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Abstract: Buruli ulcer caused by Mycobacterium ulcerans (M. ulcerans) is identified by a pain-free cyst
or edema which develops into a massive skin ulcer if left untreated. There are reports of chemore-
sistance, toxicity, noncompliance, and poor efficacy of current therapeutic options. Previously, we
used cheminformatics approaches to identify potential antimycobacterial compounds targeting major
receptors in M. ulcerans. In this paper, we sought to identify potential bioactive compounds by
targeting Cystathionine gamma-synthase (CGS) MetB, a key receptor involved in methionine syn-
thesis. Inhibition of methionine synthesis restricts the growth of M. ulcerans. Two potent inhibitors
Juglone (IC50 0.7 +/− 0.7 µmol/L) and 9-hydroxy-alpha-lapachone (IC50 0.9 +/− 0.1 µmol/L) were
used to generate 3D chemical feature pharmacophore model via LigandScout with a score of 0.9719.
The validated model was screened against a pre-filtered library of 2530 African natural products.
Compounds with fit scores above 66.40 were docked against the structure of CGS to generate hits.
Three compounds, namely Gentisic 5-O glucoside (an isolate of African tree Alchornea cordifolia), Isos-
cutellarein (an isolate of Theobroma plant) and ZINC05854400, were identified as potential bioactive
molecules with high binding affinities of −7.1, −8.4 and −8.4 kcal/mol against CGS, respectively.
Novel structural insight into the binding mechanisms was elucidated using LigPlot+ and molecular
dynamics simulations. All three molecules were predicted to possess antibacterial, anti-ulcerative,
and dermatological properties. These compounds have the propensity to disrupt the methionine
synthesis mechanisms with the potential of stagnating the growth of M. ulcerans. As a result of rea-
sonably good pharmacological profiling, the three drug-like compounds are potential novel scaffolds
that can be optimized into antimycobacterial molecules.

Keywords: Buruli ulcer; Cystathionine γ-synthase MetB; Mycobacterium ulcerans; natural products;
molecular docking; pharmacophore modeling; antimycobacterial

1. Introduction

Mycobacterium ulcerans belongs to the slow-growing environmental mycobacteria
family which secretes mycolactone, a toxin that has a strong cytotoxic activity. Buruli ulcer
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(BU) is an infectious, flesh-eating ailment that affects the skin and subcutaneous tissues [1].
Mycolactone, when present in the human system, induces cell death, necrosis of several
cell types, and suppresses the immune response. The disease is characterized by a pain-free
cyst, plaque, or edema which develops into a massive skin ulcer if left untreated [2]. BU
currently ranks third among mycobacterial diseases that affect humans, with leprosy and
tuberculosis placing first and second, respectively. Yet among the three, BU is the least
understood [1,2].

BU is prevalent in rural areas of Asia, tropical countries in Africa, Australia, and the
Americas with a high focal distribution along water bodies. More than 20,000 cases were
reported over the last decade in West Africa, which records the highest prevalence rates;
Côte d’Ivoire, Benin, Nigeria, and Ghana are leading the charts [1,3,4]. The transmission
mode of M. ulcerans is reportedly less understood but the disease is considered to be related
to activities around water bodies [1,2,5]. It is speculated that environmental M. ulcerans
enters the body through small cuts in the skin from direct contact with contaminated
soil, water, or vegetation, and in some cases, is transmitted through biting water-borne
insects [6].

M. ulcerans is an acid-fast bacillus that has a genome size of 5,805,761 base pairs,
4160 protein-coding genes, 771 pseudogenes and consists of two circular replicons. Cys-
tathionine gamma-synthase MetB (CGS), a protein encoded by a gene of M. ulcerans, exists
as a homotetramer comprising four identical monomers (Chains A, B, C and D) with each
having its active site. Present in each active site is the cofactor pyridoxal phosphate (PLP),
responsible for activating the protein. More significantly, CGS plays a vital role in the
synthesis of methionine, an integral requirement for the growth of M. ulcerans, where it is
involved in the early committed step in the methionine biosynthesis pathway. It works
as a transferase catalyzing the irreversible reaction between O-succinyl-homoserine and
cysteine to produce cystathionine and succinate. It is also involved in selenoamino acid
and sulfur metabolism [7]. Therefore, CGS MetB is considered a crucial drug target because
of its important role in methionine synthesis. Inhibition of methionine synthesis could
restrict the development of M. ulcerans [8].

Current drugs recommended by the World Health Organization (WHO) for the treat-
ment of BU are Rifampicin, Streptomycin, and Clarithromycin [9]. These drugs have a
long treatment duration and could lead to side effects such as hearing impairment, kidney
problems, skin rashes, and vomiting [10,11]. Natural products possess great chemical and
structural diversity, biochemical specificity, and other molecular properties that make them
promising leads for drug discovery [12]. These unique properties distinguish them from
synthetic and combinatorial compound libraries and inspire novel discoveries in chemistry,
biology, and medicine [13]. There is a long-term history of usage of natural products and
wider public acceptance of drugs of natural product origin [14,15].

Since CGS has been suggested as a drug target [7], the reported work aimed to identify
drug-like biomolecules which have the potential to inhibit CGS. Inhibiting the CGS could
disrupt the synthesis of methionine critical for the growth of M. ulcerans. This study sought
to predict potential novel inhibitors by using ligand-based pharmacophore screening and
molecular docking of natural products originating from Africa. In addition, elucidate novel
mechanisms of binding and biological activity of the proposed compounds.

2. Materials and Methods
2.1. Target Retrieval and Preparation

The 3D X-ray crystallographic structures of CGS of M. ulcerans and homolog CGS of
Helicobacter pylori were obtained from Research Collaboratory for Structural Bioinformatics
(RCSB) Protein Data Bank (PDB) [16]. For the study, chain A of each 3D crystal structural
coordinate file was used. Two experimentally elucidated structures of CGS MetB from M.
ulcerans are available. The structure with PDB ID 3QI6 is bound covalently to PLP (cofactor)
and the other with PDB ID 3QHX is bound covalently to both PLP and 4-(2-hydroxyethyl)-
1-piperazine ethanesulfonic acid (HEPES) [7]. To select which structure to use for this
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study, the resolutions and R-values were considered. Resolution describes the measure of
the quality of data found on the crystal containing a protein. It also includes measuring
the level of detail seen upon electron density map calculation and the diffraction pattern.
As a general rule of thumb, a premium is placed on structures with high resolutions [16].
The R-value denotes the measure of the quality of the atomic model attained from the
crystallographic data. The closer a structure’s R-value is to 0 the better [17]. PyMOL
1.9.7 [18,19] was used to analyze the 3D structures and to remove all attached ligands as
well as water molecules in preparation for further downstream analysis. Missing residues
in the solved structural files were incorporated using the Swiss-PdbViewer [20]. The
resulting structure was energy minimized in preparation for downstream analysis using
grompp embedded in GROMACS [21] with default settings for 5000 steps.

