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Abstract: This paper presents a study on the design and multiobjective optimization of a bimorph-
segmented linearly tapered piezoelectric harvester for low-frequency and multimode vibration
energy harvesting. The procedure starts with a significant number of FEM simulations of the
structure with different geometric dimensions—length, width, and tapering ratio. The datasets train
the artificial neural network (ANN) that provides the fitting function to be modified and used in
algorithms for optimization, aiming to achieve minimal resonant frequency and maximal generated
power. Levenberg–Marquardt (LM) and scaled conjugate gradient (SCG) methods were used to
train the ANN, then the goal attainment method (GAM) and genetic algorithm (GA) were used for
optimization. The dominant solution resulted from optimization by the genetic algorithm integrated
with the ANN fitting function obtained by the SCG training method. The optimal piezoelectric
harvester is 121.3 mm long and 71.56 mm wide and has a taper ratio of 0.7682. It ensures over five
times greater output power at frequencies below 200 Hz, which benefits the low frequency of the
vibration spectrum. The optimized design can harness the power of higher-resonance modes for
multimode applications.

Keywords: artificial intelligence; vibration energy harvester; MEMS

1. Introduction

A vibration energy harvester (VEH) provides a self-sufficient and sustainable power
solution for low-power devices in a wireless sensor network (WSN), replacing conventional
bulky batteries with a limited lifetime [1]. The major challenge in a micro-energy harvester
is low power generation. A piezoelectric vibration energy harvester (PVEH), which uses
direct piezoelectric effects to convert mechanical vibrations into electrical energy, is popular
because of its high power density, compared to other transduction mechanisms, such as
electromagnetic and electrostatic harvesters. Sil et al. showed that increasing the beam’s
length and reducing the beam’s width and thickness improved the output generation of
the VEH [2]. The tapered beam design of the linear PVEH produces greater output voltage,
as the beam will experience a higher strain for a particular mechanical input. A trapezoidal
cantilever beam provides a more efficient and more robust design than a conventional
rectangular beam, as the distribution of the strain is more uniform across the length of the
beam [3,4]. Almeida et al. concluded that thinner substrates yield harvesters with a better
energy conversion factor and a higher output voltage [5]. The cantilever-based PVEH in
higher vibration modes has specific strain nodes where the cancellation of electric charge
reduces the generated output [6]. Segmentation of the piezoelectric layer or electrodes
at this strain node reduces the resonant frequency and increases the power generation in
higher vibration modes [7].
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Another major limitation for the VEH is its relatively narrow operational bandwidth.
Researchers have adopted various approaches to increase the operating frequency range,
to find an alternative to the linear VEH, which works only for a single frequency resonance.
Multimodal structures with an array of generators, each with a different resonant fre-
quency, have been developed to achieve wider bandwidth [8–10]. However, for a particular
excitation frequency, only one structure of the array is excited, and the rest remain idle,
which limits the power density of the device. There is a requirement to reduce device
size and complexity while addressing the limitation of narrow bandwidth. It has been
experimentally evaluated that the operational frequency range of the PVEH increases
when segmented at strain nodes of higher vibration modes [11,12], while the use of higher
vibration modes results in an improvement of the sensitivity, reliability, and performance
of microelectromechanical system (MEMS) devices [13,14]. Therefore, optimizing a piezo-
electric energy harvester’s physical geometry and design is crucial for cost reduction and
for improving performance by generating maximum electrical output.

Fu reviewed different tools for simulation-based optimization [15]. Park et al. de-
signed an optimization procedure based on the finite element model (FEM) by ANSYS to
optimize the objective function of the average power spectrum and mechanical stress of a
piezoelectric energy harvester [16]. Recently, artificial intelligence-based optimization has
become popular due to computational time and complexity involving numerous simula-
tions or the study of various parameters of the mathematical model of the harvester [17–19].
Nabavi et al. optimized the physical aspects of a doubly clamped cantilever with a ser-
pentine pattern using a deep neural network with an accuracy of 90% [20]. Singh et al.
proposed a novel artificial neural network (ANN)-based feedback loop control system to
optimize a real-time vibration energy harvester inside a tire to power a sensor module [21].

In this paper, a tapered optimal structural design of a PVEH with structural modifica-
tion of segmentation at the strain nodes of the third vibration mode is presented to improve
its operation at a higher resonant frequency (second and third) to boost output voltage
in a wider operational frequency range. The paper also presents the investigation of the
optimization of segmented multimode design to provide maximum power generation
in lower-frequency (below 500 hertz) applications. The paper’s content is organized as
follows: the mathematical model based on the beam theory of the tapered harvester and
FEM simulations, along with the method used for finding optimal design, is first presented.
A custom-designed AI-assisted software solution is presented in detail in the next section.
Section 3 provides discussions and observations related to the outcomes of the developed
codes. Concluding remarks are presented in Section 4.

