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Abstract: The present work highlights the capacity of disparate lattice Boltzmann strategies in
simulating natural convection and heat transfer phenomena during the unsteady period of the
flow. Within the framework of Bhatnagar-Gross-Krook collision operator, diverse lattice Boltzmann
schemes emerged from two different embodiments of discrete Boltzmann expression and three
distinct forcing models. Subsequently, computational performance of disparate lattice Boltzmann
strategies was tested upon two different thermo-hydrodynamics configurations, namely the natural
convection in a differentially-heated cavity and the Rayleigh-Bènard convection. For the purposes of
exhibition and validation, the steady-state conditions of both physical systems were compared with
the established numerical results from the classical computational techniques. Excellent agreements
were observed for both thermo-hydrodynamics cases. Numerical results of both physical systems
demonstrate the existence of considerable discrepancy in the computational characteristics of different
lattice Boltzmann strategies during the unsteady period of the simulation. The corresponding
disparity diminished gradually as the simulation proceeded towards a steady-state condition, where
the computational profiles became almost equivalent. Variation in the discrete lattice Boltzmann
expressions was identified as the primary factor that engenders the prevailed heterogeneity in the
computational behaviour. Meanwhile, the contribution of distinct forcing models to the emergence
of such diversity was found to be inconsequential. The findings of the present study contribute to the
ventures to alleviate contemporary issues regarding proper selection of lattice Boltzmann schemes in
modelling fluid flow and heat transfer phenomena.

Keywords: lattice Boltzmann method; natural convection modelling; differentially-heated cavity;
Rayleigh-Bènard convection; discretization order; forcing models; computational performance

1. Introduction

The Lattice Boltzmann Method (LBM) has raised considerable interest amongst the
community of computational fluid dynamics (CFD) due to its efficacy in handling multi-
tude fluid flow problems. Relying on the statistical mechanics, LBM regards the flowing
materials through the collective behaviour of the accompanying molecules [1,2]. It dif-
fers from traditional CFD methods in sense that it solves the representative Boltzmann
expression of the flowing substances rather than directly handling the corresponding hy-
drodynamics equations in their operations. Because of this unique feature, modelling a
flow problem using LBM has several advantages, including a clear algorithm [3], straight-
forward treatment of boundary conditions [4], and innate feasibility for parallel computing
architecture [5]. As a promising numerical tool, LBM is currently a vibrant research topic
in the discipline of CFD.

As far as modelling the flow problem using LBM is concerned, two properties are
routinely considered: (a) the discrete lattice Boltzmann expressions, and (b) the discrete
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forcing schemes. The former parameter has been extensively discussed in the literature.
Ubertini et al. [6] investigated three distinct models of discrete lattice Boltzmann expression
for hydrodynamics simulation, namely the first-order, the second-order, and the scheme
derived through implementation of the Verlet discretisation, which all showed a second-
order accuracy both in spatial and time coordinates with respect to the convective system.
They argued that such equivalence breaks down when the nature of the physical systems
necessitates the inclusion of external forcing expression.

Silva and Semiao [7] carried out a comprehensive assessment of distinct lattice Boltz-
mann remarks using Chapman-Enskog analysis. Guo et al. [8] highlight the significance
of the different lattice Boltzmann schemes towards the accuracy of the recovered Navier-
Stokes expression from the Chapman-Enskog analysis. Additionally, they mentioned that
the choice of discrete forcing model depends heavily upon the exactitude of the restored
continuum hydrodynamics representation.

On the other hand, the discrete forcing model in LBM is the other prominent property
when modelling the flow is sought. Several authors have proposed diverse expressions to
accommodate external forcing term in the generic lattice Boltzmann equation. Luo [9] was
among the first authors to propose a mathematical expression for the discrete forcing term
in LBM, alongside with He et al. [10] and Guo et al. [8,11]. Later on, Kupershtokh et al. [12]
introduced a forcing model based on the association of exact-difference-method upon the
corresponding Boltzmann equation.

The presence of different mathematical expressions for both the discrete lattice Boltz-
mann equation and the forcing model offers diverse LBM strategies for hydrodynamics
modelling. However, choosing a suitable approach is still a matter of debate. To alleviate
such issues, Mohamad and Kuzmin [13] investigated the behaviour of three different
forcing models by simulating natural convection in closed and open-ended cavities. They
found that the investigated forcing models produced equivalent numerical solutions at
steady-state conditions.

Subsequently, Krivovichev [14] presented a comprehensive evaluation regarding sta-
bility analysis of the six widely-used forcing models based on the application of the von
Neumann method to linear approximation of the system of nonlinear lattice Boltzmann
expressions. They found that better stability properties prevailed upon the forcing models
that are implicit in their nature. Zheng et al. [15] found that as long as the simulation com-
prises low Mach number flow, different forcing schemes in LBM would return equivalent
steady-state solutions.

It is apparent from the available literature that few works have looked into the im-
plications of both distinct lattice Boltzmann expressions and different forcing models in
LBM simulation. Moreover, the primary focus of the published works has revolved around
the discrepancy in the computational characteristics of distinct LBM scenarios during the
steady-state condition of the simulation, leaving the behaviour during the unsteady period
of the flow unexplained. Therefore, the present work aims to expand the evaluation of
the capacity of disparate LBM schemes by incorporating the variety in both the discrete
lattice Boltzmann expressions and the discrete forcing models into the workflow of the as-
sessment. Emphasis was given upon revealing the computational characteristic of distinct
LBM scenarios during the unsteady-period of the simulation. The steady-state solutions
were considered for the exhibition and validation purposes.

In this study, two different embodiments of discrete Boltzmann expression and three
distinct forcing models were incorporated into the analysis. For the sake of providing
comprehensive evaluation, the capacity of disparate LBM schemes was tested upon simu-
lating two non-isothermal thermo-hydrodynamics systems, namely natural convection in
a differentially-heated cavity and Rayleigh-Bènard convection.