2.2. Compound Selection for Pharmacophore Generation

After an exhaustive literature search, we were unable to identify inhibitors specifically
for CGS of M. ulcerans. This led to the exploration of the homologs of CGS of M. ulcerans us-
ing BLAST from NCBI [22]. CGS of H. pylori was found to be a homolog of CGS of M. ulcer-
ans with a sequence identity of 49.34%. CGS of H. pylori is functionally similar to that of M.
ulcerans since it also catalyzes the creation of L-cystathionine from O-succinyl-L-homoserine
(OSHS) and L-cysteine (UniProtKB ID: Q1M0P5; METB_HELPX) [23]. Table 1 shows that
CGS of H. pylori has five known inhibitors comprising Juglone [24], α-Lapachone, Yangam-
bin, Paulownin, and 9-Hydroxy-α-Lapachone [25]. However, to ascertain whether these
inhibitors would be suitable for the target protein (CGS of M. ulcerans), the structures
of both CGS of H. pylori and CGS of M. ulcerans were first superimposed to determine
similarities between their binding pockets. The inhibitors were then docked in each protein
structure to determine binding mechanisms and consistency within the active site.

Table 1. The five known inhibitors of CGS of Helicobacter pylori with names, IC50 values, and structures.

Compound IC50 (µM) Structure

Juglone 7 ± 0.7
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Table 1. Cont.

Compound IC50 (µM) Structure

Yangambin 27 ± 6
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2.3. Ligand-Based Pharmacophore Virtual Screening

LigandScout version 4.3 [26] was used for ligand-based pharmacophore virtual screen-
ing. The 2D structures of the inhibitors were retrieved from the ZINC database [27] in
Structure Data File (SDF) formats and loaded into LigandScout’s Ligand-Based Modeling
Perspective v4.3 [26]. The default settings of OMEGA best were used in the genera-
tion of ligand conformations with 200 conformations being the maximum limit set per
molecule [28].

2.4. Pre-Filtering of the Library for Pharmacophore-Based Screening

A unified library comprising 4067 natural products obtained from AfroDb and NAN-
PDB was used for virtual screening. AfroDb and NANPDB were composed of 885 and 3182
compounds, respectively. The library was filtered using Free ADME-Tox Filtering (FAF-
Drugs4) [29] to eliminate less drug-like compounds based on their physicochemical profiles.
The 2530 output compounds from the filtering were employed in pharmacophore-based
virtual screening.

2.5. Pharmacophore-Based Screening of the Library

A total of 2530 pre-filtered compounds were used for pharmacophore-based virtual
screening via LigandScout v.4.3 [26] by screening against the validated pharmacophore
model. The compounds were screened after conversion from “.sdf” to “.ldb”.

2.6. Validation of AutoDock Vina
2.6.1. Superimposition of Co-Crystallized with Re-Docked Complexes

The ligand 4-(2-hydroxyethyl)-1-piperazine ethanesulfonic acid (HEPES) was ex-
tracted from the co-crystallized structure of CGS of M. ulcerans and re-docked into the
active site. Using LigAlign [30], the predicted binding pose of the HEPES ligand was
superimposed with the experimentally determined pose of the co-crystallized structure of
the protein.

2.6.2. ROC Curve Analysis

The five active compounds of CGS from H. pylori together with their decoys were
screened against CGS from M. ulcerans. The ROC curve and Area Under Curve (AUC)
were generated using easyROC [31]. The ROC curve is quantified by the calculation of the
Area under the Curve (AUC) with values between the range of 0 and 1. Another parameter
used by LigandScout 4.3 is the Enrichment Factor (EF). EF implies “a ratio of the observed
fraction of active compounds in the top few percent of a virtual screen to that expected
by random selection” [32]. A good pharmacophore model should be able to significantly
distinguish actives from a library composed of inactives and actives. The inactives are
decoys of the five known inhibitors. Decoys share similar physical features with the known
inhibitors or actives but different chemical structures [33].
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2.7. Virtual Screening of the Library

AutoDock Vina interfaced with PyRx v.0.8 [34] was used for all the virtual screen-
ing. The pharmacophore hits obtained from screening the pharmacophore model against
the filtered library were virtually screened against the energy minimized protein, CGS
of M. ulcerans. The pharmacophore hits were imported as “.sdf” format into AutoDock
Vina, energy minimized, and converted to “.pdbqt” format. The energy minimization
involved the use of the default settings comprising Universal Force Field (UFF) and conju-
gate gradients for optimization algorithm with a total number of 200 steps. The AutoDock
Vina search space center had X, Y, and Z coordinates, which were set to the spatial coor-
dinates of 4.8945 Å, −23.7922 Å, and −37.3622 Å, respectively. Grid box dimensions of
25.00 Å × 25.00 Å × 25.00 Å covered the binding site region. The default exhaustiveness
of 8 for AutoDock Vina calculations was used. Ligands that firmly docked in the binding
site of the target were selected. Ligands that were not fitted firmly within the binding
pocket were eliminated from future analysis.

2.8. Protein-Ligand Interaction

LigPlot+ [35] was employed in the characterization of the ligand-protein interactions
as 2D schematic diagrams using default settings.

2.9. Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) Prediction

SwissADME [36] and AdmetSAR [37] were used for Absorption, Distribution, Metab
olism, Excretion, and Toxicity (ADMET) predictions. Ligands in SMILES format were
used to generate the pharmacological profiles. Both SwissADME [36] and AdmetSAR [37]
provide access to parameters and predictive models for the computation of pharmacoki-
netics, physicochemical properties, drug-likeness, and toxicity of small molecules. The
parameters that were used included (but not limited to): polarity (20 Å

2
< TPSA < 130 Å

2
);

solubility (0 < Log S (ESOL) < 6); flexibility (0 < number of rotatable bonds < 9); lipophilicity
(−4.0 < LOG P < +5.0); size (150 g/mol < molecular weight < 500 g/mol); hydrogen bond
donors ≤ 5; and hydrogen bond acceptors ≤ 1 [36]. Lipinski’s rule of five is based on
a set of rules which describe whether a particular compound is “drug-like” or “orally
active” [38]. The rule is based on physicochemical parameter ranges for a compound
having a molecular weight ≤ 500 Daltons; hydrogen bond donors ≤ 5; a logarithm of
n-octanol/ water partition ≤ 5; and hydrogen bond acceptors ≤ 10. A compound may be
considered less “orally inactive” and “drug-like” if it violates more than two rules.

2.10. Prediction of Activity Spectra for Substances and Structural Similarity Analogues (PASS)

Prediction of Activity Spectra for Substances (PASS) [39] was used for the prediction
of biological activity based on Bayesian models. Additionally, the hits were screened via
the DrugBank [40] to identify similar compounds, derivatives or analogs with antimycobac-
terial activity.