2. Materials and Methods

To design an optimal bimorph-segmented tapered piezoelectric MEMS energy har-
vester that would provide us with maximal possible power at low frequencies, we used
different procedures. The first decision was related to the parameter space, i.e., which
parameters would be variable, and what were the physically reasonable bounds for them.
According to the state of the art, there is no universal figure of merit of piezoelectric har-
vesters. Based on previous studies, various aspects of the cantilever-based vibration PEH
are listed in Table 1. A comprehensive study in [22] addresses the dependency of the output
on load resistance, taper ratios in width and thickness of the cantilever, the thickness on
the tip end, and the location and the dimensions of the PZT patch. Furthermore, elec-
trodes and structures with curved PZT patches are optimized in a study by Yang et al. [23].
As described in the study on PEH operation under different working temperatures [24],
optimization can relate to the mode of operation and working conditions. In [25], the
optimization of the structure of PEH is performed for durability and crack issues that arise
in the structure over time. In [26], the focus is on the cantilever-based PVEH material itself,
and the results show that newly engineered metamaterials may provide the structure with
high flexibility and deformation capabilities in transverse and longitudinal directions. As
shown in [27], simulations are a reliable substitute for the performance determined by
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laboratory experiments on cantilever-based PVEH. In [28], the performance of a serpentine
PVEH—output voltage and resonant frequency—is reliably deduced by a trained artificial
neural network.

Table 1. Geometric dimension and material properties.

Parameter Description Value

L Length of beam 80–100 mm

b0 Beam Width at fixed end (x = 0) 2–3 mm

bL Beam width at free end (x = L) 20–30 mm

hp Thickness of PZT 0.5 mm

hs Thickness of steel substrate 1 mm

ρp Density of PZT 7500 (kg/m3)

ρs Density of steel 7850 (kg/m3)

Ep Young Modulus of PZT 64 (GPa)

Es Young Modulus of steel 200 (GPa)

d31 Piezoelectric constant −16.6 (C/m2)

εss Permittivity constant 25.55 (nF/m)

Mt Tip Mass 12.56–18.84 (mg)
d Separation between PZTs 0.5 mm

We based our present work on the following: the load resistance affects the output
power but not the resonant frequency, and scaling different dimensions of the structure
affects both the output power and the resonant frequency. However, some structures may
yield promising results in simulations but simultaneously pose problems related to their
actual fabrication. The length, width at the anchor (fixed end), and tapering ratio are varied
for datasets considering that the cantilever’s built-in resistor is constant, and the proof
mass at the cantilever tip is structure dependent. We propose numerical simulations and
the use of artificial intelligence-based methods to determine the optimal dimensions of a
linearly tapered multimode bimorph cantilever-based PVEH.

First, FEM-based simulations were performed to provide the initial set of parameters
related to an unoptimized structure of the linearly tapered multimode bimorph cantilever-
based PVEH. Further modifications of the structure and related FEM simulations provided
examples for training an artificial neural network by the supervised learning method. The
trained ANN provided the resonant frequency of the first resonant mode and the output
power. However, the purpose of the designed ANN was not to substitute numerical exper-
iments but to serve as a means for finding the optimal structure. ANN provided a function
suitable for the integration with the optimization algorithms. Every stage in this procedure
was performed multiple times to ensure the best possible result. Numerical experiments
were repeated 124 times. ANN was trained in two ways: the Levenberg–Marquardt training
algorithm and the scaled conjugate gradient algorithm. The optimization was conducted
in two steps: first, by applying the goal attainment method and then by applying a genetic
algorithm. For the best results, the data related to the outcome of the FEM simulation
and the data generated by the ANN itself had to be altered. The output data of numerical
experiments used for feeding the ANN had to be properly scaled, and the output data of
ANN were adapted to the scalarized multiobjective optimization.

Different paths toward finding the optimal structure resulted in different sets of struc-
tural parameters. Then, additional numerical experiments were used for the comparative
analysis to point to the best method and provide the final set of the cantilever’s parameters.
The datasets, functions, and routines developed for this purpose are described in detail in
subsequent sections and are available upon request.
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2.1. Theoretical Model

The structure we investigated is a linearly tapered bimorph segmented vibration
PEH with PZT-5H patches. The schematic diagram of the tapered piezoelectric energy
harvester is shown in Figures 1 and 2. The proposed structure is a bimorph cantilever
with piezoelectric layers and a steel substrate. PZT-5H was selected for the piezoelectric
layer because of its higher coupling coefficient and lower frequency, compared to other
piezoelectric materials such as AlN. The tip-proof mass was attached to the free side to
decrease the frequency further. Table 1 lists the geometric parameters and the properties of
the used materials.

Figure 1. Segmented trapezoidal PEH.

Figure 2. Side view of the segmented PEH.

The PZT layers were segmented at the strain nodes (Table 2) by creating separation at
a distance of d between the PZT segments (see Figure 1). The gaps were located exactly at
the points of strain nodes for the third resonant mode. The linearly varying tapered beam’s
width with the taper ratio T = bL

b0
over the length L is

b (x) = b0

[
1 − (1 − T)x

L

]
0 ≤ x ≤ L (1)

Table 2. Strain mode position of a trapezoidal cantilever beam with tip mass.

Mode
Strain Node Position on the x-Axis x = x

L

1st 2nd 3rd

1 _ _ _

2 0.26 _ _

3 0.1468 0.490 _

4 0.130 0.430 0.611

Figure 3 shows the strain curves, and Table 2 shows the strain nodes locations for
a trapezoidal bimorph cantilever with a tip mass and with a segmented PZT. The strain
node remains the same irrespective of beam length. For any slight variation in strain node
because of geometry alteration, the separation between the PZT segments was considered
for a distance of 0.5 mm to cover the variation region keeping the strain node at the center.
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Figure 3. Mode shape of the continuous tapered beam with tip mass before segmentation.