The current research article is organized as follows. Section 2 presents the foundational
aspect of natural convection and heat transfer arrangement. Section 3 describes the distinct
LBM strategies for simulating the concomitant physical phenomena. Section 4 deals with
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theoretical outlook of disparate LBM scenarios, while the results of numerical testing are
discussed in Section 5. Some concluding remarks are posed in Section 6.

2. Governing Mathematical Remarks and Principal Dimensionless Groups

Natural convection phenomena is governed by two flowing materials that propagate
simultaneously and synergistically within the flow domain, namely the fluid and ther-
mal substances. Accordingly, the natural convection is governed by three fundamental
equations, namely, the continuity, Navier-Stokes, and heat equations [16], expressed as

∂ρ

∂t
+

∂

∂xα
(ρuα) = 0 (1)

∂

∂t
(ρuα) +

∂

∂xβ

(
ρuαuβ

)
= − ∂p

∂xβ
+ µ

∂

∂xβ

(
∂uα

∂xβ
+

∂uβ

∂xα

)
+ Fα (2)

∂T
∂t

+
∂

∂xα
(Tuα) =

∂

∂xα

(
D

∂T
∂xα

)
, (3)

where ρ, ui, p, T,µ and D denote the fluid density, velocity, pressure, temperature, dy-
namic viscosity, and thermal diffusion coefficient, respectively. The contribution from the
buoyancy effect was designated by Fα.

In the present work, the natural convection was examined under the Boussinesq
approximation [13,17]. As such, it neglected the contributions to the dynamical behaviour
of the flowing substances from viscous heat dissipation and compression caused. Therefore,
the buoyancy term occupies the following definition [13]:

Fα = ρGαβT(T − Tref), (4)

where Gα specifies the gravitational acceleration, βT depicts the thermal expansion coeffi-
cient, and Tref represents the assigned reference temperature.

It is customary within CFD to express the associated physical quantities using non-
dimensional units. For natural convection phenomena, the key dimensionless groups were
identified as follows:

Nu =
hL

ρDcp
; Pr =

υ

D
; Ra =

GyβT(Thot − Tcold)L3

υD
, (5)

where Nu, Pr, and Ra designate the Nusselt, Prandtl, and Rayleigh number, accordingly.
Thot and Tcold denote the hot and cold temperature conditions, respectively. Physical
quantities of h, cp, and L represent, respectively, the heat transfer coefficient, fluid specific
heat capacity, and the characteristic length of the domain.

Furthermore, the present work uses the following generic dimensionless expressions
to designate the horizontal and vertical length of the flow domain.

x∗ =
x
L

; y∗ =
y
L

; u∗α =
uαL
D

. (6)

In Equation (6), x and y express, respectively, the horizontal and vertical length of the
investigated domain.

3. Lattice Boltzmann Expressions from Distinct Truncation Order

In the present work, consideration was given to the double-distribution-function
(DDF) approach to establish a proper representation of the dynamical entities [17]. This
would mean that the prevalence of two continuous Boltzmann expressions, which should
be discretised either by capturing only the first-truncation order or considering up to the
second-truncation term of the expanded-Boltzmann equation. Regardless the approach con-
sidered, different representations of the discrete lattice Boltzmann equation are obtained.
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For the fluid component, the first- and second-order discrete lattice Bhatnagar-Gross-
Krook (BGK) equations are expressed as follows:

fi(xα + ξiα∆t, t + ∆t)− fi(xα, t) = −∆t
τυ

(
fi(xα, t)− f eq

i (xα, t)
)
+ Ri(xα, t)∆t (7)

f i(xα + ξiα∆t, t + ∆t)− f i(xα, t) = −∆t
τυ

(
f i(xα, t)− f eq

i (xα, t)
)
+ Ri(xα, t)∆t

(
1− ∆t

2τυ

)
, (8)

where fi indicates the discrete fluid populations, ξiα specifies the discrete velocity of fluid
particles, Ri designates the discrete form of the external force term, τυ denotes the relaxation
time for fluid particles, and ∆t specifies the discrete time step.

For the second-order lattice BGK model, the corresponding discrete fluid population
f i and its corresponding relaxation time τυ were defined accordingly as in [6,10]:

f i = fi +
∆t
2τυ

(
fi − f eq

i

)
− Ri∆t

2
(9)

τυ = τυ +
∆t
2

, (10)

where f eq
i depicts the equilibrium condition of the fluid population.

The equilibrium distribution function f eq
i occupies the following remark:

f eq
i = ρwi

(
1 +

ξiαuα

c2
s

+
(ξiαuα)

2

2c4
s
−

uαuβ

2c2
s

)
, (11)

where cs designates the lattice speed of sound and wi represents the discrete weight-
ing coefficient.

In the present work, the D2Q9 velocity arrangement was selected to model fluid
displacements. Such configuration satisfies the following descriptions:

ξiα =


(0, 0), for i = 0
(1, 0), (0, 1), (−1, 0), (0,−1), for i = 1, 2, 3, 4
(1, 1), (−1, 1), (−1,−1), (1,−1), for i = 5, 6, 7, 8

(12)

wi =


4
9 , for i = 0
1
9 , for i = 1, 2, 3, 4
1

36 , for i = 5, 6, 7, 8.
(13)

Apart from the dichotomy in the lattice BGK representation for fluid movements, the
discrete manifestation of forcing term Ri also occupies diverse expressions. In this study,
three of the most prominent Ri models were selected for the evaluation, namely the scheme
proposed by Luo [9], Guo et al. [8], and Kupershtokh et al. [12], expressed respectively
as follows:

Ri = wi
ξiαFα

c2
s

(14)

Ri = wi

(
ξiα − uα

c2
s

+
(ξiαuα)ξiα

c4
s

)
Fα (15)

Ri = f eq
i (ρ, uα + ∆uα)− f eq

i (ρ, uα). (16)

For the thermal constituent, due to the absence of external force term, the discretisation
operation of Boltzmann representation of thermal substance is not affected by the selected
truncation order. Therefore, the lattice BGK formula representing the thermal dissemination
only occupies a single mathematical expression, namely,

gi(xα + eiα∆t, t + ∆t)− gi(xα, t) = −∆t
τD

(
gi(xα, t)− geq

i (xα, t)
)

, (17)
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where gi identifies the discrete thermal population, eiα denotes the discrete velocity of
thermal particles, and τD designates the relaxation time for thermal elements.