2.11. Molecular Dynamics Simulation

All molecular dynamics (MD) simulations were executed at 100 ns using GROMACS
version 2018 [21] with the SPC water model. The Optimized Potentials for Liquid Simula-
tions (OPLS)/All Atom (AA) force field was used for the simulation of the protein alone,
whereas the GROMOS96 43a1 force field was employed in the protein–ligand complexes
simulations. All MDs were executed on a supercomputing system. The protein topology
files were generated for the GROMACS OPLS/AA force field whereas that of the docked
complexes were generated utilizing the PRODRG2 using the settings: ‘Yes’ for ‘Chirality,
‘Full’ for ‘Charges’ and ‘No’ for EM. Simulations were carried out in a 1 nm dodecahedron
box for the application of periodic boundary conditions, solvated and electro-neutralized
with the addition of 13 sodium atoms. Thereafter, energies were minimized in 1100 steps.
Equilibration followed by standardization of the temperature of the system to the desired
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value for simulation (300 K) and the application of pressure to the system towards the
desired density of 1000 kg/m3. All graphs were plotted using Xmgrace [41].

2.12. Molecular Mechanics Poisson-Boltzmann Surface Area Binding Free Energy Calculations

MM-PBSA was employed in the computation of the binding energies of the ligand–
protein complexes utilizing g-mmpbsa over 100 ns for the MD simulation using GRO-
MACS [42]. Graphs resulting from the MM-PBSA calculations were plotted using the R
programming package. The energy terms were calculated over a 100 ns production run,
taking 100 snaps over 1 ns interval with default settings.

3. Results and Discussion
3.1. Target Description

Cystathionine gamma synthase exists as a homotetramer possessing two individually
wrapped homodimers each bearing two actives sites. Within each active site is the cofactor
PLP, which binds tightly to the Lys208 moiety and is stabilized by Ser205, Asp183, Asn158,
Met87 and Gly86 through hydrogen bond interactions. There are two structures with PDB
IDs 3QI6 and PDB ID 3QHX) [16]. The structure with PDB ID 3QHX was preferred over
3QI6 because of a higher resolution value of 1.65 Å compared to 1.91 Å; and R-values of
0.181 and 0.148 as compared to 0.241 and 0.200, respectively. Additionally, the HEPES
ligand was found to be only fully resolved in Chain A of the 3QHX structure. On the
other hand, 3QI6 did not contain the HEPES ligand, hence was not selected for further
downstream analysis.

3.2. Ligand-Based Pharmacophore Virtual Screening

The structural alignment between the 3D protein structures of CGS of H. pylori and
M. ulcerans yielded an RMSD of 0.66 Å, which was less than the 1.5 Å threshold to be
considered as a successful pose (Figure 1) [43]. Consequently, a downstream analysis was
undertaken with the inhibitors from CGS of H. pylori.

3.2.1. Pharmacophore Generation

For pharmacophore generation, inhibitors with IC50 < 10.0 µM were used to generate
the pharmacophore features. Thus, Juglone and 9-Hydroxy-α-lapachone with IC50 values
0.7 +/− 0.7 and 0.9 +/− 0.1 µmol/L, respectively, were used for pharmacophore generation.
All the five inhibitors together with their respective decoys were used to validate the
pharmacophore model. LigandScout allows the generation of 3D pharmacophores from
structural data of ligands rapidly and transparently in a very convenient and automated
way [26]. LigandScout implements either the shared- or the merged-feature models for
the generation of pharmacophores. The Shared feature model setting selects only features
common to training-set molecules. It generates only a few features expected to represent
the general binding mechanism of the training set ligands. The merged-feature model
setting, on the other hand, selects all features present on each ligand even if those features
are not common to most molecules within the training-set. The pharmacophore model
was generated with a model score of 0.9719 using a shared feature setting based on the
overlap of pharmacophoric features of the two training set compounds of Juglone and
9-hydroxy-lapachone. The features generated via the pharmacophore modeling were
3 hydrogen bond acceptors, 1 hydrogen bond donor, 1 aromatic ring, and 1 hydrophobic
interaction (Figure 2).

3.2.2. Validation of Pharmacophore Model

The receiver operating characteristic (ROC) curve served to validate the pharma-
cophore model. Five inhibitors of CGS of H. pylori [23,24] were used to generate 250 decoys,
with 50 decoys for each inhibitor. DUD-E served as a source for the decoys [33]. A library
comprising the decoys and the five active compounds labelled “inactives” and “actives”,
respectively, was screened against the best pharmacophore model generated.



Computation 2021, 9, 32 7 of 24

Computation 2021, 9, x FOR PEER REVIEW 7 of 27 
 

 

was generated with a model score of 0.9719 using a shared feature setting based on the 
overlap of pharmacophoric features of the two training set compounds of Juglone and 9-
hydroxy-lapachone. The features generated via the pharmacophore modeling were 3 hy-
drogen bond acceptors, 1 hydrogen bond donor, 1 aromatic ring, and 1 hydrophobic in-
teraction (Figure 2). 

3.2.2. Validation of Pharmacophore Model 
The receiver operating characteristic (ROC) curve served to validate the pharmaco-

phore model. Five inhibitors of CGS of H. pylori [23,24] were used to generate 250 decoys, 
with 50 decoys for each inhibitor. DUD-E served as a source for the decoys [33]. A library 
comprising the decoys and the five active compounds labelled “inactives” and “actives”, 
respectively, was screened against the best pharmacophore model generated. 

 
Figure 1. Superimposition of 3qhx (pale yellow) on 4l0O (aquamarine). The RMSD for the struc-
tural alignment was 0.66 Å, which is indicative of the high similarity between the two protein 
structures. 

 

Figure 1. Superimposition of 3qhx (pale yellow) on 4l0O (aquamarine). The RMSD for the structural
alignment was 0.66 Å, which is indicative of the high similarity between the two protein structures.

Computation 2021, 9, x FOR PEER REVIEW 7 of 27 
 

 

was generated with a model score of 0.9719 using a shared feature setting based on the 
overlap of pharmacophoric features of the two training set compounds of Juglone and 9-
hydroxy-lapachone. The features generated via the pharmacophore modeling were 3 hy-
drogen bond acceptors, 1 hydrogen bond donor, 1 aromatic ring, and 1 hydrophobic in-
teraction (Figure 2). 

3.2.2. Validation of Pharmacophore Model 
The receiver operating characteristic (ROC) curve served to validate the pharmaco-

phore model. Five inhibitors of CGS of H. pylori [23,24] were used to generate 250 decoys, 
with 50 decoys for each inhibitor. DUD-E served as a source for the decoys [33]. A library 
comprising the decoys and the five active compounds labelled “inactives” and “actives”, 
respectively, was screened against the best pharmacophore model generated. 

 
Figure 1. Superimposition of 3qhx (pale yellow) on 4l0O (aquamarine). The RMSD for the struc-
tural alignment was 0.66 Å, which is indicative of the high similarity between the two protein 
structures. 

