (flops), on which the Top 500 ranking is based. It also
defined how a combination of application and machine characteristics can be used to com-
pute improved workload-independent rankings. A notable example is that Sayeed et al. [7]
recommend that small benchmarks cannot anticipate the behavior of real-world HPC
applications. They discuss important issues, challenges, tools, and metrics in HPC appli-
cation performance evaluation. They then evaluate the performance of four application
benchmarks on three different parallel architectures, estimating runtime, inter-process
communication overhead, I/O characteristics, and memory requirements. Because they
measure these metrics on a variety of implementation processes, the results differ from one
execution to another. From their results, it appears that on different numbers of execution
processes, different platforms perform better or worse, which can significantly benefit the
test at a particular scale of the experiment. Marjanovic et al. [8] attempted a performance
model for the HPCG benchmark, they analyzed the impact of the input dataset for three
representative benchmarks: HPL, HPCG, and High-Performance Geometric Multigrid
(HPGMG), and performed a node-level analysis on six specific HPC platforms, performing
a scale-out analysis on one of the platforms. Their results show that examining multiple
problem sizes gives a more complete picture of basic system performance than a single
number representing the best performance. In recent years, institutions running HPC
applications have focused on areas ranging from molecular dynamics to an-imation to
weather forecasting. One approach to achieve higher computational performance has
been to add graphics processing units (GPUs) that can serve the complex, demanding
computational needs, such as the NVIDIA Tesla K8OGPU accelerators, to the dedicated
server hardware that can offload or supplement the workload on the CPU. There are not
many studies that deal with benchmarking techniques and how to estimate the results
of HPC systems and applications in relation to Tesla K80 and identification analysis of
previous versions. For this reason, it is necessary for dedicated HPC systems such as the
supercomputer “Quinde I” to know its full potential and optimize it under real scenarios,
which is usually difficult to achieve with small tests [9-11], and this is where the need to
apply benchmarking becomes apparent. In computer science, benchmarking is a technique
to measure the performance of a system or one of its components. A benchmark is a
well-defined and simple program [12]. Based on the results obtained when running a
benchmark, the maximum real-world performance can be measured and compared. In
HPC, benchmarking is used to get a better understanding of the weaknesses and strengths
of the system [13]. It is necessary to have a good understanding of how an application
performs (or scales) on different architectures in order to:

e  Estimate the average runtime for a single job.

¢ Reduce the waiting time to start a job.

e  To set a proper size for the jobs.

¢ Improve the customization process on a given application for accessing large centers
such as Edinburgh Parallel Computing Center (EPCC) [14].

Although there is much debate about how relevant the HPL benchmark is to the
industry, it remains an excellent “burn-in” test for very complex HPC systems. HPL is a
good tool to validate a system: it works as a control and stresses the system more than
typical applications would.With this in mind, the HPL benchmark is used in this work to
validate the system. The goal of this work is to present a performance analysis combined
with an architectural analysis of CPUs and GPUs on our K80 machine, providing an
understanding that both CPUs and GPUs should be considered as complementary hybrid
solutions for many scientific applications.
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*  We demonstrate HPL performance on our HPC “Quinde I”, which is equipped with
high technology with the following features: a cluster with IBM Power 8 proces-
sors, 1760 cores, RAM 11 TB, parallel memory 350 TB, NVIDIA K80 Tesla GPU and
InfiniBand technology. Based on the official linpack results, “Quinde 1” achieves
231.9 teraflops, we discuss two different linpacks to measure the performance of CPUs
and GPUs independently.

*  We show how appropriate microarchitectural benchmarking can be used to reveal
the cache performance characteristics of modern Tesla K80 by NVIDIA processors
between CPU and GPU's, specifically parameterizing the performance of possible
multiple layers of cache present on and off the processor, we detailed the Cache-Bench
which contains eight different sub-benchmarks, related to raw bandwidth in floating
point workloads and compared the performance characteristics of CPU and GPU'’s.

¢ We show how the optimization problem can be parallelized on both traditional CPU
based systems and GPU and compare their performance

e We show the CUDA implementation of the assembly step in NVIDIA 80, which
is straightforward.

e  For DGEMM, we show the effect of varying core and detail problem size in terms of
node performance after testing and speed up of each node of “Quinde I".