The associated thermal equilibrium population geq
i was defined as follows:

geq
i = ziT

(
1 +

eiαuα

c2
s

+
(eiαuα)

2

2c4
s
−

uαuβ

2c2
s

)
. (18)

For thermal dissemination, D2Q5 discrete velocity set was adopted. Implementation of
fewer velocity directions to represent thermal displacements was possible due to the lower
isotropy nature pertinent to thermal populations in the corresponding lattice Boltzmann
arrangement. As can be seen in Appendix B, the associated Chapman-Enskog analysis of
thermal particles only necessitates low-order moment expansion terms in order to recover
correct macroscopic heat formulation. Consequently, the isotropy requirement for thermal
displacement modelling in LBM can be conducted properly by fewer lattice arrangement,
such as the D2Q5 velocity set [2].

For the adopted D2Q5 configuration, the discrete velocity of thermal particles eiα and
their corresponding weighting factor zi adhere to the following descriptions:

eiα =

{
(0, 0), for i = 0
(1, 0), (0, 1), (−1, 0), (0,−1), for i = 1, 2, 3, 4

(19)

zi =

{ 2
6 , for i = 0
1
6 , for i = 1, 2, 3, 4.

(20)

At this point, it is apparent that there exist distinct strategies to administer natural
convection and heat transfer modelling with LBM.

Table 1 outlines the plausible LBM scenarios considered in the present work, as well
as the corresponding scheme.

Table 1. The plausible arrangements for simulating the buoyancy-driven natural convection flow
with lattice Boltzmann method.

LBM Scheme Lattice BGK Model for
Fluid Displacement Discrete Forcing Model

IA First-Order
Lattice BGK Model

(Equation (7))

Luo [9] (Equation (14))
IB Guo et al. [8] (Equation (15))
IC Kupershtokh et al. [12] (Equation (16))

IIA Second-Order
Lattice BGK Model

(Equation (8))

Luo [9] (Equation (14))
IIB Guo et al. [8] (Equation (15))
IIC Kupershtokh et al. [12] (Equation (16))

4. Recovery of the Macroscopic Thermo-Hydrodynamics Expressions from Disparate
LBM Arrangements in Natural Convection Heat Transfer Modelling

As a thermo-hydrodynamics solver, LBM is closely tied to the macroscopic heat and
mass transport formulations. It is therefore pivotal to uncover the capacity of each consid-
ered LBM schemes in returning the fundamental macroscopic relationships. This objective
was fulfilled through evaluating the Chapman-Enskog analysis [7,8,18]. Appendices A
and B provide the details of undertaken procedures for the associated fluid and thermal
components, respectively.

From the corresponding Chapman-Enskog analysis, the restored macroscopic equa-
tions of mass, momentum, and heat transport were captured as follows:

∂ρ

∂t
+

∂

∂xα
(ρuα) =

∂

∂xα

(
Fα

(
m∆t− m(∆t)2

2σ
− ∆t

2
ϕ

))
(21)
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∂
∂t (ρuα) +

∂
∂xβ

(
ρuαuβ

)
= − ∂

∂xβ

(
ρc2

s δαβ

)
+ ρc2

s

(
σ− ∆t

2

)
∂

∂xβ

(
∂uα
∂xβ

+
∂uβ

∂xα

)
+
(

ϕ + m∆t
σ

)
Fα +

∂
∂t

(
Fα

(
m∆t− m(∆t)2

2σ − ∆t
2 ϕ

))
+
(

σ− ∆t
2

)(
ϕ + m∆t

σ

)
∂

∂xβ

(
uαFβ + Fαuβ

)
−
(

σ− ∆t
2

)
∂

∂xβ

∂
∂xγ

(
ρuαuβuγ

)
− σϕ ∂

∂xβ
∑
i

ξiαξiβRi.

(22)

∂T
∂t

+
∂

∂xα
(Tuα) =

∂

∂xα

(
c2

s

(
τD −

∆t
2

)
∂T
∂xα

)
+

(
τD −

∆t
2

)
∂

∂xα

(
T

(
∂uα

∂t
+

∂

∂xβ

(
uαuβ

)))
. (23)

In Equation (22), the term ∑
i

ξiαξiβRi specifies the second-order moment of the forcing

term. Details regarding the mathematical expressions of all the associated forcing moments
are appended in Appendix A of this manuscript. In Equations (21) and (22), quantities m,
σ, and ϕ occupy the following definitions:

m =

{
0, for scenario IA, IB and IC
1
2 , for scenario IIA, IIB and IIC

(24)

σ =

{
τυ, for scenario IA, IB and IC
τυ, for scenario IIA, IIB and IIC

(25)

ϕ =

{
1, for scenario IA, IB and IC(

1− ∆t
2τυ

)
, for scenario IIA, IIB and IIC.

(26)

From the recovered thermo-hydrodynamics expressions of Equations (21)–(23), it
was observed that each of the corresponding LBM scenarios returns the macroscopic
hydrodynamics relationships with residual fractions. Such properties occupy different
mathematical expressions depending upon the selected LBM scenarios. Table 2 summarizes
the corresponding mathematical remarks of hydrodynamics residual fractions from distinct
LBM schemes. On the other hand, the restored heat formulation of Equation (23) contains
only one residual fraction, appropriately depicted by the last term on the right hand side of
the formula. Nevertheless, it is important to mention that the particular thermal residual
fraction incorporates momentum terms from the fluid constituents within its expression.

Table 2. The captured residual fractions in the recovered continuity and Navier-Stokes equations
from every considered LBM scenarios.