 

Computation 2021, 9, x FOR PEER REVIEW 8 of 27 
 

 

 
Figure 2. The pharmacophore features generated from the two inhibitors. (A) Juglone (left) and 9-
hydroxy-lapachone (right) showing shared pharmacophoric features comprising Aromatic Rings 
(AR), Hydrogen Bond Donors (HBD), Hydrogen Bond Acceptors (HBA) and Hydrophobic interac-
tions (H). (B) The actives and their overlapped pharmacophoric features which are represented in 
the pharmacophore model. The red balls show Hydrogen bond acceptors (HBA), the yellow ball 
shows Hydrophobic interactions, the green ball shows Hydrogen bond donors (HBD) and a blue 
ring represents an Aromatic ring. 

3.3. Validation of Generated Pharmacophore Model 
The ROC curve shows the performance of the model to effectively distinguish be-

tween a collection of “active” and “inactive” compounds [44]. The AUCs were determined 
as 1.0, 1.0, 1.0 and 0.70 in the top 1%, 5%, 10% and 100% of the screened library, respec-
tively. AUC is assigned values between 0 and 1, with 1 suggesting a theoretically perfect 
classification showing 100% sensitivity and 100% specificity. Consequently, an AUC 
closer to 1 is crucial, whilst 0.5 suggests a random classification implying a poor predictive 
ability of the model [44–47]. An AUC value of 0 implies an incorrect classification, whilst 
0.70 or better implies moderate discrimination and hence suitable for classification. Since 
the overall AUC was 0.7, the model was reasonably good in classification. Additionally, 
EFs were determined as 51.0, 34.0, 34.0 and 34.0 for 1%, 5%, 10% and 100%, respectively 
(Figure 3). With three active ligands appearing in the hit results (Figure 3), the selected 
pharmacophore model had the reasonable capability to distinguish between actives and 
decoys successfully [48]. 

Figure 2. The pharmacophore features generated from the two inhibitors. (A) Juglone (left) and
9-hydroxy-lapachone (right) showing shared pharmacophoric features comprising Aromatic Rings
(AR), Hydrogen Bond Donors (HBD), Hydrogen Bond Acceptors (HBA) and Hydrophobic interac-
tions (H). (B) The actives and their overlapped pharmacophoric features which are represented in
the pharmacophore model. The red balls show Hydrogen bond acceptors (HBA), the yellow ball
shows Hydrophobic interactions, the green ball shows Hydrogen bond donors (HBD) and a blue
ring represents an Aromatic ring.
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3.3. Validation of Generated Pharmacophore Model

The ROC curve shows the performance of the model to effectively distinguish between
a collection of “active” and “inactive” compounds [44]. The AUCs were determined as 1.0,
1.0, 1.0 and 0.70 in the top 1%, 5%, 10% and 100% of the screened library, respectively. AUC
is assigned values between 0 and 1, with 1 suggesting a theoretically perfect classification
showing 100% sensitivity and 100% specificity. Consequently, an AUC closer to 1 is
crucial, whilst 0.5 suggests a random classification implying a poor predictive ability of
the model [44–47]. An AUC value of 0 implies an incorrect classification, whilst 0.70 or
better implies moderate discrimination and hence suitable for classification. Since the
overall AUC was 0.7, the model was reasonably good in classification. Additionally, EFs
were determined as 51.0, 34.0, 34.0 and 34.0 for 1%, 5%, 10% and 100%, respectively
(Figure 3). With three active ligands appearing in the hit results (Figure 3), the selected
pharmacophore model had the reasonable capability to distinguish between actives and
decoys successfully [48].

Computation 2021, 9, x FOR PEER REVIEW 9 of 27 
 

 

 
Figure 3. Selected pharmacophore model ROC curve indicated in blue. Determined at 1, 5, 10 and 
100% of the selected database were the AUC and EF values as shown. The median is shown by 
dotted lines. If the curve were to be close to the median, then it would suggest a poor model. 

3.4. Pharmacophore-Based Screening of the Library 
Virtual screening based on the generation of pharmacophore models is useful in 

identifying structurally novel and potential lead compounds arising from chemically di-
verse databases [49]. The validated pharmacophore model was used as a 3D query to 
screen the library comprising 2530 compounds. Compounds are matched and filtered out 
based on the pharmacophore fit score generated for the pharmacophore model [26]. This 
process drastically reduces the dataset of molecules resulting in fewer promising mole-
cules for molecular docking. The compounds used for further downstream analysis had 
pharmacophore fit scores above 65 (Table 2). The mapping of these compounds on the 
pharmacophore model is also visualized (Figure 4). 

Table 2. Hit molecules arranged in order of decreasing pharmacophore fit score. The compounds 
were used for further downstream analysis including molecular docking. 

Name Pharmacophore-Fit Score 
Pyrogallol 67.16 

Chrysophanol 67.04 
ZINC00058187 67.02 

3-methoxy-4-hydroxyphenol 1-O-beta-D-gluco-
pyranoside 

66.97 

Gossypetin 3,7,8-trimethyl ether 66.88 
3′-hydroxyflindulatin 66.88 

Vanillin 66.85 
4′-methyl gossypetin 66.82 

Isoscutellarein 66.81 
Corniculatusin 66.75 
Sexangularetin 66.75 
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lines. If the curve were to be close to the median, then it would suggest a poor model.

3.4. Pharmacophore-Based Screening of the Library

Virtual screening based on the generation of pharmacophore models is useful in
identifying structurally novel and potential lead compounds arising from chemically
diverse databases [49]. The validated pharmacophore model was used as a 3D query to
screen the library comprising 2530 compounds. Compounds are matched and filtered
out based on the pharmacophore fit score generated for the pharmacophore model [26].
This process drastically reduces the dataset of molecules resulting in fewer promising
molecules for molecular docking. The compounds used for further downstream analysis
had pharmacophore fit scores above 65 (Table 2). The mapping of these compounds on the
pharmacophore model is also visualized (Figure 4).
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Table 2. Hit molecules arranged in order of decreasing pharmacophore fit score. The compounds were used for further
downstream analysis including molecular docking.