Euler–Bernoulli assumptions provide equation of motion (EoM) of a cantilever with
piezoelectric layer as [7]

EI(x)
∂4w(x, t)

∂x4 + m(x)
∂2w(x, t)

∂t2 = −[Mtδ(x − L) + m(x)]
∂2wb(x, t)

∂t2 (2)

where δ(x) is Dirac delta function, wb is the base excitation displacement in z direction,
w is the cantilever transverse deformation, and Mt is the tip mass. The rest of the terms
change along the length as per the following expressions:

The bending stiffness is given by

EI(x) = b(x)

[
h3

s
12

+
Ep

3Es

((
hs

2
+ hp

)3
− h3

s
8

)]
(3)

The mass per unit length is

m(x) = b(x)
(
ρphp + ρshs

)
, (4)

where hp, hs and L are geometry parameters while ρp, ρs, Ep and Es are material prop-
erties. Using the Galerkin method for a free vibration wb(x, t) = 0, the beam transverse
displacement is expressed as a function of position and time in the form

w(x, t) = Ψ(x)T(t) (5)

where Ψ(x) is the mode shape and T(t) = sin ωt is the harmonic response. The mode shape
Ψr(x) of the rth vibration mode of cantilever boundary condition is given as

Ψr(x) = Cr

[
cos

βr

L
x − cosh

βr

L
x + ξr(sin

βr

L
x − sinh

βr

L
x)
]

(6)

ξr =
sin βr − sinhβr + βr

Mt
m(x)L (cos βr − cosh βr)

cos βr + cosh βr + βr
Mt

m(x)L (sin βr − sinhβr)
(7)

where Cr is the modal amplitude constant found by normalizing Ψr(x) based on the
orthogonality settings. βr denotes eigenvalues of the system obtained from characteristic
Equation (6).

2.1.1. Estimation of Natural Frequency

The natural eigenfrequency of a tapered beam can be derived from the Rayleigh
method of energy conservation. The kinetic energy is calculated as
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K.E=
1
2

∫ L

0
m(x)

(
∂Wr(x, t)

∂t

)2
dx, (8)

while the potential energy is calculated as

PE =
1
2

∫ L

0
EI(x)

(
∂2Wr(x, t)

∂x2

)2

dx (9)

Substituting Equations (3), (4), and (6) in the above equations, the natural frequency
of the tapered beam can be expressed as

ωr =

√√√√√√√
(

βr
L

)4
[

h3
s

12 +
Ep
3Es

((
hs
2 + hp

)3
− h3

s
8

)]
×
∫ L

0 b(x)
[[
− cos βr

L x − cosh βr
L x + ξr(− sin βr

L x − sinh βr
L x)

]]2
dx(

ρphp + ρshs
)
×
∫ L

0 b(x)
[
cos βr

L x − cosh βr
L x + ξr(sin βr

L x − sinh βr
L x)

]2
dx

(10)

2.1.2. Estimation of General Power

A piezoelectric energy harvester converts mechanical vibration into electrical energy
via the piezoelectric effect. The discrete PZT layers formed after segmentation are parallelly
connected across a common load resistance R for the maximum output voltage.

The generated output voltage is directly proportional to the developed strain. The
strain σ of a piezoelectric cantilever vibrator at the distance of x is given by [29]

σ1 = −hpc
∂2Wr(x, t)

∂x2 (11)

where hpc =
hp+hs

2 is the distance from the neutral axis of the beam to the center of the
piezoelectric layer. The developed electric field in terms of electric potential is given by

E3(t) = −V(t)
hp

(12)

Now, the electrical output can be obtained from Gauss law, which is given as [30]

d
dt

[∫
D3.ndA

]
= I(t) =

V(t)
R

(13)

The scalar equation D3 = d31σ1 + ε33E3 gives the electric displacement. The constants
d31 and ε33 denote the piezoelectric constant and permittivity of piezoelectric material,
respectively. Equation (13) becomes

d31hpc

∫ L

0
b(x)

∂3w(x, t)
∂x2∂t

+
ε33L
hp

∫ L

0
b(x)

dv(t)
dt

+
V(t)

R
= 0 (14)

Therefore, the generated piezoelectric voltage is given as

Vp(t) = 3R
[∫ L

0
b(x)Epd31hpc

∂3w(x, t)
∂x2∂t

dx +
∫ Li

Li−1
∑3

n=1

((
Cn(x)

dv(t)
dt

))
dx
]

(15)

The average output power delivered across the load resistance for a period of T is
given as