LBM Scheme
Residual Fractions

in the Restored
Continuity Equation

Residual Fractions in the Restored
Navier-Stokes Equation

IA −∆t
2

∂Fα
∂xα

−∆t
2

∂Fα
∂t +

(
τυ − ∆t

2

)
∂

∂xβ

(
uαFβ + Fαuβ

)
IB −∆t

2
∂Fα
∂xα

−∆t
2

∂Fα
∂t −

∆t
2

∂
∂xβ

(
uαFβ + Fαuβ

)
IC −∆t

2
∂Fα
∂xα

−∆t
2

∂Fα
∂t −

∆t
2

∂
∂xβ

(
uαFβ + Fαuβ

)
− τυ

∂
∂xβ

(
Fα Fβ

ρ

)
IIA 0

(
τυ − ∆t

2

)
∂

∂xβ

(
uαFβ + Fαuβ

)
IIB 0 0
IIC 0 −

(
τυ − ∆t

2

)
∂

∂xβ

(
Fα Fβ

ρ

)

Consequently, the residual term in the recovered heat equation is linked indirectly to
the residual terms in the restored Navier-Stokes formula of Equation (22).

5. Numerical Results and Discussions

To test the computational performance of disparate LBM scenarios, two distinctive
thermo-hydrodynamics flow systems (the natural convection in a differentially-heated
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cavity and the Rayleigh-Bènard convection) were selected. The simulations of both physi-
cal phenomena were performed in a two-dimensional close system under the condition
of Ra = 104 and Pr = 0.71. The computational workloads were administered upon the
graphical processing unit (GPU) ecosystem so as to expedite the analyses. In such physical
arrangements, the Mach number (Ma) was defined as

Ma =
uchar

cs
=

√
Raυ2

PrH2c2
s

, (27)

where uchar designates the characteristic velocity of the flowing material.
The particular property was defined as

uchar =
√

GyβT(Θhot −Θcold)H =

√
Raυ2

PrH2 , (28)

where Θhot and Θcold specify, respectively, the dimensionless hot and cold temperatures.
In general, the dimensionless temperature is expressed as

Θ =
T − Tref

Thot − Tcold
, (29)

where Tref denotes the reference temperature.
The expressions for fluid kinematic viscosity υ and thermal diffusivity D were ob-

tained, respectively, as

υ =

 c2
s

(
τυ − ∆t

2

)
, for scenario IA, IB and IC

c2
s

(
τυ − ∆t

2

)
, for scenario IIA, IIB and IIC

(30)

D = c2
s

(
τD −

∆t
2

)
. (31)

5.1. Simulation of Natural Convection in a Differentially-Heated Cavity

Figure 1 schematized the physical configuration of natural convection in a differentially-
heated enclosure.
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Figure 1. Domain configuration for two-dimensional natural convection in a differentially-
heated cavity.

The entire domain was assumed filled with an inert fluid. The vertical walls of the
cavity were characterised by contrasting thermal conditions. The left-border was consid-
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ered hot (Thot) while the opposite wall was assumed cold (Tcold). On the other hand, the
horizontal boundaries were set to be perfectly insulated. For the fluid substance, the non-
equilibrium bounce-back (NEBB) technique [19] was adopted upon all the corresponding
perimeters, including the four corners. The NEBB method defines the unknown fluid pop-
ulations at the boundaries from the known populations by evaluating the non-equilibrium
condition of the normal populations at local boundary sites.

The non-equilibrium condition at the boundary wall satisfies the following remark:

ζi − f eq
i

= ζi − f eq
i − ξiαNα, (32)

where Nα notifies the momentum correction factor due to inclusion of the external forcing
term into the generic Boltzmann expression of the fluid populations. The subscript symbol
i specifies the opposite direction of i. Parameter ζi was defined as follows:

ζi =

{
fi, for scenario IA, IB and IC
f i, for scenario IIA, IIB and IIC.

(33)

Meanwhile, for the thermal population, the anti-bounce-back (ABB) [2] and central fi-
nite difference [20] strategies were administered upon the vertical and horizontal bound-
aries, respectively.

ABB technique was administered by adopting the following relationship for the
associated boundary walls:

gi

(
xboundary, t + ∆t

)
= −g∗i

(
xboundary, t

)
+ 2ziTwall, (34)

where g∗i depicts thermal populations after collision and Twall notifies the prescribed
temperature condition at particular boundary wall. To accomplish a valid comparison,
numerical simulations for all the considered LBM scenarios were accomplished under
similar hydrodynamic relaxation time (τυ= 0.6) and Mach number (Ma = 0.1) conditions.

Thereupon, the average Nusselt number 〈Nu〉 was appointed as the dimensionless
property that represents the heat transfer performance of each concomitant LBM scheme.
This property abides to the following description:

〈Nu〉 = 1 +
(

〈u∗xΘ〉
Θhot −Θcold

)
, (35)

where 〈u∗xΘ〉 represents the average of the product between the dimensionless horizontal
velocity and the dimensionless temperature over the entire simulation domain. For the
sake of validation, the associated steady-state flow profile from scenario IIB was selected
as the representation to exhibit the final streamlines and isotherms from the corresponding
heat and mass transport system.

Figure 2 exhibits the steady-state streamlines and isotherms from the selected LBM
scenario. The corresponding streamlines and isotherms profiles demonstrate an excellent
agreement with the literature [16,17,21,22]. It was found, however, that the results from the
six associated LBM scenarios exhibit almost similar steady-state flow profiles. Therefore,
every considered LBM scheme possesses similar qualification in delivering legitimate
steady-state numerical solutions.
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Table 3 outlines the principal steady-state numerical properties from distinct LBM
schemes. The parameters were compared with the outcomes of finite difference method
(FDM) [23] and finite element method (FEM) [24]. A closer look on Table 3 reveals that
LBM scenarios, which adopt a second-order lattice BGK model (i.e., scenario IIA, IIB, and
IIC) were capable of delivering better compliance with the benchmark solutions than the
ones which comprise first-order lattice BGK scheme (i.e., scenario IA, IB, and IC).

