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Abstract: In this work, we present a method to build a first order reduced density matrix (1-RDM)
of a molecule from variational Quantum Monte Carlo (VMC) computations by means of a given
correlated mapping wave function. Such a wave function is modeled on a Generalized Valence Bond
plus Complete Active Space Configuration Interaction form and fits at best the density resulting from
the Slater-Jastrow wave function of VMC. The accuracy of the method proposed has been proved
by comparing the resulting kinetic energy with the corresponding VMC value. This 1-RDM is used
to analyze the amount of correlation eventually captured in Kohn-Sham calculations performed
in an unrestricted approach (UKS-DFT) and with different energy functionals. We performed test
calculations on a selected set of molecules that show a significant multireference character. In this
analysis, we compared both local and global indicators of nondynamic and dynamic correlation.
Moreover, following the natural orbital decomposition of the 1-RDM, we also compared the effective
temperatures of the corresponding Fermi-like distributions. Although there is a general agreement
between UKS-DFT and VMC, we found the best match with the functional LC-BLYP.

Keywords: electronic correlation; density functional theory; Quantum Monte Carlo

1. Introduction

The first measure of electron correlation energy was introduced by Löwdin as the
energy difference between the exact solution of the non-relativistic Schrödinger equation
and the Hartree-Fock (HF) approximation [1]. Although this is not a rigorous measure,
considering that some correlation, namely Fermi correlation, is included in HF theory,
it accounts for almost all the so-called Coulomb correlation originated by the two-body
electron-electron interaction in the non-relativistic Hamiltonian. The correlation energy
can further be decomposed in two terms denoted dynamic and nondynamic (or static)
correlation. As the HF description based on a single Slater determinant, the dynamic
correlation enters when the ground state of the system is sufficiently well described by a
single determinant. On the other hand, nondynamic correlation arises when, in order to
reproduce accurately the electronic structure of the system, two or more near degenerate
determinants are necessary. Usually, the so-called post Hartree Fock methods (such as
perturbation expansions or coupled clusters methods) are able to recover most of the
dynamic correlation of the system; however, the recover of nondynamic correlation results
more tricky and requires employing multiconfigurational methods. Valence Bond (VB)
theory, as well as Multiconfiguration Self Consistent Field (MCSCF) theory, are able to
capture the resonance between different configurations and then they can be used to
estimate nondynamic correlation. Worth mentioning, in this regard, are the seminal works
on the dissociation of the hydrogen molecule of Coulson and Fischer [2] and of Heitler
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and London [3]. Among the various multiconfiguration techniques, the Complete Active
Space SCF (CASSCF) is the most appropriate to fix a reference for the estimate of the
nondynamical correlation energy. In such a case, the full valence active space should
be taken into account in order to consider all possible arrangements of electrons on the
different molecular orbitals. Unfortunately, such large active spaces require computation
resources rapidly increasing with the number of active electrons and, consequently, this
kind of CASSCF cannot be performed on medium-large molecular systems. Moreover,
despite the CASSCF wave function offers a proper treatment of nondynamic correlation, it
is usually not able to reproduce dynamic correlation effects unless a large amount of orbitals
are included in the calculations. From a computational point of view, density functional
theory (DFT) could be an efficient alternative to multiconfigurational methods because
it assures a good balance between accuracy and computational cost. However, although
DFT usually is considered able to recover most of dynamic correlation, common density
functional approximations (DFA) are generally unable to take into account nondynamic
correlation effects or they can reproduce them in an unspecified manner [4]. This limitation
is related to the intrinsic single determinant shape of the Kohn-Sham (KS) electronic
density. Indeed, in order to preserve the spin symmetry of the electronic Hamiltonian, the
wave function employed in HF or DFT computations has to be constructed in a restricted
framework. However, this formulation results inadequate for the accurate reproduction
of ground state energy of systems with a multiconfigurational character. One way to
overcome this problem is to relax such restriction by allowing electrons to occupy different
orbitals for different spins. Such unrestricted approach allows a lowering of the final energy
mimicking in this case the effects of nondynamic correlation. The resulting determinant
will not be anymore an eigenfunction of the spin operator Ŝ2. However, it is possible
to evaluate the spin contamination between different spin states through the evaluation
of the expectation values < Ŝ2 >. It was shown that this approach allows including
correlation for some particular systems, but its results are inadequate for others (see, for
example, [5–7]). In the case of spin contamination we speak of symmetry breaking and in
KS theory we can interpret the difference between restricted and unrestricted energy as an
estimate of nondynamic correlation energy, namely