¢  For Shared and Remote-memory based Universal Matrix Multiplication Algorithm
(SRUMMA) [15], a parallel algorithm implementing dense matrix multiplication with
algorithmic efficiency, experimental results on clusters (16-way IBM SP and 2-way
Linux/Xeon nodes) and shared-memory systems confirm SGI Altix, Cray X1 with
its partitioned shared memory hardware SUMMA [16] that with reference to previ-
ous studies, SRUMMA demonstrates consistent performance advantages over the
pdgemm routine from the ScaLAPACK/PBBLAS suite [17,18], the leading imple-
mentation of the parallel matrix multiplication algorithms used today. Considering
such factors and the impact of SRUMMA on various such clusters, we evaluated the
performance of SRUMMA on the IBM power 8 architecture.

Therest of this paper is organized as follows: Section 2 describes the experimental
platform and its computing system architectures and describes the benchmark methods
used; Section 3 describes the results ofthe HPL, STREAM, Babel, Cache benchmark suite
along with the individual performance of DGEMM and the theoretical performance, while
Section 4 describes the SRUMMA vs. DGEMM algorithms, and finally Section 5 contains
the conclusions of the study.

2. Materials and Methods
2.1. Experimental Platform

We performed the experiments onthe supercomputer “Quinde 1”, which consisted
of 84 compute nodes, two login nodes and two management nodes interconnected by a
high-speed InfiniBand EDR network at 100 Gb/s. It had a theoretical performance (RPEAK)
of 488.9 TFLOPs and a maximum performance (RMAX) of 231.9 LINPACK TFLOPs.

It was managed in the form of a cluster by the SCF administration node as shown
in Figure 1, and received the jobs to be processed from the administration node of the
LSF queues, the work orders were sent to the nodes through the login node which had
access to the users; all the processed information was stored in a parallel GPFES file system
through the Infiniband high performance network; in addition, all the issues related to
the performance of the devices were monitored by independent networks, which avoided
the junk traffic. Quinde-I consisted of servers (nodes) of IBM model 822LC, with Power§
processors with MIND technology (NUMA) with 128 GB of RAM and 1000 GB local hard
disk, in addition each node had two graphics processing cards of NVIDIA brand model K80
Tesla, and four network interfaces; each of them with a dedicated purpose. Each computing
node has two power eight processors model 8335GTA, with 10 cores each, where each
core in turn hasd the capacity to process eight threads, which means that each node had
160 threads (see Figure 2).
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Figure 1. General logic diagram of Quinde I.

Architecture ppc64le
Byte Order: Little Endian
CPU(s): 160

On-line CPU(s) 0-159
Thread(s) per core: 8

Core(s) per socket: 10
Socket(s): 2

NUMA node(s): 2

Model: 8335-GTA
L1d cache: 64k

L1i cache: 32k

L2 cache: 512k

L3 cache: 8192k

NUMA nodeO CPU(s): 0-179
NUMA node8 CPUS(s): 80-—159

Figure 2. Characteristics of the cores of Supercomputer Quinde I node.

2.2. High Performance Linpack (HPL)

One of the most important and widely used tests on HPC is the HPL, which measures
the floating-point computational performance of the system. This test is used in the TOP
500, a ranking of the 500 supercomputers with the highest performance in the world.
To obtain the HPL measure, we ran the benchmark to solve a dense n by n system of
linear equations:

Ax=b 1)

To run the HPL, it was necessary to set various values in a main file. The input file contained
various parameters that HPL needed to run the test. These parameters have a great impact
on the test performance, so they should be chosen carefully. One of the most important
parameters is N. It is the dimension of the coefficient matrix generated to solve the linear
system. To select a N and find out the best performance for a system, the memory system
must be considered. If the selected problem size N is too large, swapping will occur and
the performance will decrease. Another parameter to consider when running the test is
NB. HPL uses the block size NB for both data distribution and computational granularity,
noting that a small NB improves load balancing, but on the other hand, a very small NB
can limit computational performance since there is almost no data reuse at the highest
level of the memory hierarchy. Finally, we have the values P and Q that define the size of
the grid. The product of these values must be equal, close to the number of processors in
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the cluster, but no larger. According to [19], a smaller P X Q matrix dimension gives the
best improvement.