P =
1
T

∫ T

0

Vp(t)
2

R
(16)
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2.2. Numerical Model

A finite element model was developed to investigate the natural frequency and the
output power of the tapered piezoelectric energy harvester using COMSOL Multiphysics.
Solid mechanics COMSOL module with multiphysics of piezoelectric effect and electrical
circuits (cir), electrostatics (es) was used to create mechanical and electrical responses
of the proposed models. The tapered PEH comprised a bimorph cantilever and a proof
mass at the distal end. The piezoelectric layers were segmented at the strain nodes of
the 3rd vibration mode. The proof mass, whose role is to reduce the frequency, was kept
constant for a particular taper ratio of the width at a particular length and thickness of the
beam. The width of the proof mass was always kept the same as the width of the wider
proximal end of the beam due to the physical limits such as stability of the structure due to
gravity load. The final geometry had 9 domains, 56 boundaries, 108 edges, and 64 vertices.
The complete mesh consisted of 65,070 domain elements, 28,872 boundary elements, and
1524 edge elements. The number of degrees of freedom was solved for 61,665. The
cantilever was mechanically fixed at its wider end, and the other end was free to move. The
harvester was excited by a 0.5 g acceleration load at its resonant frequencies. A parametric
sweep of the geometric parameters was performed for different tapering ratios from 0.1
to 1. The dataset was collected for different lengths of the beam (80 mm, 85 mm, 90 mm,
95 mm, and 100 mm) and widths of the beam (15 mm, 20 mm, 25 mm, 30 mm, and 35 mm)
for a given tapering ratio. Figure 4 shows the first three vibration modes of the cantilever-
based bimorph PEH segmented at strain nodes of the third vibration mode with a tapering
ratio of 0.7. No damping was included in the structure; the undamped first three natural
frequencies were computed as 59.866 Hz, 452.31 Hz, and 455.66 Hz. In terms of electrical
boundary conditions, the inner faces of the piezoelectric layer were grounded, while the
top ones were set to the potential condition. A load resistance R was connected across the
terminals to measure generated power. Figure 5 depicts the generated voltage and power
for a parametric sweep of load resistance R for the cantilever with a length of 100 mm,
a width at the proximal end of 35 mm, and a taper ratio of 0.7 in the first, second, and
third resonant mode. Since the proposed harvester was segmented at the strain nodes of
the third vibration mode, the optimum load resistance of 2.7 kΩ of the third mode was
considered to calculate the generated electrical output.

The voltage and frequency plots for the different tapering ratios are shown in Figures 6–8.
At the first resonant mode at a frequency of 57.5 Hz, a maximum output voltage of 32.26 V
and maximum output power of 192.8 mW are generated for a tapering ratio of 0.1. A
minimum output voltage of 25.928 V and minimum output power of 124.49 mW are
generated for a tapering ratio of 0.7 at a resonant frequency of 60 Hz. For the second
mode of vibration at a resonant frequency of 452 Hz, a maximum output voltage of 12.88 V
and maximum output power of 30.22 mW are generated for a tapering ratio of 0.5. A
minimum output voltage of 3.08 V and minimum output power of 1.76 mW are generated
for a 0.1 tapering ratio at a resonant frequency of 441 Hz. In the third mode of vibration, a
maximum output voltage of 7.25 V and maximum output power of 9.7 mW are generated
for a tapering ratio of 0.9 at a resonant frequency of 455 Hz. A minimum output voltage
of 0.8 V and minimum output power of 0.15 mW are generated for a 0.1 tapering ratio at
440 Hz. Since the harvester is segmented at the strain nodes of the third vibration mode,
the output generated even at the third mode is significant, compared to the state-of-the-
art multimode energy harvesters. Therefore, the tapered structure shows an improved
performance in all the modes. The uniform strain distribution along the length of the
tapered beam, compared to a nontapered beam (taper ratio = 1), improves the voltage
generation of the tapered structure [4]. A pattern is observed that the operating frequency
reduces with the tapering ratio in all the vibration modes, while the taper ratio for the
maximum output generation is different for all the modes. However, the optimal selection
should be considered at low frequencies and for a high output generation.
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Figure 4. First three vibration modes of the cantilever-based bimorph segmented PVEH with a
tapering ratio of 0.7.

Figure 5. Cont.
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Figure 5. Load response curves of the PVEH (whose L = 100 mm, b0 = 35 mm, and T = 0.7)
segmented at strain nodes of the third vibration mode at a mechanical excitation of 0.5 g
for the (a) first, (b) second and (c) third resonant frequency. Optimal loads are (a) 1.3 kΩ,
(b) 1.1 kΩ, and (c) 2.7 kΩ.

Figure 6. Frequency response of generated output voltage (a) and output power (b) of the first natural
frequency for different tapering ratios of the segmented PVEH for a mechanical input acceleration of
0.5 g.
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Figure 7. Frequency response of generated output voltage (a) and output power (b) at the second vi-
bration mode for different tapering ratios of the segmented PVEH for a mechanical input acceleration
of 0.5 g.
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Figure 8. Frequency response of generated output voltage (a) and output power (b) at the third mode
frequency for different tapering ratios of the segmented PVEH for a mechanical input acceleration of
0.5 g.

3. AI-Assisted Software Solution

The solution described in this section was implemented in Octave, release 6.2.0, and
MathWorks MATLAB, release R2015a. Before designing the ANN, we performed a simple
visual analysis of the data obtained by numerical experiments. Figure 9 presents 4D
graphs related to the first three resonant modes of the linearly tapered multimode bimorph
cantilever-based PVEH, where x, y, and z-axis refer to its length, width at the anchor and
the taper ratio, respectively, and the values of the frequencies related to each triplet (length,
width, taper ratio) are proportionally scaled and used for defining the marker size. The
greater the marker size is, the greater is the resonant frequency related to the parameter
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set defined by the marker coordinates. Thus, we visualize the trend of change in resonant
frequencies caused by varying the cantilever beam’s dimensions.

Figure 9. Tendency graphs for the frequency of the first three resonant modes of a multimode
bimorph segmented tapered cantilever-based PVEH.

In the same way, Figure 10 presents 4D graphs of the power related to the first
three resonant modes of the linearly tapered multimode bimorph cantilever-based PVEH.
However, the values of the power of the second and third modes are not just normalized
but scaled exponentially in order to make all markers visible. The numerical value for the
power related to the second resonant mode can be as low as 35.7 nW for the beam long
80 mm, wide 15 mm at the anchor, with the taper ratio of 0.1.