∆END
corr ≈ EU−SCF − ER−SCF (1)

To evaluate the extent of correlation that is included in a computational method,
several tools based on an analysis of the wave function have been developed. Worth
mentioning in this context are the T1 [8–10], D1 [11] and D2 [12] diagnostics which were
specifically designed to identify nondynamic correlation signatures in Coupled Cluster
wave functions. Other indicators of correlation are based on the analysis of the first
order reduced density matrix (1-RDM), such for example the ones based on the quantum
entanglement and its connection to entropy [13–15]. Particularly relevant indicators are the
so-called ID and IND which are obtained through a decomposition of the Coulomb hole
into dynamic and nondynamic contributions [16]. These indicators admit a global [17]
and a local [18] expression and can be evaluated by computing the natural orbitals in the
framework of the method employed. Therefore these indicators can be easily computed for
each method which has a non-diagonal 1-RDM. Further indicators based on natural orbitals
have been developed by Tischenko et al. [19] and by Grimme and Hansen [20] in the context
of Finite Temperature DFT (FTDFT) [20]. Such a thermal DFT approach treats statistical
ensemble of quantum states describing the thermodynamic equilibrium of an electronic
system [21]. It has been shown that this approach leads to fractional occupation numbers
that can be used to define a sound measure of static electronic correlation. In principle,
none of these indicators could be employed in DFT because the corresponding 1-RDM
comes from a single determinant wave function and therefore it is diagonal on the basis
of the molecular orbitals. On the other hand, if in the unrestricted framework a breaking
in the spin symmetry occurs, through the Pulay localization [22] it is possible to recover a
non-diagonal 1-RDM for a limited number of orbitals and studying the correlation effects.
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However, in order to study these effects it is necessary to have a proper reference which
appropriately takes into account the correlation. Among all the correlated methods in
computational chemistry, the Quantum Monte Carlo (QMC) and in particular its variational
variant (VMC) is one of the most efficient for the inclusion of both dynamic and nondynamic
correlation effects. VMC is based on a stochastic integration over the expectation value
of a many-body wave function, which contains several variational parameters optimized
through stochastic techniques. The advantage of this method with respect to standard
highly accurate wave function methods, such as Full Configuration Interaction (FCI),
is that it guarantees a more favorable computational scaling with respect to the size of
the molecule. Indeed it has been largely used in the last 30 years for the evaluation of
energies and molecular properties (see, for example, [23]). The correlation effects of a VMC
calculation method could be roughly estimated by comparing the energy of the system
with the HF and CASSCF results; however, for a deeper analysis, it is necessary to compute
the 1-RDM. The direct computation of the 1-RDM needs the performance of N particle
integrals (where N is the number of electrons) of the wave function involving non local
operators. The peculiar shape of the VMC wave function makes the computations of the
1-RDM by stocastic integration very challenging. In the past, Kent et al. [24] recovered the
1-RDM of silicon by resorting to a QMC wave function in which the determinantal part
was a single determinant of local density approximation orbitals.

In this work, we present a route to estimate a correlated 1-RDM from a VMC electronic
density through a stochastic fit procedure. The electronic density is one of the most
relevant properties which could be reproduced through the VMC method [25], indeed it
has been widely shown that accurate electronic densities could be computed by an efficient
sampling of the positions of the electrons in the space employing different kinds of density
estimators [26,27]. The trial 1-RDM employed for the fit needs to have a proper set of guess
orbitals {φi} and occupation numbers {ni} which are extracted from a test wave function
able to preserve the N-representability conditions [28]. Indeed, it has been shown that is
fundamental to satisfy this constraint in order to define a functional of 1-RDM [29–31]. The
reference wave function has the skeleton’s core orbitals coming from a single determinant
calculation (DFT/B3LYP), while the highest occupied and the lowest virtual orbitals will
be parameterized following different multiconfigurational strategies (GVB and CASSCF
like wave functions). This wave function will be proved to be flexible enough to recover
most of the correlation (dynamic and nondynamic) effects of the VMC electronic density.
Further information on the method proposed will be reported in Section 2.1. The resulting
1-RDM will be used to analyze the correlation effects of some selected systems for which
nondynamic correlation is predominant. Once the reliability of this method has been
established, the results obtained will be employed as a reference for studying nondynamic
correlation of unrestricted DFT computations.