Name Pharmacophore-Fit Score

Pyrogallol 67.16
Chrysophanol 67.04
ZINC00058187 67.02

3-methoxy-4-hydroxyphenol 1-O-beta-D-glucopyranoside 66.97
Gossypetin 3,7,8-trimethyl ether 66.88

3′-hydroxyflindulatin 66.88
Vanillin 66.85

4′-methyl gossypetin 66.82
Isoscutellarein 66.81
Corniculatusin 66.75
Sexangularetin 66.75

Bucegin 66.74
Isoscutellarein 8-methyl ether 66.74

Onopordin 66.74
Gentisic acid 66.74

1,8-dihydroxy-3,5-dimethoxyxanthone 66.74
Herbacetin 66.74

ZINC14490611 66.72
Vanillic acid 66.70
Betavulgarin 66.56
Epitaxifolin 66.42

P-hydroxybenzoic acid 66.40
2,5-dihydroxybenzaldehyde 66.36

2,4′-dihydroxy-3′-methoxyacetophenone 66.35
Omega-hydroxypropioguaiacone 66.34

5-(hydroxymethyl)-2-furancarboxylic acid 66.34
Aloe-emodin 66.30

Catechin 66.30
ZINC05854400 66.19

2,5-dihydroxybenzyl alcohol 66.17
ZINC00013245 66.12
Acetovanillone 66.11

4-(2-formyl-5-hydroxymethylpyrrol-1-yl) butyric acid 66.07
Gossypetin 3,8-dimethyl ether 65.97

3,7-dihydroxy-8-methoxy-3-(3′,4′-methylenedioxybenzyl)chroman-4-one 65.89
2,3-dihydroxy-1-(4-hydroxy-3-methoxyphenyl)-1-propanone 65.88

Shikimic acid-4-O-gallate 65.85
ZINC13328057 65.77

Gentisic acid 5-O-glucoside 65.44
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3.5. Validation of Molecular Docking Protocol
3.5.1. Superimposition of Co-Crystals with Re-Docked Complexes

AutoDock Vina was used for molecular docking as a result of its ability to ran on all
major operating systems [50]. However, to be used for this study, it needed to be validated.
The re-docking of HEPES ligand into the active site was used to evaluate the docking
protocol via superimposing the projected docking poses over the experimentally identified
co-crystallized structure of the target. The basis of which was the fact that HEPES has a
known conformation and orientation since it was extracted from the co-crystal structure of
the target. An RMSD value of 1.413 Å was obtained indicating that AutoDock Vina had the
potential to reproduce the crystallographic pose. The pose generated from the superim-
position of the co-crystallized HEPES and re-docked HEPES complexes is represented in
Figure 5. Additionally, four overlapping interacting residues comprising Tyr111, Asn158,
Met350, and Arg368 were revealed, which were previously shown as critical (Figure 6).
These critical overlapping residues are indicative of the fact that AutoDock Vina could
essentially replicate a strikingly comparable pose given the similar setting.
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3.5.2. ROC Curve Analysis of the Molecular Docking Protocol

ROC curve with computed AUC is crucial in virtual screening to evaluate the effi-
ciency of AutoDock Vina in its capacity to differentiate between active ligands and inactive
molecules or decoys [32]. The AUC of the ROC curve for the five inhibitors of CGS
from H. pylori against CGS from M. ulcerans and their corresponding 250 decoys was 0.76
(Figure 7). This suggests that AutoDock Vina showed appreciably good discriminative abil-
ity in distinguishing between the 5 inhibitors comprising Juglone, α-Lapachone, Paulownin,
Yangambin, and 9-Hydroxy-α-Lapachone from their corresponding 250 decoys.
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3.6. Molecular Docking of Pharmacophore Hits

Molecular docking involves the prediction and identification of ligand orientation
and conformation within a targeted active site [51,52]. It involves the identification of
lead compounds against a target protein. Molecular docking via virtual screening predicts
the ligand–target complex structure by exploring the conformational space of the ligands
within the binding site of the target protein. The screened pharmacophore hits (Table 2)
were used to obtain ligands with low binding energies (Table 3 and Figure 8). The lower
the binding energy, the stronger the binding affinity of the ligand to the target protein.
Binding affinity refers to the strength of the interaction between two or more molecules [53].
Table 3 shows the five known inhibitors of CGS of H. pylori and the 24 pharmacophore
hits that docked firmly within the binding pocket after filtering out compounds with
binding energies > −7.0 kcal/mol. Chrysophanol reported the lowest binding energy
of −8.9 kcal/mol. The 24 compounds had binding energies within the range of −7.1 to
−8.9 kcal/mol. Similarly, the 5 known inhibitors had binding energies falling within the
range of −7.2 to −8.8 kcal/mol.
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Table 3. Binding energies of top 24 ligands after molecular docking. The ligands with the more
negative binding energies are ranked or classified as obtaining the highest binding affinities.

No. ZINC ID/Compound Name Binding Energy/kcal/mol

Known Inhibitors
1 9-hydroxy-alpha-lapachone −8.8
2 Alpha-Lapachone −8.7
3 Paulownin −8.5
4 Juglone −7.3
5 Yangambin −7.2

Pharmacophore Hits
6 Chrysophanol −8.9
7 Aloe-emodin −8.6
8 Herbacetin −8.5
9 Isoscutellarein −8.4
10 Onopordin −8.4
11 Betavulgarin −8.4
12 ZINC05854400 −8.4
13 ZINC14490611 −8.3
14 Bucegin −8.3
15 Isoscutellarein 8-methyl ether −8.2
16 Sexangularetin −8.2
17 Corniculatusin −8.2
18 4′-methyl gossypetin −8.2
19 1,8-dihydroxy-3,5-dimethoxyxanthone −8.1
20 Epitaxifolin −8.1
21 ZINC13328057 −7.9
22 Catechin −7.7
23 Gossypetin 3,8-dimethyl ether −7.7
24 Gossypetin 3,7,8-trimethyl ether −7.7
25 ZINC00058187 −7.6
26 Shikimic acid−4-O-gallate −7.6

27 3,7-dihydroxy-8-methoxy-3-(3′,4′-
methylenedioxybenzyl)chroman-4-one

−7.6

28 3′-hydroxyflindulatin −7.6
29 Gentisic acid 5-O-glucoside −7.1
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3.7. Protein-Ligand Interaction

Proteins are known to attain their optimum biological functions by their direct physical
interaction with ligands which aids in a better understanding of protein functions and
drug development [54]. Hydrogen bonding is one of the most essential intermolecular
interactions because it confers much stability to the protein–ligand complex [55–57]. The
ligands of interest are those that formed more hydrogen bond interactions with the protein,
demonstrating potential specificity which would distinguish a highly specific binding
partner from less specific ones [58].

The highest number of hydrogen bonds of six was formed among Shikimic acid-
4-O-gallate and the receptor. Epitaxilon and Gentisic acid 5-O glucoside followed with
5 hydrogen bonds each (Figure 9) and then Betavulgarin with 4 hydrogen bond interactions.
The exception was Catechin which formed no hydrogen bonds with the receptor. Juglone
and 9-hydroxy-alpha-lapachone were found to have formed 2 and 1 hydrogen bonds with
the Asp183 residue, respectively.
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The shorter the bond length, the stronger the hydrogen bond formed [55]. The shortest
hydrogen bond length observed was 2.28 Å, which was formed between 4′-methyl gossypetin
and Asp183 residue. A summary of the interaction studies of the top 24 hits together with the
five known inhibitors is presented in Table S1.