2.3. Stream Benchmark

The STREAM benchmark is a simple benchmark program that measures sustainable
memory bandwidth (in MB/s) and corresponding computation rate for large datasets [20].
The stream benchmark becomes relevant because most systems create a bottleneck because
they are limited by memory bandwidth rather than processor speed.

2.4. DGEMM Benchmark
DGEMM [21] measures the floating point rate of execution of a real matrix-matrix

multiplication with double precision. The code is designed to measure the sustained
floating-point computation rate of a single node.

2.5. Babel Stream

Babel Stream [22] measures memory transfer rates to/from global device memory on
GPUs. This benchmark is similar and based on the STREAM benchmark [20] for CPUs
mentioned above. There are several implementations of this benchmark in a variety of
programming models. Currently implemented are:

¢ OpenCL

¢ CUDA

¢ OpenACC

*  OpenMP 3 and 4.5
e  Kokkos

e RAJA

¢ SYCL

For this work, the version CUDA was used.

2.6. Cache Bench

Cache-Bench is one of the three tests of LLCBenchmark [23] designed to evaluate
the performance of the memory hierarchy of computer systems. Its specific focus is on
parameterizing the performance of possibly multiple levels of cache present on and off
the processor. By performance, we mean raw bandwidth for floating-point workloads.
Cache-Bench includes eight different sub-benchmarks. Each of them performs repeated
accesses to data items in different vector lengths. The test takes the time for each vector
length over a number of iterations. The accessed data in bytes are the product of iterations
and vector length. Then the data are divided by the total time to calculate the bandwidth.

1.  Cache Read: This benchmark is designed to give us the read bandwidth for different
vector lengths in a compiler optimized loop.

2. Cache Write: This benchmark is designed to give us the write bandwidth for different
vector lengths in a compiler optimized loop.

3. Cache Read/Modify/Write: This benchmark is designed to provide us with
read /modify /write bandwidth for varying vector lengths in a compiler optimized
loop. This benchmark generates twice as much memory traffic, as each data item
must be first read from memory/cache to register and then back to cache.

4. Hand tuned Cache Read: This benchmark is a modification of Cache Read. The mod-
ifications reflect what a minimally good compiler should do for these simple loops.

5. Hand tuned Cache Write: This benchmark is a modification of Cache Write. The mod-
ifications reflect what a minimally good compiler should do on these simple loops.

6. Hand tuned Cache Read/Modify/Write: This benchmark is a modification of Cache
Read/Modify /Write. The modifications reflect what a minimally good compiler
should do with these simple loops.



Computation 2021, 9, 86

6 0f 20

7. memset() from the C library: The C library has the memset() function to initialize
memory areas. With this benchmark, we can compare the performance of the two
formulations for writing the memory.

8. memcpy() from the C library: The C library has the memcpy() function for copying
memory areas. With this benchmark, we can compare the performance of the two
versions of memory read /modify /write with this version.

2.7. Effective Bandwidth b,y

The effective bandwidth b, rf measures the cumulative bandwidth of the communica-
tion network of a parallel and/or distributed computing system [24]. Different message
sizes, communication patterns and methods are used. The Algorithm 1 uses an average
to account for the fact that in real-world applications, short and long messages result in
different bandwidth values (shown in Figures 3-5 and Tables 1-3).

Algorithm 1 The algorithm of b,

bfr =logavg (logavgcartesian pattern (sumL (maxmthd (maxrep (b(cartes.pat., L,mthd,rep)

))/21),
logavg-random pattern(sumL (maxmthd (maxrep ( b(random pat.,L,mthd,rep) )))/21))

Effective Bandwith Benchmark (bfs) Version 3.5

High-Performance Computing

Mon March 9 22:42:00 2020 on Linux it01-r10-cn-36.yachay.ep 3.10.0-327.el7.ppc64le Num-
ber 1 SMP Thu Oct 29 17:31:13 EDT 2015 ppc64le

bess = 17,556.798 MB/s = 877.840 * 20 PEs with 128 MB/PE

Table 1. Bandwidth with 20 core.