Figure 10. Tendency graphs for the power of the first three resonant modes of a multimode bimorph
segmented tapered cantilever-based PVEH.
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The analysis of raw data further proves that the longer the beam is, the lower the
resonant frequencies of all three resonant modes are, and the greater the power of the
first mode is. The wider the beam is, the greater the output power related to the first
resonant mode is (if the length and the taper ratio are kept constant). For long and wide
beams, the taper ratio of 0.5 seems to be optimal for the power related to the third resonant
mode. The interdependencies of these values are complex; however, the decision on which
data to use for training the ANN and which data should be the focus of multiobjective
optimization is simple. For the first preliminary results, we used the data related to the first
resonant mode only. The reasoning for this is based on the analysis of the data shown in
Figures 9 and 10. The marker size in Figure 10 is proportional to the power generated by a
specific structure related to the marker’s location; however, the correlation between powers
of different modes is not clear. Longer structures would resonate with all three modes at
lower frequencies than the starting structure and hence enable harnessing more vibration
energy. The amount of that improvement is visualized in Figure 11, which presents a 4D
graph of the trend of gain from higher modes. Again, marker location is related to the
beam’s dimensions and now the marker size is proportional to the ratio of the power of
the third and the first resonant mode. Markers related to frequencies higher than 450 Hz
are excluded because we are interested in low-frequency applications. The power of the
second resonant mode is lower than the power of the first resonant mode for orders of
magnitude, and hence, the trend of their correlation is not visualized. With different scaling
of the beam’s dimensions, the impact of the third mode becomes noticeable in a similar
manner as the power of the first mode becomes greater.

Figure 11. Tendency graph of the contribution of the third mode for structures whose third resonant
mode is below 450 Hz.

Therefore, in the search for the triplet (beam length, width, and taper ratio) related
to high powers at low frequencies, we first constructed an ANN capable of predicting the
vector of values related to the frequency and output power related to the first resonant
mode of the linearly tapered multimode bimorph cantilever-based PVEH. The primary
aim of the ANN was to ensure the proper trend in the search for the optimal structure and
not to replace the numerical experiments per se.

3.1. ANN Capable of Predicting Frequency and Power of the First Resonant Mode

Since the ANN is used for fitting the exemplary data in order to provide a function
that can predict the frequency and power related to the first resonant mode of a linearly
tapered multimode bimorph cantilever-based PVEH, based on the beam length, the width
at the anchor, and the taper ratio, the structure of the ANN is such that it has three inputs
(related to the cantilever size) and two outputs (related to desired function output). As
shown in Figure 12, there is a hidden layer with 50 neurons between the ANN input and
output layer.
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Figure 12. Structure of the ANN used for fitting the simulation results.

Every segment in the design of this network directly affects the results. After an
intense search through numerous variants of the basic structure, the final one was chosen.
In the final structure, the inputs were scaled so that their length and width were normalized,
divided by 100, and thus, they did not differ from the taper ratio for more than an order
of magnitude. The number of neurons in the hidden layer was 50. In the hidden layer, a
sigmoid transfer function (hyperbolic tangent) was used, and the output layer computed
the linear combination of the outputs of the hidden layer. The raw data related to the
output were conditioned so that the frequencies were normalized and divided by 100, and
powers were represented by their inverse multiplied by 100. The reason for conditioning
the raw output data is the scalarization of outputs that was performed later in the process
of multiobjective optimization. We later constructed a new function based on the obtained
two output ANN functions by summing their squared components so that the new function
was a scalar whose minimum was of our interest.

The starting point in exploring the behavior of nonlinear regression in this multilayer
perception with backpropagation was the Neural Net Fitting application provided in the
MathWorks environment, where training algorithms based on Levenberg–Marquardt (LM)
method, Bayesian regularization (BR) method, and scaled conjugate gradient (SCG) method
are available. The codes resulting from using the Neural Net Fitting were then altered
and augmented so that they would allow the use of training methods other than the three
provided in the Neural Net Fitting application, and thus, they could be a part of the code
developed for the optimization purposes in MATLAB or Octave environment.

Another decision that directly affects results is the arrangement of the data. Out
of 124 examples, we used 99 to create the ANN fitting functions, and we used the re-
maining 25 examples stochastically excerpted from the set of 124 examples later to assess
the generalization capabilities of ANN fitting functions. The final decomposition of the
99 examples into three categories was 70% for training (69 samples), 15% for validation
(15 samples), and 15% for testing (15 samples).

One-attempt training and multiple training with different training methods result
in different ANN fitting functions. The quality of the resulting ANN fitting functions is
assessed using two figures of merit. One is the mean squared error (MSE), the discrep-
ancy between the target (the true output provided to the ANN in the example used for
supervised learning) and the output generated by the ANN itself. The closer the MSE is to
zero, the better. Another figure of merit for the assessment of the quality of an ANN is the
regression coefficient R, also called the coefficient of correlation because it is related to the
correlation between the target t and the ANN’s output a. R is related to the coefficient of
determination, R2 calculated by the following expression:

R2 = 1 −

N
∑

i=1
(ti − ai)

2

N
∑

i=1
(t − ti)

2
(17)

where N is the number of examples in a dataset, and ti is the arithmetic mean of the target
values. The closer the R is to one, the better. Figure 13 shows the regression coefficient of
the ANN fitting function obtained by applying the LM training algorithm. All regression
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coefficients are above 95.152%, which is considered a good result. Since the ANN fitting
function generates output as a two-column vector, the correlation between the targets and
the ANN outputs is not computed automatically for any of the two outputs. We analyze
separate outputs later by assessing the capability of the ANN fitting function to give a
good, never previously achieved result for the new data.