3.8. Physicochemical Profiling

None of the 24 ligands violated Lipinski’s rule since pre-filtering of the library was
undertaken to eliminate all potential “non-drug-like” compounds. Similarly, the known
inhibitors violated none of Lipinski’s rules. Other physicochemical parameters predicted
have been reported (Tables S2 and S3). All 24 ligands showed good physicochemical
properties based on the parameters set. When compared with four already existing drugs
comprising Streptomycin, Ciprofloxacin, Rifampicin, and Clarithromycin, the hits were
predicted to show better physicochemical properties.

3.9. Pharmacokinetics and Toxicity Studies

Pharmacokinetics determines the fate of the administered drugs in a living organism
after chemical metabolism until elimination from the body [59]. The parameters measured
were blood–brain barrier (BBB) permeation, gastrointestinal absorption, permeability
glycoprotein, and cytochromes P450 (CYP) (Figure S1 and Table S3). Gastrointestinal
absorption (GI) is the process where orally administered drugs are absorbed into the
bloodstream [60]. Compounds denoted “high” have a high GI absorption and vice versa.
BBB permeation is the potential of a drug to cross the blood–brain barrier to the brain
to bind to receptors relevant for the activation of signaling pathways. Predicting the
permeability is very important in the development of drugs because a molecule will not be
able to demonstrate therapeutic activity within the brain parenchyma unless the barrier is
permeated [61]. However, for this study, compounds that are known to cross the BBB were
ignored. P-glycoprotein (Pgp) helps to prevent the central nervous system (CNS) from
xenobiotics. Cytochrome isoforms CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4 are
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essential because of their interaction with compounds to aid in drug elimination through
metabolism. Toxic and unwanted adverse effects may occur if these isoenzymes are
inhibited. Figure S1 shows the pharmacokinetics of the ligands compared to the existing
anti-Buruli ulcer drugs. Compounds are considered to have met the pharmacokinetic
threshold if they have high GI absorption, ‘No’ for BBB permeation, ‘Yes’ Pgp substrate,
and ‘No’ for at least 3 cytochromes.

Aloe-emodin, ZINC05854400, ZINC14490611, Epitaxifolin, ZINC13328057, and Cat-
echin showed good ADME profiles. Shikimic acid-4-O-gallate and Gentisic acid 5-O-
glucoside also showed good ADME profiles except for low GI absorption. The rest of the
compounds showed poor ADME profiles which suggest that these compounds could be
optimized to meet the aforementioned criteria for a good ADME profile. For the known
drugs comprising Streptomycin, Ciprofloxacin, Rifampicin, and Clarithromycin, all but
Ciprofloxacin showed low GI. All known drugs were predicted to be Pgp substrates.
CYP3A4 was the only cytochrome predicted to be inhibited by Clarithromycin. The other
known drugs showed no inhibition against the cytochrome family. Salmonella typhimurium
reverse mutation assay (AMES) toxicity [62,63], carcinogenicity and Human Ether-a-go-go-
Related Gene Inhibition (hERG I Inhibitor) [64] were employed for toxicity studies. AMES
toxicity provides information on whether a particular chemical can cause mutations in the
DNA of an organism. This was very essential to this study because administered drugs
should not cause mutation in the DNA of patients. Carcinogenicity is the measure of a
chemical’s ability to induce cancer or increase the incidence of cancer, whilst the hERG I
Inhibitor represents the potential of the compound to inhibit the hERG I receptor resulting
in arrhythmia [65]. For this study, we required that these parameters were adequately met
for the compounds to be considered as potentially non-toxic. Table S4 shows the toxicity
measure of each ligand as well as known inhibitors. For a ligand to be considered as
potentially toxic, it is assigned a value of 1, and 0 if non-toxic. Nine ligands were found
to be AMES toxic. Juglone was the only inhibitor found to be AMES toxic. Additionally,
3′-hydroxyflindulatin was predicted to be an hERG I inhibitor. Even though it was ob-
served not to be carcinogenic and AMES toxic, it was still classified as potentially toxic. All
24 compounds and 5 inhibitors were found not to be carcinogenic. All compounds that
were predicted to be toxic could be adequately optimized to generate low toxic analogues.

3.10. Exploring Predicted Leads for Anti-Microbial and Antimycobacterial Activity.

Structure-Activity Relationship (SAR) describes the association between a chemical
compound and the intrinsic property of a compound to elicit a particular pharmacological
effect [66]. PASS predictions are built on SAR analysis of compounds in the database. In
essence, the structural features of queried compounds are compared to those of known
biological activity to infer the pharmacological profiles [67,68]. Each activity predicted
has accompanying Probability of activity (Pa) and Probability of inactivity (Pi) values that
determine the probability of a particular substance belonging to a class of active or inactive
compounds, respectively. For this study, compounds with Pa > Pi for antibacterial and an-
timycobacterial activities were of particular interest since they are considered probable [68].
A total of 23 compounds were predicted as possessing antibacterial activity with Pa > 0.3.
Only 3, 7-dihydroxy-8-methoxy-3-(3′,4′-methylenedioxybenzyl) chroman-4-one was not
predicted as antibacterial, hence it was eliminated from the prioritization. Gentisic acid
5-O-glucoside was found to have the highest Pa 0.618 and lowest Pi 0.008. The Pa values
for the remaining 22 compounds ranged between 0.3 < Pa < 0.6. Additionally, four of the
compounds were in the range 0.4 < Pa < 0.5, while the rest of the 17 were within the range
0.3 < Pa < 0.4 (Table 4).
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Table 4. Compounds with their Pa and Pi values for predicted antibacterial activity. When Pa > Pi,
the compound is worth being pharmacologically profiled.

Compounds Pa Pi

Gentisic acid 5-O-glucoside 0.618 0.008
ZINC05854400 0.489 0.017
ZINC00058187 0.411 0.027
Sexangularetin 0.405 0.029

Isoscutellarein 8-methyl ether 0.404 0.029
Isoscutellarein 0.403 0.029

Herbacetin 0.399 0.030
Onopordin 0.396 0.031

Bucegin 0.394 0.031
Gossypetin 3,8-dimethyl ether 0.393 0.032

Gossypetin 3,7,8-trimethyl ether 0.384 0.034
3′-hydroxyflindulatin 0.384 0.034

Epitaxifolin 0.381 0.035
ZINC14490611 0.379 0.035
Corniculatusin 0.379 0.035

4′-methyl gossypetin 0.373 0.037
Chrysophanol 0.371 0.038

1,8-dihydroxy-3,5-dimethoxyxanthone 0.368 0.038
Aloe-emodin 0.360 0.040

ZINC13328057 0.358 0.041
Betavulgarin 0.354 0.042

Catechin 0.350 0.043
Shikimic acid-4-O-gallate 0.327 0.065

Medicinal plants that have been suggested to hold inhibitory potential against M. ul-
cerans were found to have Chrysophanol, Chrysophanic acid and aloe-emodin as part of
the main constituents. More so, glucoside, methyl ether and gallate functional groups
were also found to be the main components of the plants with inhibitory potential against
M. ulcerans [69]. Therefore, the compounds could hold inhibitory potential against CGS
of M. ulcerans. Six compounds comprising Gentisic acid 5-O-glucoside, ZINC05854400,
ZINC00058187, Sexangularetin, Isoscutellarein 8-methyl ether and Isoscutellarein were
predicted as antibacterial with Pa > 0.4 and Pa > Pi. Additionally, the Pa for antimycobacte-
rial, anti-ulcerative, antituberculosis, antioxidant and dermatological activities were within
the ranges 0.4 < Pa < 0.7, 0.3 < Pa < 0.7, 0.4 < Pa < 0.6, 0.3 < Pa < 0.9 and 0.3 < Pa < 0.6,
respectively. The compounds had Pa > Pi for all the predicted biological activities.