number besy Lmax befs befr
of pro- at Lmax at Lmax
cessors rings and rings
random only
MByte/s MByte/s MByte/s
accumulated 20 17,557 1 MB 51,010 50,013
per process 878 2551 2501
Latency Latency Latency ping-pong
rings and rings ping- bandwidth
random only pong
microsec microsec microsec MByte/s
accumulated 1.970 1.808 0.782 14,893

In the table, Ping-Pong result (only the processes with rank 0 and 1 in MPI_COMM_WORLD were used): Latency:
0.782 microsec per message; Bandwidth: 14,892.569 MB/s (with MB/s = 100 byte/s).
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Sndrev, ring & random patterns
10,000 T

1,000

100

bandwith [MB/s]
IS

0.1

oor . . . R, L e
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Figure 3. Bandwidth with 20 cores, one per node.

Sun March 15 23:31:05 2020 on Linux it01-r14-cn-63.yachay.e3.10.0-327.el7.ppc64le #1 SMP
Thu Oct 29 17:31:13 EDT 2015 ppc64le

bt = 28,590.215 MB/s = 893.444 x 32 PEs with 128 MB/PE

Table 2. Bandwidth with 32 core.

number bess Lmax befs befs
of pro- at Lmax at Lmax
cessors rings and rings
random only
MByte/s MByte/s MByte/s
accumulated 32 28,590 1 MB 77,698 90,036
per process 893 2428 2814
Latency Latency Latency ping-pong
rings and rings ping- bandwidth
random only pong
microsec microsec microsec MByte/s
accumulated 1.857 1.681 0.788 18,475

In the table, Ping-Pong result (only the processes with rank 0 and 1 in MPI_COMM_WORLD were used): Latency:
0.788 microsec per message; Bandwidth: 18,475.306 MB/s (with MB/s = 10° byte/s).

Sndrev, ring & random patterns
10,000

1,000

100

bandwith [MB/s]
S

0.1

ring-16*2fix ——

0.01 . L . L
1 10 100 1,000 10,000 100,000  1x10"6  1x10"7
message length per process [Byte]

Figure 4. Bandwidth with 32 cores, one per node.
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Sun March 15 23:34:36 2020 on Linux it01-r10-cn-39.yachay.ep 3.10.0-327.el7.ppc64le #1
SMP Thu Oct 29 17:31:13 EDT 2015 ppcé4le

bess = 62,367.350 MB/s = 974.490 * 64 PEs with 128 MB/PE

Table 3. Bandwidth with 64 core.

number beff Lmax beff bEff
of pro- at Lmax at Lmax
Cessors rings and rings
random only
MByte/s MByte/s MByte/s
accumulated 64 62,367 1 MB 180,979 250,604
per process 974 2828 3916
Latency Latency Latency ping-pong
rings and rings ping- bandwidth
random only pong
microsec microsec microsec MByte/s
accumulated 1.918 1.699 0.787 20,682

In the table, Ping-Pong result (only the processes with rank 0 and 1 in MPI_COMM_WORLD were used): Latency:
0.787 microsec per message; Bandwidth: 20,682.090 MB/s (with MB/s = 100 byte/s).

Sndrev, ring & random patterns
10,000

1,000

100

bandwith [MB/s]
S

0.1 f

) ) ring-32*2fix —+—
1 10 100 1,000 10,000 100,000  1x10"6  1x10"7

message length per process [Byte]

Figure 5. Bandwidth with 64 cores, two processes per node with span [ptile = 2] option added on
queue system.

3. Results and Discussion

Note: All tests were performed in the warranty configurations and under the supervi-
sion of the administrator.

3.1. Linpack Results

Two different linpacks were run to measure the performance of CPUs and GPUs inde-
pendently.

3.1.1. HPL with CPUs

In this test, we counted the CPU cores of the Power 8 to run the tasks and obtain the
performance. Due to administrative constraints in the “Quinde I” supercomputer, we were
only able to run the HPL tests on a few nodes and obtained the following results:

HPL benchmark on “Quinde I” (only CPU’s).

Figure 6 shows that the performance is directly proportional to the input value N

(HPL parameter specified in Section 2.2). In this test, it achieved 43.3 Gflops with a N
of 79,296.
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50 T T T T r
-%- Performance, 43.3 Gflops

n w B
o o o

Performance (Gflops)

—_
o

O 1 1 1 1 1
20,000 30,000 40,000 50,000 60,000 70,000 80,000
N

Figure 6. N vs. Gflops.
HPL benchmark on ‘Quinde I’ ( CPU’s only).