The outline of the paper is as follows. In Section 2, we illustrate the methodology
followed in this work based on the construction of the 1-RDM from VMC and from unre-
stricted Kohn-Sham computations and the subsequent comparison and analysis including
a study on nondynamic correlation effects made by finite temperatures extracted from a
Fermi-like distribution. In Section 3, we show the details of the calculations performed in
this study and, in Section 4, we present the results obtained on a set of illustrative examples
with the related discussion. Finally, in Section 5, we discuss the conclusions and possible
developments for future work.

2. Methodology

Through the analysis of the one-particle reduced density matrix (1-RDM), it is possible
to identify the amount of nondynamic correlation included in the calculation. In this
work, we follow two alternative ways to reconstruct a correlated 1-RDM based on different
methods which are both able to account for a certain amount of nondynamic correlation
effects. In the first of the two routes, we have generated numerically a correlated electronic
density by means of a large set of electronic configurations obtained from a VMC sampling.
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This density has been transcribed in terms of an N-representable 1-RDM that employs
both occupied and virtuals KS orbitals through a multi determinantal wave function form.
Thanks to the quality of the VMC method, we expect that the resulting 1-RDM includes
a considerable amount of both dynamic and nondynamic correlation contributions. The
second route explored in this study, instead, involved unrestricted DFT (UDFT) computa-
tions. In this case we assumed that it is possible to include nondynamic correlation effects
by breaking the spin symmetry of the system. Thus, the projection of the resulting electron
density matrix on a natural orbital basis set will allow the study of the effects of correlation.
Several density functional approximations (DFAs) have been considered to analyze how
nondynamic correlation is treated by unrestricted UDFT in the different rungs of the Jacob’s
ladder [32]. The correlation effects have been studied by computing the global indicators
of correlation developed by Ramos-Cordoba and coworkers [17], namely

IND =
1
2 ∑

i,σ
nσ

i (1− nσ
i ) (2)

ITOT =
1
4 ∑

i,σ
[nσ

i (1− nσ
i )]

1
2 (3)

ID = ITOT − IND (4)

where nσ
i is the occupation number of the spin-natural orbital i with spin σ. Finally, the

calculated natural orbital occupancies will be related to canonical KS single particle energies
through a Fermi-like distribution.

2.1. 1-RDM from a Correlated Electron Density

A correlated electron density can be generated from an accurate wave function ob-
tained through a QMC calculation. In the present study, such a wave function has a
multiconfiguration Slater-Jastrow form [33] and has been optimized at VMC level. More
informations on the shape of the wave function are reported in Section 1 of the Supporting
Information (SI). The optimized wave function ΨQMC(~R), in which ~R is a 3N-dimensional
vector which includes the coordinates of the N electrons, is used to efficiently sample the
configuration space through the probability density

P(~R) =
|ΨQMC(~R)|2∫
d~R|ΨQMC(~R)|2

. (5)

Through a Metropolis importance sampling [34] it is possible therefore to generate an
arbitrary number of electronic configurations. The electron density has been reconstructed
on a grid employing an appropriate Gaussian smearing technique applied to a sufficiently
large number of such configurations, namely

ρ(~r) = N
∫

d~r2...~rN |ΨVMC(~r,~r2...~rN)|2 ≈
1
M

M

∑
k

ρk(~r) (6)

where M is the number of configurations and ρk is the value of the electron density for
the k-th configuration. The expression of ρk has been chosen as a combination of peaked
Gaussian functions centered in the position of each electron and simulating as many delta
functions, namely

ρk(~r) =
N

∑
i

δ(~r−~rik) . (7)
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We expect that, with a sufficiently large number of configurations, the electronic
density is well reproduced by Equation (6) and that the resulting density brings the
information on the correlation effects of the VMC computation.