Gentisic acid 5-O-glucoside was predicted as antimycobacterial, anti-ulcerative, antitu-
berculosis, antioxidant and dermatological with Pa 0.623 and Pi 0.009, Pa 0.550 and Pi 0.16,
Pa 0.548 and Pi 0.008, Pa 0.637 and Pi 0.004, and Pa 0.457 and Pi 0.041, respectively (Table 5).
Additionally, Gentisic acid 5-O-glucoside was predicted to be an isocitrate lyase inhibitor
with Pa 0.573 and Pi 0.003. Isocitrate lyase (ICL) and maltase synthase (MS) are two es-
sential enzymes in the glyoxylate cycle, a pathway essential to the growth of bacteria [70].
This pathway mediates the persistence of M. tuberculosis because of the intermediates of
the tricarboxylic acid (TCA) made available to the organism for glucogenesis as well as
other biosynthetic processes. Isocitrate lyase has been suggested as a drug target due to its
role in disrupting the pathway when it undergoes conformational changes after binding
to a substrate [71]. Therefore, Gentisic acid 5-O-glucoside is an attractive molecule to be
explored pharmacologically and potentially specific for the target (CGS). Gentisic acid
5-O-glucoside formed a total of 13 intermolecular bonds comprising five hydrogen and
eight hydrophobic bonds.

A similarity search through DrugBank revealed Quercetin and Diosmetin as analogs
of Isoscutellarein with a similarity score of 0.838 each. Quercetin and Diosmetin have
been linked to M. tuberculosis as possessing antimycobacterial and antituberculosis poten-
tials [72–74]. Quercetin and Diosmetin belong to the family of flavonoids which are known
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to be principal constituents of plants with potency against M. ulcerans [69]. Isoscutellarein
had a binding energy value of −8.4 kcal/mol and formed 3 hydrogen bond interactions
with critical residues Met87, Asp183 and Glu154, as well as 9 hydrophobic contacts.

A structural similarity search via DrugBank with a similarity score of 0.7 involving
ZINC05854400 and ZINC00058187 did not reveal any analogs reported to be antimycobac-
terial or antibacterial. However, when the threshold was decreased further, Quercetin
and Atovaquone emerged with similarity scores of 0.582 and 0.553 for ZINC05854400 and
ZINC00058187, respectively. A combination of Atovaquone and Azithromycin has been
shown as a viable therapy for Mycobacterium avium complex (MAC) infection [75]. Fur-
thermore, ZINC05854400 and ZINC00058187 were among the three compounds (Table 5)
predicted as dermatological with Pa > 0.3. ZINC05854400 had a binding energy of
−8.4 kcal/mol and formed 2 hydrogen bond interactions with two critical residues Met87
and Asp183, as well as 12 hydrophobic contacts. ZINC00058187 had a binding energy
of −7.6 kcal/mol and formed 1 hydrogen bond interaction with Asn158, as well as 7 hy-
drophobic contacts.

Table 5. Predicted biological activities of compounds with Pa > 0.3 and Pi< Pa. The biological activities
comprise antimycobacterial, anti-ulcerative, antituberculosis, antioxidant and dermatological activity.

Antimycobacterial Anti-Ulcerative

Compounds Pa Pi Compounds Pa Pi

Gentisic acid
5-O-glucoside 0.623 0.009 ZINC05854400 0.637 0.008

Isoscutellarein
8-methyl ether 0.568 0.012 Gentisic acid

5-O-glucoside 0.550 0.016

ZINC00058187 0.51 0.018 Isoscutellarein 0.536 0.017

Sexangularetin 0.47 0.024 Isoscutellarein
8-methyl ether 0.521 0.02

Isoscutellarein 0.465 0.025 Sexangularetin 0.486 0.026
ZINC05854400 0.446 0.029 ZINC00058187 0.333 0.076

Antituberculosis Antioxidant

Compounds Pa Pi Compounds Pa Pi

Gentisic acid
5-O-glucoside 0.548 0.008 Isoscutellarein 0.876 0.003

Isoscutellarein
8-methyl ether 0.502 0.02 ZINC05854400 0.837 0.003

ZINC00058187 0.492 0.013 Sexangularetin 0.825 0.003

Sexangularetin 0.443 0.021 Isoscutellarein
8-methyl ether 0.777 0.004

Isoscutellarein 0.438 0.022 Gentisic acid
5-O-glucoside 0.637 0.004

Dermatological ZINC00058187 0.343 0.017

Compounds Pa Pi

ZINC05854400 0.501 0.032
Gentisic acid

5-O-glucoside 0.457 0.041

ZINC00058187 0.356 0.065

3.11. Molecular Dynamics (MD) Simulation of Target Structure and Complexes

MD simulation was executed to study the stability and conformational changes of the
target protein and ligands in complex with the protein. Five receptor–ligand complexes
and the unbound receptor were subjected to MD simulations. The ligands comprise two
known inhibitors Juglone and 9-hydroxy alpha-lapachone and potential leads Gentisic
acid 5-O glucoside, Isoscutellarein, and ZINC05854400. The stabilities were analyzed over
100 ns simulation time (Figure 10). The RMSD plots were used to assess the stability of
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the complexes and the target protein. The RMSD represents the average distance of atoms
of the residues at the protein backbone [76]. The backbone of the target protein showed
fluctuations from 0.15 nm to 0.25 nm over the initial period of 5. However, it sustained an
average RMSD of 0.25 nm from 5 ns to about 55 ns, then fluctuated to about 3.0 nm, where it
remained steady until 100 ns period, albeit, recording an RMSD of 0.27 nm. Aside from the
initial fluctuations between 0.25 nm and 0.35 nm from 0 to 30 ns, both Isoscutellarein and
Gentisic 5-O glucoside complexes mimicked the trajectory of the target protein until the
100 ns period, attaining an average RMSD of about 0.27 nm in both cases. The RMSD of the
ZINC05854400 complex rose to about 0.44 nm for the initial 20 ns and remained steady until
few fluctuations at the 65 ns and then rose to 0.41 nm at 75 ns, where it remained steady
until the 100 ns period, averaging at RMSD of about 0.42 nm. The RMSD of the 9-hydroxy
alpha-lapachone complex rose to about 0.45 nm for the initial 20 ns and progressed steadily
until 50 ns where it dropped to about 0.28 ns. It increased again to about 0.41 nm with
few fluctuations between 0.35 nm to 0.45 nm towards the 100 ns mark. The RMSD of the
Juglone complex rose to about 0.4 nm at 5 ns and remained steady to about 53 ns where
it increased for about 0.45 ns. It then remained steady until 86 ns where it rose to about
0.52 ns until 100 ns. Therefore, the complexes were conformationally stable within the
period of the simulations.
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3.12. MM-PBSA Binding Free Energy Calculations