As shown before in Figure 7, the performance grew directly proportional to the number
of cores. In this test, the maximum performance was not achieved due to limitations in
accessing supercomputer nodes. The maximum number of cores used in the test was 40,
which was equivalent to 25% of a single node of “Quinde 1”. However, we can see in
Figure 7 that the slope in the last interval (35-40 cores) showed a remarkable decrease. This
indicates that the maximum power was reached when the number of cores, N, reached 40.
HPL with GPUs To measure the performance of the GPUs installed on ‘Quinde I’ (NVIDIA
TESLA K80), we needed to compile the linpack using the CUDA libraries that helped in
using the GPUs. The two most important parameters to run this benchmark were:

50 T : :
‘—*— Performance, 43.3 Gflops

N w B
o o o

Performance (Gflops)

—
o

0 1 1 1
0 10 20 30 40
Number of Cores

Figure 7. Number of cores vs. gflops.
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1. MP PROCS =4
2. CPU CORES PER GPU =5

This test was performed on six nodes and the number of cores, N of 103,040. The
results obtained after the test were:

HPL benchmark in ‘Quinde I’ (with GPU’s).

In Figure 8, the result was obtained uniformly over time. It showed how the perfor-
mance grew to reach its best point which was 3632 Gflops, the main change was in the first
50 s which was due to the CPU transfer of information in the GPUs. The GPU test gave a
much better performance compared to CPUs. “Quinde I” achieved 231.9 teraflops in its
official benchmark, which seems reasonable due to the results obtained at only six nodes.
However, according to the literature, each GPU (four GPUs) showed a performance of
2.91 teraflops [25], but it was achieved at its maximum frequency and an optimized input
file was used to consider the above parameters.

4,000 . :

| Performance, 3,632Gflops

—_

3;500 B

3,000

Performance (Gflops
o
o
o

2,000 : : : :
0 50 100 150 200 250
Number of Cores

Figure 8. Power vs. time.

3.1.2. HPL Analysis

In order to compare and understand the results obtained, it is necessary to know that
CPU’s (central processing units) and GPU’s (graphic processing units) are almost the same
thing which have an integrated circuit with many transistors that perform mathematical
calculations. The main difference is that the CPU is a general purpose processor that can
perform any type of calculation, while the GPU is a specialized processor that optimizes
work with large amounts of data and performs the same operations. In addition, although
they are dedicated to computing, both have a significantly different design. The CPU
is designed for serial processing: it consists of a few very complex cores that can run a
few programs at a time. In contrast, the GPU has hundreds or thousands of simple cores
that can run hundreds or thousands of specific programs simultaneously. The tasks that
the GPU handles require a high degree of parallelism and therefore CUDA is needed. A
GPU with its thousands of cores working in parallel can increase the performance of a
CPU many times over for operations, such as a computation that requires large vector and
matrix operations. Therefore, adding GPUs to the Power8 processors from the “Quinde
I” can significantly increase performance. For example, in [26], the authors proved that
a hybrid implementation (CPUs and GPUs) of a graph algorithm (BFS) provides the best
performance over only multicore or GPUs. In this work, the performance achieved by
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CPUs was lower than GPUs and it was possible to claim the large gap between the results.
However, the maximum performance of CPUs and GPUs could not be exploited as they
were set to moderate performance to maintain the guarantee. Additionally, in the HPL
performed on GPUs, it was not possible to see how the performance changes when the N
value was varied, since the GPU test was provided by the manager and the N value was
already fixed.

3.2. Stream Benchmark

To observe the impact on performance, two different numbers of threads were used
for parallel regions (shown in Tables 4 and 5). After running the test, the following results
were obtained:

Table 4. Streaming results with OMP NUM THREADS = 10.

Function Best Rate MB/s Avg Time Min Time Max Time
Copy: 67,630.9 0.127412 0.127018 0.127911
Scale: 70,672.1 0.121959 0.121552 0.122957
Add: 81,089.9 0.159328 0.158904 0.159597
Triad: 81,356.5 0.158727 0.158383 0.159373

Table 5. Streaming results with OMP NUM THREADS = 20.