Figure 13. Regression diagrams for the ANN trained by applying Levenberg–Marquardt algorithm
calculated for (a) training dataset (b) validation dataset (c) dataset used for testing and (d) dataset
with all three aforementioned groups of data.

Figure 14 shows the regression coefficient of the ANN fitting function obtained by
applying the SCG training algorithm. The related regression coefficients are even better, all
exceeding 95.468%. Table 3 shows the related MSE for these two ANN fitting functions. In
terms of MSE, the LM training method proved itself superior over other training methods
since its MSE is better in predicting the frequency and power related to the first resonant
mode than that of the SCG training method. For predicting the (normalized) frequency of
the resonant mode, its MSE is 3.8398 × 10−4, an order of magnitude lower than the MSE of
the ANN fitting function obtained by applying the SCG training method. If an ANN finds
a complex surface that connects all the examples, it has been fed with, then the training
error may happen to be zero, but it is not certain that the ANN, although fitting the training
data perfectly, can be used as a good predictive model. Thus, we tested the ANN by using
the data never presented to the ANN before.



Computation 2021, 9, 84 16 of 24

Figure 14. Regression diagrams for the ANN trained by applying scaled conjugate gradient algorithm
calculated for (a) training dataset (b) validation dataset (c) dataset used for testing and (d) dataset
with all three aforementioned groups of data.

Table 3. Mean squared error calculated for the target data and the data generated by the ANN fitting
functions obtained by applying the LM and SCG training method.

LM SCG

Normalized frequency 3.8398 × 10−4 0.0043

Normalized reciprocal power 0.0585 0.0774

In terms of its capability for generalization, the ANN fitting function obtained by
applying the LM training method outperforms the ANN fitting function obtained by
applying the SCG training method as shown in Figure 15, where the correlation between
the target data and the data generated by the ANN fitting functions is calculated for the
new data, entirely unknown to the ANN.

However, the ANN fitting functions themselves, although they can serve for reverse
calculations of the frequency and power related to the first resonance mode of a linearly
tapered multimode bimorph cantilever with segmented PZT-5H patches, are here just an
intermediary result. The tool that we need aims to deliver the optimal dimensions of a
cantilever beam with respect to PVEH applications. As we describe later, we integrate the
obtained ANN fitting functions in the optimization algorithms to achieve that.

Since the number of neurons in the hidden layer is high (50), the expressions for
obtained functions are not given here in the analytical form but are available upon request.
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Figure 15. Performances of the obtained ANN functions fed with unknown data. LM refers to the
Levenberg–Marquardt algorithm, SCG refers to scaled conjugate gradient algorithm, red line is y = x,
the ideal correlation between the true and fitted data.

3.2. Optimization: Goal Attainment Method and Genetic Algorithm

Our goal is simultaneous minimization of the resonant frequency and maximization
of the output power. Frequency and power form a vector of objective functions. Hence,
there is no unique solution to this optimization problem, but a set of solutions related
to the tradeoff between the competing objectives [31]. We perform the multiobjective
optimization or perform scalarization of the output before searching for the minimum of
the scalarized function. In both cases, we need to define the parameter space, the domain
in which we seek the solution. All dimensions are positive; thus, the lower bound for the
length, the width, and the taper ratio are zero. The upper bound for the taper ratio is one.
As for the upper bounds of the beam’s length and width, they are application specific.
Here, we used values up to 150–200 mm (the scaled value is equal to 2) as the upper bound
for the length of the cantilever and the same values for its width.

As shown in Figure 5, apart from the cantilever dimensions, the load resistance can
also be optimized with respect to the resonant frequencies and the output power. The
optimal value of the load resistance varies with the geometry and the vibration modes.
The lowest value of the optimum load resistance occurring for all the geometry and
vibration modes of the structures under consideration is at the third mode of vibration with
2.7 kΩ. Since PVEH is segmented at strain nodes of third vibration modes to optimize the
performance at higher (second and third) modes (especially the third mode), we considered
the abovementioned optimum load of 2.7 kΩ to reduce the data computation time, and
performed optimization seeking the optimal triplet of parameters related to the cantilever
beam length, the width at the proximal end, and the taper ratio.

We first performed the scalarization of the objectives. Both ANNs (the one trained
with the LM method and the one trained with the SCG method) are trained to predict
the normalized resonant frequency and the normalized reciprocal power related to the
first resonant mode. The sum of their squares is the function we aim to minimize. We
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performed the minimization in two ways—by applying the goal attainment method and
by integrating each ANN with a code that implements the genetic algorithm.

The optimization algorithm related to the goal attainment method starts with defining
the starting values for optimal parameters that we seek. In our case, those are the geometri-
cal parameters (the beam length, width, and taper ratio). The goal refers to the output, i.e.,
the function we want to achieve. Although the MathWorks MATLAB statement fgoalattain
allows for the use of vector functions, and therefore, we can define separate goals for
the frequency and power (we can even have them weighted with different weights), we
opted for the optimization of the scalarized function obtained by postprocessing of the
fitting function generated by the artificial neural network. If Fi are ANN output functions
(frequency and power) used as optimization objectives, and F∗

i are the goal functions, the
goal attainment method aims to find x to minimize the maximum of

Fi(x)− F∗
i

wi
(18)

where wi denotes a set of positive weights.
The figure of merit of this optimization, as provided by the MathWorks MATLAB

toolbox, is the attainfactor, a value related to the percentage of the objectives that may
be overachieved (in which case the attainfactor is negative) or underachieved (in which
case the attainfactor is positive). The closer this figure of merit is to zero, the better the
optimization results will be.