Table 3. Steady-state properties of two-dimensional natural convection in a differentially-heated cavity for Ra = 104,
Pr = 0.71, τυ= 0.6, and Ma = 0.1, compared with solutions of finite difference method (FDM) [23] and finite element
method (FEM) [24].

Simulation Parameters
LBM Scheme (Present Study)

FDM [23] FEM [24]
IA IB IC IIA IIB IIC

〈Nu〉 2.2341 2.2339 2.2339 2.2424 2.2423 2.2424 2.243 2.2448
Max u∗x † 16.0678 16.0619 16.0619 16.1742 16.1732 16.1742 16.178 16.1853
Max u∗y ‡ 19.3927 19.3864 19.3864 19.6011 19.5999 19.6011 19.617 19.6316

Location of Max u∗x † 0.8116 0.8116 0.8116 0.8204 0.8204 0.8204 0.823 0.8230
Location of Max u∗y ‡ 0.1159 0.1159 0.1159 0.1189 0.1189 0.1189 0.119 0.1188

† at x∗= 0.5; ‡ at y∗= 0.5.

Undoubtedly, the inclusion of higher-truncation order terms empowers the second-
order lattice BGK scheme with superior numerical accuracy to the corresponding first-order
counterpart. Contrastingly, trivial disparity in computing performance was observed upon
implementation of different forcing models.

Recording the behaviour of specific parameters along the simulation process provides
a way of uncovering additional key information regarding the computational capacity
of the considered LBM schemes. Figure 3a shows the profiles of 〈Nu〉 from different
LBM scenarios with the dimensional simulation time t appointed as the horizontal axis.
Figure 3b illustrates similar profiles with dimensionless simulation time t∗ used as the
corresponding horizontal axis. Both figures display the existence of striking contrast in the
computational characteristics among distinct LBM scenarios.
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As depicted in Figure 3a, the discrepancy was predominantly apparent when the 
simulations were performed in an unsteady-state period fashion. Altering the fashion 
from unsteady to steady state, the disparity either decreases gradually or was negligible 
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accomplishment of the steady-state condition of the natural convection a in differentially-heated cavity for Ra = 104,
Pr = 0.71, τυ= 0.6, and Ma = 0.1, showing computational behaviour with (a) dimensional simulation time t as the
horizontal axis, and (b) dimensionless simulation time t∗ as the horizontal axis. Figure insets demonstrate the magnification
of the computational characteristics in the steady-state region of the simulation.

As depicted in Figure 3a, the discrepancy was predominantly apparent when the
simulations were performed in an unsteady-state period fashion. Altering the fashion
from unsteady to steady state, the disparity either decreases gradually or was negligible
(Figure 3a). Such discrepancy was in agreement with the physical properties outlined
Table 3.

Figure 3a unveils essential information regarding the primary factors responsible
for the observed discrepancy in computational performance of distinct LBM scenarios. It
appears then that the different order of lattice BGK expression is the predominant factor
that generates the observed disparity in computational characteristics of different LBM
schemes. On the other hand, the contribution of distinct forcing strategies upon such
disparity was found to be inconsequential. Figure 3a reveals further that LBM schemes,
which administer second-order lattice BGK model (i.e., scenarios IIA, IIB, and IIC) exhibited
slower progression towards steady-state condition than those schemes which implement
first-order lattice BGK model (i.e., scenarios IA, IB, and IC).

However, when non-dimensional time t∗ was assimilated, the slower progression char-
acteristic of the second-order schemes vanished. Figure 3b shows that the computational
performance of the second-order lattice BGK schemes is proportional to the first-order
scenarios. The profiles of dimensionless horizontal velocity u∗x at the vertical mid-plane of
the enclosure (x∗= 0.5) were displayed in Figure 4. Therein, the profiles of u∗x demonstrate
similar behaviour with the ones observed in Figure 3a.
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Figure 4. Profiles of dimensionless horizontal velocity at the vertical mid-plane of the cavity upon different simulation
periods of natural convection in differentially-heated cavity for Ra = 104, Pr = 0.71, τυ= 0.6 and Ma = 0.1, demonstrating
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Figure 5 displays the corresponding computational overhead from every considered
LBM scenario. The scenario IIC was identified as the particular LBM scheme with the
highest computational demand in modelling fluid flow and heat transfer in a differentially-
heated cavity, therein.
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Figure 5. Computational overhead of disparate LBM schemes in modelling natural convection in
a differentially-heated cavity with Ra = 104, Pr = 0.71, τυ= 0.6 and Ma = 0.1, starting from the
unsteady period up to the accomplishment of the steady-state period.

5.2. Simulation of Rayleigh-Bènard Convection

After undertaking evaluation regarding computational characteristics of distinct LBM
scenarios upon simulating natural convection in a differentially-heated enclosure in the
previous section, the current segment of the article aims at elucidating the capacity of dis-
parate LBM scenarios while simulating the Rayleigh-Bènard convection (RBC) phenomena
as illustrated in Figure 6.
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where Nx  and Ny  designate the associated lattice nodes in the horizontal and vertical 
directions of the spatial coordinate, respectively. 
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Figure 6. Domain configuration for two-dimensional Rayleigh-Bènard convection with aspect
ratio one.

Hot temperature conditions were imposed upon the horizontal bottom wall while the
opposing top margin was set to occupy cold temperature. The vertical boundaries were
set to be perfectly insulated. Boundary treatments were accomplished through adopting
similar strategies with the erstwhile case of natural convection in a differentially-heated
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cavity. However, appropriate adjustments were necessary in order to account the appointed
wall conditions in RBC configuration.