The Fit Procedure

The information on correlation could be recovered from an appropriate 1-RDM which
is able to reproduce the correlated density of Equation (6). Such a 1-RDM has to be flexible
enough to capture the basic features of the VMC electron density. We decided to construct
a trial N-representable 1-RDM from a multiconfigurational reference wave function. In
our construction we used a well given set of orbitals and we varied the coefficients of each
determinant of such a function in order to fit the VMC density on diagonal. Therefore, the
expression of the trial 1-RDM would be then

ρT(~r,~r1) =
Nel

∑
i,j

ρij(Ck)φi(~r)φj(~r1) (8)

where the matrix elements ρij depend on the coefficients of the determinants Ck, namely the
parameters of this fit. As many orbitals we include in Equation (8) as more accurate will be
the fit itself. In this work, we used Nel orbitals, where Nel is the number of electrons. Finally,
the 1-RDM has been parameterized combining a Complete Active Space Configuration
Interaction (CASCI) approach for the π-orbitals included in the sample and a Generalized
Valence Bond (GVB) one for the rest. In principle, several trial wave function could be
employed for the parameterization of the 1-RDM; however, we believe that this kind of
function is flexible enough to capture the main correlation contributions for the systems
considered in this work.

The single particle π-orbitals were taken from a CASSCF computation, while the
others have been selected from a set of localized orbitals (bonding and antibonding type)
obtained from a KS-DFT computation. After the fit of Equation (6) through Equation (8), we
diagonalized ρij to obtain a set of natural orbitals {φNO

i } and the corresponding occupancies
{ni} which will be used to analyze nondynamic correlation effects. The details of the
procedure are illustrated in Section 3.

2.2. 1-RDM from Unrestricted KS Computations

An unrestricted DFT calculation consists of solving the KS equations using a different
set of orbitals for electrons with different spins. Thus, the KS determinant of the model
system will not be anymore an eigenfunction of the spin operator Ŝ2 bringing, in principle,
spin contamination in the calculation. Nevertheless, the resulting electron density should be
again an acceptable N-representable density for the real interacting system. Therefore, the
unrestricted KS determinant will have enough flexibility to include nondynamic correlation
effects which are, otherwise impossible to be treated by restricted DFT. We can analyze the
importance of these contributions recovering the 1-RDM of this computation appropriately
computed following the Pulay localization scheme. The derivation of this 1-RDM is shown
below. The electronic density of the system can be split into the sum of the spin up (α) and
spin down (β) contributions

ρ(~r) =
Nα

∑
i
|φα

i (~r)|2 +
Nβ

∑
i
|φβ

i (~r)|
2 (9)

where φα
i (~r) are the orbitals assigned to spin up electrons, while φ

β
i (~r) are the corresponding

ones with spin down component.
The φσ

i (~r), as usual, are obtained from the SCF procedure in a basis of atomic orbitals:

φσ
k (~r) = ∑

i
χi(~r)Tσ

ki . (10)
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To compute the natural orbitals we project this density into the atomic orbital basis
orthogonalized by the Löwdin procedure [35] denoted as {χ̄k}. The corresponding matrix
expression of the 1-RDM would be

ρ̄kl = ∑
σ

Nσ

∑
i
〈χ̄k|φσ

i 〉〈φσ
i |χ̄l〉 . (11)

Using Equation (10), Equation (11) becomes

ρ̄kl = ∑
m,n

∑
σ

∑
i

S1/2
kn Tσ

niT
σ
miS

1/2
ml (12)

where Sij are the elements of the overlap matrix constructed from the initial atomic orbitals,
namely Sij =

〈
χi|χj

〉
. The diagonalization of Equation (12) leads to natural orbitals φNO

i (~r),
and fractional occupation numbers ni. Thus, the electronic density can be rewritten as

ρ̄(~r) = ∑
i

niφ
(NO)
i (~r)φ(NO)∗

i (~r) (13)

in which the occupation numbers ni lie between 0 and 2. Because these occupation numbers
depend on the amount of spin contamination, we expect to observe different results for
different DFAs and we will compare the occupancies with the one obtained through the
QMC computations. Concerning the selection of the DFA, it is widely known that hybrid
functionals with higher percentage of explicit HF exchange show bigger spin contamina-
tion. Indeed GGA functionals and hybrids functionals with a low percentage of explicit
exchange are expected to bring less spin contamination with respect to range separated (RS)
functionals. On the other hand, UHF calculations tend to largely overestimate symmetry
breaking effects. In this work, we tested several density functional approximations focusing
in particular on the different percentage of explicit HF exchange.