The optimization algorithm related to the genetic algorithm, on the other hand, does
not have a starting point related to the set of parameters that we seek; it starts instead
from the whole parameter space. In our case, we allowed the length and the width at
the anchor to spread from 0.1 mm to 160 mm, while the taper ratio varied from 0.1 to 1.
The function is evaluated for all the triplets in the parameter space. Analogously to the
biological evolution, in the genetic algorithm method, in every iteration, the selection is
based on previous reproductions, crossovers, or mutations. These selections stochastically
navigate the search [31]. The great advantage here is the ability to find global extrema
rather than to stick to some of the local ones. The number of iterations is not crucial for
finding an extremum, but the population size is the factor that has a great impact on the
success of the genetic algorithm. The greater the population size is, the smoother the road
towards the global extremum. The number of iterations that we used was 40, and the
population size we chose was up to 1000.

Both optimization methods—the goal attainment method and the genetic algorithm—
allow for setting lower and upper bounds for the optimal values we seek. Our bounds
were the same in both methods. They were also equal to the edges of the parameter space
defined for the genetic algorithm (the lower bound for all three parameters was 0.1, the
upper bound for the beam length, and its width at the anchor was 160 mm).

4. Results

We constructed a single-objective optimization problem and solved it in different
ways. Each of the approaches resulted in a different triplet. Here, we present the obtained
solutions and seek the superior one. The superior solution is chosen by comparing the
objective function values of all the solutions and selecting the one closest to zero. According
to this reasoning, the best candidate for the optimal parameter set in Table 4 is the triplet
because its scalar function has the lowest value. The triplet choice is obtained by the goal
attainment method applied to the ANN function adapted for single-objective optimization
that fitted examples with the scaled conjugate gradient method. For different starting
values, the described procedure results in a wide span of scalar values (as per Table 4,
the lines related to the SCG/GAM). The scalar values are 0.13, 0.132, and 0.7. The goal
attainment method integrated with the adapted Levenberg–Marquardt training function
also suggests different structures with different values of the scalar function. A similar
observation is found in those suggested by the use of the genetic algorithm with longer,
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wider, and higher taper ratios than the starting structure (whose parameters were 80 mm
length, 15 mm width at the anchor, and 0.1 taper ratio).

Table 4. List of optimal dimensions as obtained per different methods. GA stands for the genetic
algorithm and its upper and lower bounds, starting point is related to the goal attainment method
(GAM). Notation is as per Table 1 and T denotes tapering ratio.

Triplet L [mm], b0[mm], T ANN/
Optimization Bounds or Starting Point Scalar

1 117.98, 66.06, 0.7276 SCG/GAM [80 20 0.7] 0.13

2 114.9, 72.69, 0.15 LM/GA [0.1;0.1;0], [1.5;1.5;1] 0.1336

3 115.87, 73.73, 0.1983 LM/GAM [70 35 0.7] 0.135

4 111.64, 39.88, 0.2525 LM/GAM [90 35 0.3] 0.3935

5 121.3, 71.56, 0.7682 SCG/GA [0.1;0.1;0.1], [1.5;1.5;1] 0.132

6 101.88, 19.45, 0.8636 SCG/GAM [70 35 0.7] 0.7162

The final solution is determined by the dominance of one solution over the others,
with regard to the numerical values of particular objectives. Therefore, we performed
final simulations and analyzed the results related to all three resonant modes. To present
the results clearly, we display the results both in a tabular form (Table 5) and graphically
(Figure 16). The unoptimized structure operates at higher frequencies and generates lower
output than the optimized structure.

Table 5. The first three resonant frequencies and the related output powers for structures suggested
by the optimization techniques listed in Table 4. F1, F2, and F3 are the first three natural frequencies
of the tapered PVEH. P1, P2, and P3 are the output power generated at F1, F2, and F3, respectively.

Triplet L [mm], b0 [mm], T F1 [Hz] P1 [mW] F2 [Hz] P2 [mW] F2 [Hz] P3 [mW]

1 117.98, 66.06, 0.7276 46.279 191.05 232.69 2.3735 338.77 2.9661

2 114.9, 72.69, 0.15 38.411 172.7 136.71 3.5471 312 0.63

3 115.87, 73.73, 0.1983 38.244 174.21 142.46 3.6312 308.9 1.209

4 111.64, 39.88, 0.2525 40.797 128.6 267.6 0.90212 331.7 0.94383

5 121.3, 71.56, 0.7682 44.3 205.56 211.6 2.7964 322.85 3.1552

6 101.88, 19.45, 0.8636 48.328 73.468 391.8 1278 607.74 7.95 × 10−5

According to the numerical and graphical results, the candidates for the superior
solution are the triplets 2, 3, and 5. Figure 16a presents the output powers at the first
three resonant modes for the starting, unoptimized structure 80 mm long, 15 mm wide,
and 0.1 taper ratio, along with the output powers at the first three resonant modes related
to triplet 5 (Table 5). After optimization, for all triplets, all the three modes are at lower
frequencies. Figure 16b shows that triplets 2 and 3 ensure the second mode below 200 Hz.
Due to a greater harvested power with respect to the one obtained by the starting structure,
the optimal structure relates to triplets 2 and 3 in Table 5, ensuring four times greater power
at frequencies below 200 Hz. However, the improvements related to triplet 5 ensure over
five times greater power at frequencies below 200 Hz, although harnessed from the first
mode only.