The contrasting driving force from buoyancy and gravitational attraction in the RBC
system results in perpetual competition between the tendency of the flowing materials
to move upward and downward, correspondingly. Such a situation enables the associ-
ated thermo-hydrodynamics phenomena to exhibit a number of plausibly distinct flow
behaviours with variable convection roll patterns [25,26]. To mitigate such complexity,
the present study assimilates infinitesimal disturbances into the corresponding physical
system. These perturbation functions are described as

Θinitial(x, y) = Θhot −
(
(Θhot −Θcold)y

Ny

(
1− 0.001 sin

(
2πx
Nx

)))
(36)

ρinitial(x, y) = ρref

(
1 + βT

(Θhot −Θcold)y
Ny

(
1− 0.001 sin

(
2πx
Nx

)))
, (37)

where Nx and Ny designate the associated lattice nodes in the horizontal and vertical
directions of the spatial coordinate, respectively.

The performance of heat transfer in RBC system was represented by the average
Nusselt number at the hot wall, 〈Nu〉0. The corresponding parameter was mathematically
expressed as

〈Nu〉0 =
1

Nx(Θhot −Θcold)

Nx

∑
i=1

qy(i)
∣∣
y=0. (38)

Here, qy specifies the local heat flux in vertical direction, defined as

qy = u∗yΘ− ∂Θ
∂y

. (39)

The last term on the right-hand side of the above formula denotes temperature gradi-
ent in a vertical direction.

Figure 7 presents the final streamlines and isotherms for RBC simulation with Ra = 104

and Pr = 0.71. Similar to the former case of natural convection in a differentially-heated
cavity, the steady-state flow profile from scenario IIB was selected for exhibition and val-
idation purposes. The corresponding streamlines and isotherms displayed in Figure 7
were in excellent agreement with the earlier work of Ouertatani et al. [27]. Similarly to the
former case of natural convection in a differentially-heated cavity, the obtained steady-state
responses from distinct LBM schemes demonstrate identical flow profiles.

Nevertheless, minor discrepancy was observed in the captured 〈Nu〉0 solutions, which
are summarized and compared with the outcomes of finite volume method (FVM) [27] in
Table 4.

Table 4. Average Nusselt number at the hot wall 〈Nu〉0 of the Rayleigh-Bènard convection sys-
tem from distinct LBM schemes during the steady-state period of the flow for aspect ratio = 1,
Ra = 104, Pr = 0.71, τυ= 0.6, and Ma = 0.1 compared with the outcome of the finite volume method
(FVM) [27].

Simulation
Parameter

LBM Scheme (Present Study)
FVM [27]

IA IB IC IIA IIB IIC

〈Nu〉0 2.1681 2.1684 2.1684 2.1554 2.1555 2.1554 2.1581

A better accuracy of 〈Nu〉0 solutions was obtained from the LBM scenarios which
adopt a second-order lattice BGK model. The profiles of 〈Nu〉0 along the simulation process
exhibited characteristics similar to those observed in the former natural convection case.
Figure 8a illustrates further the behaviour of 〈Nu〉0. A slow progression characteristic of
the second-order lattice BGK schemes was observed that disappears as the horizontal axis
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is replaced by the associated dimensionless simulation time t∗. Figure 9 shows the profiles
of dimensionless vertical velocity u∗y at the horizontal mid-plane of the cavity (y∗= 0.5).
Therein, similar computational behaviour was observed as the one prevailing in Figure 8a.
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Figure 8. Profiles of average Nusselt number at the hot wall 〈Nu〉0 from different LBM scenarios during the unsteady
period up to the accomplishment of steady-state condition of the Rayleigh-Bènard convection for aspect ratio = 1, Ra = 104,
Pr = 0.71, τυ= 0.6, and Ma = 0.1, showing computational behaviour with (a) dimensional simulation time t as the
horizontal axis and (b) dimensionless simulation time t∗ as the horizontal axis. Figure insets display the magnification of
the computational characteristics in the steady-state region of the simulation.
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Figure 9. Profiles of dimensionless vertical velocity at the horizontal mid-plane of the cavity upon different simulation
periods of Rayleigh-Bènard convection for aspect ratio = 1, Ra = 104, Pr = 0.71, τυ= 0.6, and Ma = 0.1, demonstrating
conditions at the following time iterations: (a) 25,000; (b) 140,000; (c) 160,000; and (d) 300,000.

Figure 10 depicts the corresponding profiles of computational cost from every consid-
ered LBM schemes. Similar with the case of natural convection in a differentially-heated
cavity, higher computational demand was displayed by the LBM schemes which adopt a
second-order lattice BGK model.
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6. Conclusions

Comprehensive evaluation regarding the efficacy of disparate Lattice Boltzmann
Method (LBM) scenarios upon simulation of fluid flow and heat transfer phenomena were
studied. The primary objective, herein addressed, was the evaluation of the plausible
discrepancy in the computational characteristics of different LBM scenarios when sim-
ulating natural convection and heat transfer systems during the unsteady period of the
flow. To fulfil the sought objective, the LBM schemes were tested upon two distinctive
thermo-hydrodynamics systems, namely the natural convection in a differentially-heated
cavity and the Rayleigh-Bènard convection. The key findings of this work are as follows:

1 The presence of considerable discrepancy in computational characteristics of dis-
parate LBM schemes was seen during the unsteady period of the simulation, which
diminished gradually as the simulation advanced towards a steady-state condition.

2 Variation in the associated discrete lattice Boltzmann expression was identified as the
predominant factor inherent to discrepancy in computational characteristics.