Function Best Rate MB/s Avg Time Min Time Max Time
Copy: 135,680.4 0.064878 0.063313 0.069888
Scale: 140,497.6 0.065011 0.061142 0.073112
Add: 160,384.9 0.083582 0.080341 0.091937
Triad: 160,827.3 0.085327 0.080120 0.095353

As expected, the bandwidth performance was better during the test when the number
of threads = 20. However, if the number of threads increased, the performance got an
opposite effect.

In order to analyze and compare the results obtained, Figure 9 the histogram analysis
of our test case results was verified with previously shown publicly available tests on (i)
Power 750 systems and (ii) a similar system using Power 8 as reference. The IBM Power
750 had four sockets containing a total of 24 cores with a clock speed of 3.22 GHz. The
characteristics of the IBM Power 750 were similar to, but lower than, the Power 8 processors
used by “Quinde I” used. Looking at the histogram, we can see that the characteristics
of IBM Power 750 were similar but lower in operational performance (Copy, Scale, ADD,
Triad) than our case study system “Quinde I (NVIDIA K80 )”. We also observed that the
bandwidth performance of “Quinde I (NVIDIA K80)” was higher than IBM Power 750 in
all operations of the stream benchmark. The observed difference between the achieved
performances represented a 20% from the maximum performance achieved by IBM power
750. This result looked reasonable due to the improvements in the characteristics among
them. According to the results obtained by [27] in a Power S822L.C processor, in Figure 9,
“Quinde I” did not achieve its best performance. Although the compilation was the same
in both cases, we assume that the difference probably came from the issue of preset
configurations in “Quinde I”. In the reference case, the author set the maximum frequency
CPU. In our case, it could not be set because these operations jeopardize the system
guarantee. In Figure 9, however, we see that the performance of Quinde I was comparable
to that of the Power S822L.C processor, with subtle changes in its operating dimensions.
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Figure 9. Histogram analysis of ‘Quinde I Vs IBM Power 750 and Power S822LC processor
for reference.
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3.3. Babel Stream Results

“Quinde I” had NVIDIA K80 as its graphics card. To analyze the performance, the test
was run several times with the original card configurations (clock frequency = 640 MHz)
and varying the input array size, obtaining the following results:

GPU 1 Stream Benchmark

Figure 10 shows the behavior for the five operations performed by the benchmark at
640 MHz. When the array size reached 5 x 10°, the GPU bandwidth reached the maximum
speed of 170,000 MB/s. However, a look at the literature of the previously published
paper [28] shows that the expected performance achieved by Babel Stream Benchmark on
an NVIDIA K80 tesla was 176,000 MB/s. We confirmed that for this reason, the GPU clock
speed was changed to achieve the maximum performance of the graphics card.
Note: The test was approved and supervised by the manager of “Quinde 1”. The test
was run with an array size of 3.5 x 10'” and the following changes in the graphics card con-
figurations:

* nvidia-smi-application-clocks = memory clock speed, clock speed
¢ nvidia-smi-application-clocks = 2505 MHz, 705 MHz
e nvidia-smi-application-clocks = 2505 MHz, 810 MHz
* nvidia-smi-application-clocks = 2505 MHz, 875 MHz

Plotting the obtained data, Figure 11 was obtained.

GPU 1 Stream Benchmark
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Figure 11. K80 performance results.

Figure 11 shows that better bandwidth performance was achieved, even outperform-
ing the literature reference [28]. With the maximum clock rate (875 MHz), a bandwidth of
180,000 MB/s was achieved. The obtained results are attributed to the optimization of the
compilation phase.

NVIDIA TITAN XP vs. NVIDIA K80

To observe and compare the performance of the NVIDIA K80 graphics card, the
results from the test on an NVIDIA TITAN XP (latest model) and the following results
were obtained:

In Figure 12 The bandwidth performance of a TITAN XP was significantly higher than
that of a K80. The bandwidth achieved was more than twice the K80 bandwidth. This
comparison gave an idea of how fast the technology was evolving in both processor speed
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and bandwidth. On the other hand, the analysis of the performance of the two GPUs based
on their theoretical performance that we obtained is shown in Figure 13. In theory, NVIDIA
k80 was much better than NVIDIA TITAN, but in the test Figure 12 performed, exactly the
opposite happened.