In general, a multiobjective optimization has no unique solution. In applications
related to low-frequency harnessing, the results depend not just on the tradeoff between
the objective functions but on the particular constraints related to a specific application as
well. The host structure that carries the VEPH dictates the values for the upper bound for
the length and width of the PVEH as well as the upper-frequency limit. For the results
presented here, we considered the upper limit of 200 Hz.
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Figure 16. The output power for the first three resonant modes: (a) the unoptimized structure (red
narrow bars) and the structure based on triplet 5 from Table 4 (blue wider bars); (b) the structures
based on the triplet 2 (red solid lines with + on the top), 3 (blue dashed lines with triangle on the top),
and 5 (solid magenta line with an x on the top).

The normalized power can be used to measure the efficiency of the harvesters, which is
the output power per acceleration squared. Table 6 shows the optimal harvester suggested
by different optimization techniques in normalized power. The optimum normalized power
for all modes is obtained for the triplet (121.3, 71.56, 0.7682). Table 7 shows a comparison
of our harvester to different harvesters from the literature in terms of normalized power.
The proposed design shows a higher efficiency, compared to other multimode harvester
designs.
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Table 6. Comparison of optimal parameters presented in Table 4 under acceleration of 0.5 g.

S.no
Triplet Normalized Power (mW/g2)

L [mm], b0 [mm], T Mode 1 Mode 2 Mode 3

1 117.98, 66.06, 0.7276 764 9.494 11.864

2 114.9, 72.69, 0.15 690.8 14.188 2.52

3 115.87, 73.73, 0.1983 696.84 14.5248 4.836

4 111.64, 39.88, 0.2525 514.4 3.6 3.775

5 121.3, 71.56, 0.7682 822.24 11.1856 12.621

6 101.88, 19.45, 0.8636 293.872 5.112 0.00032

Table 7. Comparison of different multimode harvester designs.

Multi-Frequency Harvester Acceleration (g)
Normalized Power (mW/g2)

Mode 1 Mode 2 Mode 3

Array Harvester [8] 1 0.089 0.057 0.057

Optimized Nonlinear [32] 0.05 0.008 0.244 0.056

Nonlinear 3-DOF [33] 0.2 46.739 0.568 1.538

Segmented Electrode [34] 1 5.800 0.121 −
Optimized, Tapered and
Segmented [Our work] 0.5 822.24 11.1856 12.621

Our results complement the results from the literature [35–42]. In [35,36], it is shown
that the optimization of the unimorph rectangular cantilever-based VPEH structure by
the use of the genetic algorithm outperformed the built-in optimization tool of COMSOL
Multiphysics. The fitting function in the genetic algorithm was an analytic expression.
Our results on the taper ratio agree with experimental results. In [37,38], triangular or
trapezoidal structures are favored over rectangular structures. Here, we infer that there is
an optimum value of the taper ratio for the bimorph segmented beam.

Since the validation of the accuracy of ANN for modeling of the response of MEMS-
based VPEH has already been proved in [20], we do not elaborate it further here. We state
here that, in addition to their accuracy, the ANN functions show the value of simplicity.
For cantilever-based complex MEMS, analytic expressions may be cumbersome or even
may not exist, but for simpler structures, ANN functions may perform faster. Although the
number of nodes in the hidden layer in the ANN we used (50) is high, the combination
of linear and sigmoid functions is not computationally demanding. In order to facilitate
further research on the subject, we made source codes freely available from the Mendeley
Data Online Repository [43].

5. Conclusions

The paper presents the method for designing and optimizing the piezoelectric vibra-
tion energy harvester based on a bimorph PZT-5 segmented linearly tapered cantilever of
steel with a proof mass at its end. The beam length, width at the anchor, and the taper ratio
were optimized for the maximum output power and low resonant frequencies.

The cantilever dimensions were taken as input, and the output consisted of the
resonant frequency of the first mode and the generated power. The datasets were generated
by FEM simulations and used for training the artificial neural network (ANN) that provided
the fitting function in the optimization algorithms. Two methods were used for the training
of the ANN—Levenberg–Marquardt (LM) and scaled conjugate gradient (SCG)—and two
ways for the optimization—the goal attainment method (GAM) and genetic algorithm
(GA). The comparative analysis of the results of this basically multiobjective optimization,
performed in four different ways, showed that here, LM outperformed SCG in terms of
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generalization and that both GAM and GA resulted in significantly improved performance.
The superior solution results from optimization by the genetic algorithm integrated with
the ANN fitting function obtained by the SCG training method. The solution refers to a
structure with a length of 121.3 mm, a width of 71.56 mm, and a taper ratio toward the
beam’s tip of 0.7682. The optimized structure ensures over five times greater power at
frequencies below 200 Hz than the starting unoptimized structure. Hence, the new optimal
design is highly convenient for low-frequency applications. The proposed harvester is
able to generate satisfactory output power in the frequency ranges from 57.5 Hz to 455 Hz
before optimization and from 38 Hz to 608 Hz after optimization. With the optimized
structure, it is also possible to harness optimum power at higher resonant modes. The
results are suitable for the implementation in applications related to low-frequency energy
harvesting. Furthermore, the developed tools are suitable for use in optimizing either
similar or more complex structures.

Additionally, the approach is suitable for further improvements and investigations
(by implementing other algorithms for ANN training or optimization).
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