3 The contribution of distinct forcing models upon the heterogeneity in computational
behaviour was found to be trivial.

4 At a steady-state condition, the LBM schemes which administer a second-order
lattice BGK model recovered better numerical accuracy than those scenarios which
comprise a first-order lattice BGK model. However, the scheme is challenged by
higher computational demand.
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Nomenclature

ρ fluid density, kg/m3; xα spatial coordinates vector
T temperature, K; uα fluid velocity, m/s
µ Fluid dynamic viscosity; kg/m · s Fα external force, N
υ fluid kinematic viscosity, m2/s; Gα gravity acceleration, m/s2

D thermal diffusivity, m2/s; βT thermal expansion coefficient, K−1

Tref reference temperature, K cs lattice speed of sound
Thot hot temperature, K; uchar characteristic velocity
Tcold cold temperature, K; Nu Nusselt number, dimensionless
h heat transfer coefficient, W/m2 ·K; 〈Nu〉 average Nusselt number for the entire simulation domain
cp specific heat capacity, J/kg ·K; 〈Nu〉0 average Nusselt number at the hot wall
L characteristic length, m; Pr Prandtl number, dimensionless
∆t simulation time step, lattice unit; Ra Rayleigh number, dimensionless
fi fluid population; Ma Mach number, dimensionless
f eq
i equilibrium fluid population; x∗ dimensionless horizontal length

gi thermal population; y∗ dimensionless vertical length
geq

i equilibrium thermal population; u∗α dimensionless fluid velocity
Ri discrete forcing term; Nx number of lattice nodes in the horizontal direction
wi weighting coefficients for fluid population; Ny number of lattice nodes in the vertical direction
zi weighting coefficients for thermal population; qy local heat flux;
Greek symbols
ξiα discrete velocity for fluid particles; τυ relaxation time for fluid population
eiα discrete velocity for thermal particles; τD relaxation time for thermal population
Θ dimensionless temperature; δij delta Kronecker
Θhot dimensionless hot temperature; ε Knudsen number, dimensionless
Θcold dimensionless cold temperature;
Subscript
i number of discrete velocities
α, β, γ direction of spatial coordinates (Einstein notation).

Appendix A. The Chapman-Enskog Analysis for Fluid Populations

The Chapman-Enskog analysis was commenced by defining the following expanded
fractions:

ζi = f eq
i + εζi

(1) + ε2ζi
(2)

∂
∂t = ε ∂

∂t1
+ ε2 ∂

∂t2

ξiα
∂

∂xα
= εξiα

∂

∂x(1)α

+ ε2ξiα
∂

∂x(2)α

Ri = εR(1)
i .

(A1)

In the above relationships, ε denotes small quantity which value lies within the order
of Knudsen number and ζi satisfies the remark described in Equation (33).

Adopting Taylor series expansion upon the generalized lattice Boltzmann expression
for fluid components around equilibrium condition by taking ε as the expansion quantity
returns the mathematical expressions for the first- and second-order expansion terms of
the fluid density evolution equation, correspondingly depicted as

O(ε) :
(

∂
∂t1

+ ξiα
∂

∂x(1)
α

)
f eq
i = − 1

σ ζi
(1) + ϕR(1)

i

O
(
ε2) :

(
∂

∂t2
+ ξiα

∂

∂x(2)
α

)
f eq
i +

(
∂

∂t1
+ ξiα

∂

∂x(1)
α

)((
1− ∆t

2σ

)
ζ
(1)
i + ∆t

2 ϕR(1)
i

)
= − 1

σ ζ
(2)
i ,

(A2)

where O(ε) and O
(
ε2) specify respectively the first- and second-order expansion terms

of the fluid density evolution equation. Parameters σ and ϕ occupy similar definitions as
those provided in Equations (25) and (26), respectively.
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Thereupon, expressions of moments of O(ε) and O
(
ε2) can be obtained as follows:

Moments of O(ε):

∑
i

(
∂

∂t1
+ ξiα

∂

∂x(1)α

)
f eq
i =∑

i

(
− 1

σ ζ
(1)
i + ϕR(1)

i

)
∑
i

ξiα

(
∂

∂t1
+ ξiα

∂

∂x(1)α

)
f eq
i =∑

i
ξiα

(
− 1

σ ζ
(1)
i + ϕR(1)

i

)
∑
i

ξiαξiβ

(
∂

∂t1
+ ξiα

∂

∂x(1)α

)
f eq
i =∑

i
ξiαξiβ

(
− 1

σ ζ
(1)
i + ϕR(1)

i

) (A3)

Moments of O
(
ε2):

∑
i

(
∂

∂t2
+ ξiα

∂

∂x(2)α

)
f eq
i + ∑

i

(
∂

∂t1
+ ξiα

∂

∂x(1)α

)(
1− ∆t

2σ

)
ζ
(1)
i

+∑
i

(
∂

∂t1
+ ξiα

∂

∂x(1)α

)
∆t
2 ϕR(1)

i = − 1
σ ∑

i
ζi
(2)

∑
i

ξiα

(
∂

∂t2
+ ξiα

∂

∂x(2)α

)
f eq
i +∑

i
ξiα

(
∂

∂t1
+ ξiα

∂
∂xα

(1)

)(
1− ∆t

2σ

)
ζi
(1)

+∑
i

ξiα

(
∂

∂t1
+ ξiα

∂
∂xα

(1)

)
∆t
2 ϕR(1)

i = − 1
σ ∑

i
ξiαζ

(2)
i .

(A4)

Subsequently, the expressions for the three particular moments, namely the moments
of the discrete forcing terms Ri, the moments of the equilibrium density population f eq

i and
the moments of the expanded population ζi have to be configured. Table A1 summarizes
the expressions of forcing moments.

Table A1. Mathematical expressions for the moments of the discrete forcing terms Ri for the three
considered forcing schemes.