NVIDIA TITAN XP vs NVIDIA k80

500,000

450,000

400,000
350,000 ® Copy
300,000 = Muit
Add
250,000 ® Triad
200,000 m Dot
150,000
100,000
50,000
0

Tesla K80 | NVIDIA NVIDIA TITAN Xp

MB/s

Figure 12. NVIDIA K80 (2014) vs. NVIDIA TITAN XP (2017).

Theoretical Performance
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o 1400
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[re—
O 1000
S
Q
& 800
c
© 600
-
E 400
Q 200
o
0
NVIDIA Tesla K80 NVIDIA TITAN Xp

Figure 13. NVIDIA K80 vs. NVIDIA TITAN xp.

Another measure to compare the performance of CPUs and GPUs is to calculate the
balance. In this work, the balance was calculated for both GPUs:

sustainable-memory-bandwidth (Byte/s)
Performance (Flops/s)

@)

Balance =

e NVIDIA K80: 0.137855579868709
e NVIDIA TITAN xp: 1.16064362964917

In balance, when the system is close to 1, it indicates excellent balance, and far at 1 it
behaves just the opposite. The NVIDIA TITAN xp was close to 1, so it was better balanced
than the NVIDIA K80. Improving memory bandwidth instead of CPU speed resulte in
better performance, even if the CPU speed was lower. In other words, the performance of
an NVIDIA K80 was wasted because it processed data very quickly and had to wait for
data to be written or read from memory.
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3.4. DEGMM Results

After performing the test on each node of ‘Quinde I, the results are described in
Figure 14. DGEMM Individual Performance:
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310\Iode Number

Figure 14. Speed from each node of “Quinde I”.

Almost all (except two) have a similar rate (close to 500 Gflop) for floating point
operations. The value obtained in the test agrees with the theoretical performance of each
node: 504 Gflops. Which comes from:

Cores  Cycles Flops
Socket Second Cycle

Flops = Sockets - (©)]
where: Sockets = 20, Cores/Socket = 8, Cycle/Second = 3.5 GHz, Flops/Cycle = 0.9.

Figure 14 shows abnormal performance. This could be an indication that there was
something wrong with these nodes, so they should be checked. After the test, the nodes
were checked and the problems were fixed. If the nodes were performing normally, we got
Figure 15.

DGEMM Individual Performance
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Figure 15. Performance of the nodes after the check.

3.5. LLCBench—Cache Bench Results
Cache-Bench on a Node of “Quinde I”

Figure 16 shows the eight operations and results produced by the test on a single
node of ‘Quinde I'. The maximum vector used in the test was smaller than the cache
memory, which was evident in the performance as the cache read was constant throughout
the test, which means that the data were obtained directly from the cache. The cache
write varied during the test, but it held the interval of 2000 MB/s. This could be because
this benchmark was heavily influenced by architectural quirks in the memory subsystem
such as replacement policy, associativity, blocking, and write buffering. The cache RMW
generated twice as much memory traffic because each data item must first be read from
memory/cache to register and then back to cache. The bottom line is that the test showed
that the performance of was greater than the addition of read and write performance. In
terms of tuned versions, the Cache Read test showed better performance. This means
that the compiler was not doing a good job on this type of simple loops. However, the
tuned cache RMW showed worse performance, which means that the compiler did a better
job than the tuned version. Finally, for cache writing, the behavior of the normal and
tuned versions was too similar, which also indicates that the compiler was doing a good
job. Finally, the libraries provided by C showed better performance than the routines
used by the compiler, especially memcpy, which reached the best performance point of
almost 90,000 MB/s. It is attributed the compiler used in this work, the smpi, a special and
dedicated compiler to IBM.
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4. SRUMMA vs. DGEMM Algorithm on “Quinde I”

In this section, we address a common problem in various domains, namely, obtaining
the effective product of C = AB, where A and B are large and dense N x N matrices. In this
study, we compared and evaluated the performance of two main algorithms: SRUMMA
and DGEMM. SRUMMA algorithm [15] is a parallel algorithm that implements serial
block-based matrix multiplication with algorithmic efficiency. It is suitable for clusters
and scalable in shared memory systems. SRUMMA differs from other parallel matrix
multiplication algorithms by explicitly using shared memory and remote memory access
(RMA) communication instead of message passing, the usual process communication
protocol. As a result, the algorithm is completely asynchronous and avoids any processor
coordination that arises from this protocol. In [15], the authors specified the parallel time
of the algortihm as follows:

N3
Tpar rma = O(5) + O(VP) (4)
where: P = number of processors. N = size of the matrix.