The MM-PBSA approach [32] was used in calculating the binding free energies of
the protein–ligand complexes following the contribution of van der Waal, electrostatic,
polar solvation, and the Solvent Accessible Surface Area (SASA) energies [77]. Gentisic 5-O
glucoside obtained the least free binding energy of −239.865 kJ/mol (Table 6) and was fol-
lowed by Isoscutellarein with −70.790 kJ/mol. Even though ZINC05854400 was predicted
to have the least affinity to the protein with a binding free energy of 320.907 kJ/mol, it was
found to have one of the lowest binding energies of −8.4 kcal/mol from the molecular
docking. In terms of energy contribution to the overall binding energy, van der Waal had a
larger energy contribution whereas nonpolar solvation energies and electrostatic energies
contributed slightly (Table 6).

Per-residue decomposition was employed to investigate the energy input of each residue.
In general, residues with energies >5.0 kJ/mol or <−5.0 kJ/mol are regarded as plausible
key binding moieties [78]. Majority of the residues contributed energies >5.0 kJ/mol or
<−5.0 kJ/mol in both Gentisic 5-O glucoside (Figure S2) and ZINC05854400 complexes
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(Figure 11). Isoscutellarein complex (Figure S3) on the other hand had just one residue,
Leu181, with energy contribution >5.0 kJ/mol. Even though, Gentisic 5-O glucoside
and ZINC05854400 complexes were hitherto reported to bind to crucial residues (Gly86,
Met87, Asn158, Asp183, and Ser205), only Met87 produced the highest energy contribution
(Figure 11). Even though, other residues contributed more, they were not located in the
binding pocket of the protein.

Table 6. Energy terms of the CGS–ligand complexes from MM-PBSA calculation. The values are presented in
average ± standard deviations in kJ/mol.

Compound van der Waal
Energy (KJ/mol)

Electrostatic
Energy (KJ/mol)

Polar Solvation
Energy (KJ/mol)

SASA Energy
(KJ/mol)

Binding Energy
(KJ/mol)

Gentisic 5-O
glucoside

1.793 +/−
6.832 kJ/mol

−633.686 +/−
68.712 kJ/mol

398.347 +/−
34.000 kJ/mol

−6.320 +/−
2.460 kJ/mol

−239.865 +/−
68.428 kJ/mol

Isoscutellarein −101.940 +/−
79.145 kJ/mol

−12.961+/−
12.615 kJ/mol

54.056 +/−
51.199 kJ/mol

−9.944 +/−
8.391 kJ/mol

−70.790 +/−
60.419 kJ/mol

ZINC05854400 −117.075 +/−
30.579 kJ/mol

356.619 +/−
91.497 kJ/mol

95.183 +/−
77.435 kJ/mol

−13.820 +/−
3.671 kJ/mol

320.907 +/−
54.474 kJ/mol
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3.13. Leads Summary

Gentisic acid 5-O glucoside, Isoscutellarein and ZINC05854400 have been identified as
potential leads against CGS of M. ulcerans (Table 7). Even though, ZINC05854400 had the
highest binding free energy of 320.907 kJ/mol with CGS of M. ulcerans from the MM-PBSA
calculations, its antimycobacterial potential can be explored experimentally. However,
it could be exploited as a scaffold for the development of antimycobacterial drugs. The
antimycobacterial potential of the compounds Sexangularetin, Isoscutellarein 8-methyl
ether, and ZINC00058187 could also be further investigated.
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Table 7. Molecules with their names and 2D structures. The molecules have been suggested as potential antimycobacte-
rial leads.

Compound Name IUPAC Name Other Names 2D Structure

Gentisic acid 5-O glucoside 2-hydroxy-5-[3,4,5-trihydroxy-6-
(hydroxymethyl)oxan-2-yl]oxybenzoic acid
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4. Conclusions

We have used molecular docking and ligand-based pharmacophore modeling to iden-
tify three African natural products as potential novel lead compounds against the CGS
of M. ulcerans. The compounds comprising Gentisic acid 5-O glucoside, Isoscutellarein
and ZINC05854400 have the potential to inhibit the activities of CGS, and possibly delay
the growth of the mycobacterium via the disruption of methionine synthesis. Addition-
ally, they were predicted to possess antibacterial, antimycobacterial, anti-ulcerative, and
dermatological activities. The three molecules were shown to have favorable pharmaco-
logical profiles, binding energies, and binding mechanisms. Since the study is primarily
computational, experimental corroboration of the results is expedient. The scaffolds of the
molecules can be adapted as a skeleton for the design of next-generation CGS inhibitors for
treating mycobacterial infections, especially Buruli ulcer.

Supplementary Materials: The following are available online at https://www.mdpi.com/2079-3
197/9/3/32/s1, Figure S1: A heat map showing the pharmacokinetic properties of potential leads,
known drugs and inhibitors predicted as GI absorption, BBB permeant, and Pgp substrate, as
well as CYP1A2, CYP2C19, CYP2C9, CYP2D6, and CYP3A4 inhibitors. Red denote “Yes” whilst
blue denotes “No” to cytochrome inhibition, respectively. Additionally, low Gastrointestinal (GI)
absorption is denoted by green, whilst high is denoted by violet. Figure S2: Molecular mechanics
Poisson-Boltzmann surface area (MM-PBSA) plot of binding free energy contribution per residue of
Gentesic 5-O glucoside complex. Fluctuations by hitherto predicted critical residues are shown in
red. Figure S3: Molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) plot of binding
free energy contribution per residue of Isoscutellarein complex. Fluctuations by hitherto predicted
critical residues are shown in red. Table S1: The interaction studies of the top 24 pharmacophore hit
compounds following molecular docking arranged in descending order of the number of hydrogen
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bonds formed. Known inhibitors are in red. Table S2: Physicochemical Properties of 24 ligands and
4 known anti-Buruli ulcer drugs. Some of the drugs violated Lipinski’s rule. Known inhibitors, as
well as known drugs, are in red. Table S3: Physicochemical properties of the top 24 ligands and 4
known anti-Buruli ulcer drugs showing other physicochemical parameters. Known inhibitors and
known drugs are in red. Table S4: Toxicity results of 24 ligands with their respective structures
predicted as AMES toxicity, carcinogens, and hERG I Inhibitor.
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SDF Structure Data File
UFF Universal Force Field
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ID Identification
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