Forcing Model
Zeroth-Order

Moment
(∑

i
Ri)

First-Order
Moment
(∑

i
ξiαRi)

Second-Order
Moment

(∑
i

ξiαξiβRi)

Luo (Equation (14)) 0 Fα 0
Guo, et al. (Equation (15)) 0 Fα Fαuβ + uαFβ

Kupershtokh, et al.
(Equation (16)) 0 Fα

Fαuβ + uαFβ +
1
ρ

(
FαFβ

)

The expressions for the moments of f eq
i and ζi were obtained accordingly as:

Moments of f eq
i :

∑
i

f eq
i = ∑

i
ζi + m∆t∑

i
Ri = ρ

∑
i

ξiα f eq
i = ∑

i
ξiαζi + m∆t∑

i
ξiαRi = ρuα

∑
i

ξiαξiβ f eq
i = ∑

i
ξiαξiβζi + m∆t∑

i
ξiαξiβRi = ρuαuβ + ρc2

s δαβ

∑
i

ξiαξiβξiγ f eq
i = ∑

i
ξiαξiβξiγζi + m∆t∑

i
ξiαξiβξiγRi = ρc2

s
(
uαδβγ + uβδαγ + uγδαβ

) (A5)

Moments of ζi:

∑
i

ζi
(1) = −m∆t∑

i
R(1)

i ; ∑
i

ζi
(2) = 0

∑
i

ξiαζi
(1) = −m∆t∑

i
ξiαR(1)

i ; ∑
i

ξiαζi
(2) = 0

∑
i

ξiαξiβζi
(1) = −m∆t∑

i
ξiαξiβR(1)

i ; ∑
i

ξiαξiβζi
(2) = 0

∑
i

ξiαξiβξiγζi
(1) = −m∆t∑

i
ξiαξiβξiγR(1)

i ; ∑
i

ξiαξiβξiγζi
(2) = 0.

(A6)
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Substituting the expressions of Ri, f eq
i and ζi moments into Equations (A3) and (A4),

the following remarks emerged:

∂ρ

∂t1
+

∂

∂x(1)α

(ρuα) = 0 (A7)

∂

∂t1
(ρuα) +

∂

∂x(1)β

(
ρuαuβ + ρc2

s δαβ

)
=

(
ϕ +

m∆t
σ

)
∑

i
ξiαR(1)

i (A8)

∂
∂t1

(
ρuαuβ + ρc2

s δαβ

)
= − ∂

∂x(1)γ

(
ρc2

s uαδβγ + ρc2
s uβδαγ + ρc2

s uγδαβ

)
+
(

ϕ + m∆t
σ

)
∑
i

ξiαξiβR(1)
i

(A9)

∂ρ
∂t2

+ ∂

∂x(2)α

(ρuα) =
∂

∂t1
∑
i

R(1)
i

(
m∆t− m(∆t)2

2σ − ∆t
2 ϕ

)
+ ∂

∂xα
(1) ∑

i
ξiαR(1)

i

(
m∆t− m(∆t)2

2σ − ∆t
2 ϕ

) (A10)

∂
∂t2

(ρuα) +
∂

∂x(2)β

(
ρuαuβ + ρc2

s δαβ

)
= ∂

∂t1
∑
i

ξiαR(1)
i

(
m∆t− m(∆t)2

2σ − ∆t
2 ϕ

)
+ ∂

∂x(1)β

∑
i

ξiαξiβR(1)
i

(
m∆t− m(∆t)2

2σ − ∆t
2 ϕ

)
,

(A11)
where m occupies similar description as the one presented in Equation (24). Combining
Equations (A7)–(A11) as well as substituting expressions of forcing moments from Table A1,
the macroscopic hydrodynamics relationships of Equations (21) and (22) were restored.
The residual fractions prevailed in the recovered hydrodynamics equations from each
considered LBM scenarios were summarized in Table 2.

Appendix B. The Chapman-Enskog Analysis for Thermal Populations

For the thermal populations, the Chapman-Enskog analysis was performed following
similar fashion as in the preceding analysis for the fluid components. However, the discrete
velocity of thermal particles eiα was used instead of velocity of fluid particles ξiα. The
expanded terms for the thermal population occupy the following descriptions:

gi = geq
i + εg(1)i + ε2g(2)i

∂
∂t = ε ∂

∂t1
+ ε2 ∂

∂t2

eiα
∂

∂xα
= εeiα

∂

∂x(1)α

+ ε2eiα
∂

∂x(2)α

.
(A12)

Executing similar fashion of Taylor series expansion upon the generalized lattice
Boltzmann expression for the thermal particles produces the corresponding remarks:

O(ε) :
(

∂
∂t1

+ eiα
∂

∂x(1)α

)
geq

i = − 1
τD

g(1)i

O
(
ε2) :

(
∂

∂t2
+ eiα

∂

∂x(2)α

)
geq

i +

(
∂

∂t1
+ eiα

∂

∂x(1)α

)(
1− ∆t

2τD

)
g(1)i = − 1

τD
g(2)i .

(A13)

The corresponding moments of O(ε) and O
(
ε2) terms can be configured as follows:

Moments of O(ε):

∑
i

(
∂

∂t1
+ eiα

∂

∂x(1)α

)
geq

i =∑
i

(
− 1

τD
g(1)i

)
∑
i

eiα

(
∂

∂t1
+ eiα

∂

∂x(1)α

)
geq

i =∑
i

eiα

(
− 1

τD
g(1)i

) (A14)
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Moments of O
(
ε2):

∑
i

(
∂

∂t2
+ eiα

∂

∂x(2)α

)
geq

i + ∑
i

(
∂

∂t1
+ eiα

∂

∂x(1)α

)(
1− ∆t

2τD

)
g(1)i = ∑

i

(
− 1

τD
g(2)i

)
. (A15)

The moments of the thermal equilibrium population geq
i occupy the following definitions:

∑
i

geq
i = T

∑
i

eiαgeq
i = Tuα

∑
i

eiαeiβgeq
i = Tc2

s δαβ + Tuαuβ.

(A16)

Substituting Formula (A16) into Equations (A14) and (A15), the following expres-
sions prevailed:

∂T
∂t1

+
∂

∂x(1)α

(Tuα) = 0 (A17)

∂T
∂t2

+ ∂

∂x(2)α

(Tuα) = c2
s

(
τD − ∆t

2

)(
∂

∂x(1)α

∂

∂x(1)α

(T) + 1
c2

s

∂
∂t1

∂

∂x(1)α

(Tuα)

)
+
(

τD − ∆t
2

)
∂

∂x(1)α

∂

∂x(1)β

(
Tuαuβ

)
.

(A18)

Combining Equations (A17) and (A18), the macroscopic heat equation depicted by
Equation (23) was recovered.
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