Second, DEGMM is a double-precision matrix-matrix multiplication defined in [29] as:

C=a-A-B+B-C ®)

where A, B and C are matrices and « and f are scalars. In this work, we assume « = 1 and
B = 0. DGEMM is implemented as a subroutine of LAPACK, which provides routines for
solving systems of simultaneous linear equations, least-squares solutions of systems of
linear equations, eigenvalue problems, and singular value problems. A simple, straightfor-
ward implementation of DEGMM consists of three nested loops. The DGEMM algorithm is
a well-known blocking algorithm [29] where the computation is done on a two-dimensional
grid of threaded blocks [30] and here lies the main difference between the algorithms. We
compared the performance of the algorithms with different number of cores and the same
N (matrix dimension). SRUMMA vs DGEMM algorithm.

In the experimental results, we can observe in Figure 17 that the SRUMA algorithm
with an N of 8192 achieved 273 Gflops with 64 cores, but when the number of cores
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increased, the efficiency of the algorithms decreased. On the other hand, we can see that
DGEMM showed poor performance compared to SRUMMA. We notice that it became
constant when we increased the number of cores, and we can assure that SRUMMA
algorithm gave better performance than the most popular algorithms used today. However,
we can state that it did not have good scalability, since its performance decreased very
quickly after a certain point. Moreover, when the value of N in SRUMMA was very large,
the algorithm interferes with the load sharing facility (LSF) service of “Quinde I”, so we
could not increase the value of N.

300 T T |
ﬁ DGEMM
—_ 250 |- SRUMMA | _|
&
[oF
o
E 200 (— —
)
N’
8 0 -
=}
g
=100 — —
S
b
)
VR W i
0 l | L | | |

( 20 40 60 80 100 120 140
Number of Cores

Figure 17. Performance of SRUMMA vs. DGEMM.

5. Conclusions

In conclusion, in this paper it has been shown that “Quinde I” has a correct perfor-
mance in all measured aspects according to the literature. However, in Figure 9, two nodes
show abnormal performance, which was checked and later corrected by the manager.
When the SRUMMA algorithm was applied, a significant performance improvement was
observed over the conventional algorithms such as DEGMM used in this work. Many tests
carried out in this work were limited by the administrative and warranty conditions of
the “Quinde I” by the supplier, therefore the maximum performance was not achieved.
However, the performance achieved during the tests was still strong. It can be clearly
seen that the options (copy, scale, add, triad) that slightly surpass the previous model
IBM Power 750 Express (as shown in Figure 9), do not reach the reference due to the
configuration mentioned above in the explanation, however, a clear technical definition
can be given about exceeding the manufacturer’s reference as a supervised technical test
was performed and this can be seen in Figure 11, it can be clearly seen that when the
clock frequency is matched to that of the manufacturer, all the calculated measurements
far exceed the reference in the literature, which confirms the computational performance.
Additionally, when performing work with the use of NVIDIA K80 Tesla graphics cards,
with reference to NVIDIA Titan XP, the configuration given in the explanation is visualized
in Figure 12, shows that the performance is lower than that of NVIDIA Titan, however,
by performing a special supervised test and changing the speeds of the graphics card, as
shown in Figure 10, that it exceeds in large quantity even on the supplier reference, so it can
be concluded that when the size of the array is up to 5 x 10°, the GPU bandwidth reaches
the maximum speed, which is about 170.000 MB/s. However, a look at the literature shows
that the expected performance achieved by Babel Stream Benchmark on an NVIDIA K80
tesla is 176,000 MB/s [27]. For this reason, the clock frequency of the GPU was changed in
a monitored manner to obtain the maximum performance of the GPU and confirm that it
outperforms the reference, as can be seen in Figure 11.
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