2.3. Fit of the Fermi Distribution

The occupation numbers previously introduced can be related to the corresponding
canonical single particle energies through a Fermi-like distribution. The parameterization
of such Fermi distributions should be made, in principle, by resorting to an effective
temperature Te f f , by taking as chemical potential (µe f f ) the average between the HOMO
and LUMO energies, namely µe f f = εH+εL

2 . In this work, we decided to include the
chemical potential as a further parameter in order to increase the accuracy of the fit.
Therefore, the function used for the fit is

ni =
1

1 + e
ε̃i−µe f f

Te f f

(14)

and the fit has been carried out on the occupation numbers calculated in both of the two
approaches described in the previous sections. The effective temperature resulting from
the fit is commonly considered as a further measure of nondynamic correlation.

The single particle energies (ε̃i) have been evaluated as the expectation values of a
generalized Fock operator over the set of natural orbitals so far calculated, namely

ε̃i =< φNO
i |F̂|φ

NO
i > (15)

where the operator F̂ is
F̂HF = ĥ + Ĵ − K̂ (16)

in which ĥ is the monoelectronic operator, containing the kinetic energy and the interaction
with the external potential, and Ĵ and K̂ are, respectively, the Coulomb and the exchange
operators defined in terms of the 1-RDM. Equation (15) takes the form
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ε̃i = h̃ii + ∑
m

nm( J̃im −
1
2

K̃im) (17)

in which the integrals are evaluated in the natural orbital basis set and their expressions are:

h̃ii =< φNO
i |ĥ|φ

NO
i >

J̃im =< φNO
i φNO

m |1/r12|φNO
i φNO

m >

K̃im =< φNO
i φNO

m |1/r12|φNO
m φNO

i > . (18)

3. Computational Details
3.1. Construction of the Electronic Density

To fit numerically the electron density, we interpolated the expression of ρ(~r) on a
regular cubic grid. The value of the density at each point of the grid has been taken as

ρ(~rg) =
1
M

M

∑
k

Nel

∑
i

√
w3(~rik)

π3 e−w(~rik)(~rg−~rik)
2

(19)

in which the exponent w of each Gaussian function has been considered as depending on
the cell of definition. More precisely, w is proportional to the number of sampled electron
positions in the given cell as follows

w(~rα) ∝

(
Nc(~rα)

d3

) 2
3

(20)

where Nc(~rα) is the number of sampled configurations, and d is the side of the cubic cell. To
make the electron density profile more homogeneous, the interpolation has been performed
a few times up to convergence. At each iteration, the value of the density has been updated
through a weighted average. Therefore, the electronic density at the iteration k (ρ̃k) will
have the following expression

ρ̃k(~r) =
(k− 1)ρ̃k−1(~r) + ρ(~r)

k
(21)

for a density function ρ(~r) extracted from a QMC run performed within the iteration itself.

3.2. Description of the Fitting Procedure

The fit has been performed with the least squares method, minimizing the quantity ∆2,
which is the square of the difference between the VMC electron density ρQMC interpolated
by Equation (19) and the diagonal of the trial 1-RDM (ρT) integrated over the whole space,
namely

∆2
min = min

ρT
[
∫

d~r(ρQMC(~r)− ρT(~r))2] . (22)

The correct parameterization of the 1-RDM is of paramount importance for an accurate
success of this fit. To reproduce appropriate values for the occupation numbers and kinetic
energy it is necessary to impose precise N-representability constraints on this 1-RDM. For
this reason, we decided to generate the 1-RDM by starting from a GVB wave function and,
in a second stage, by modifying the parameterization of a reduced set of orbitals to include
some larger active space taken from a CASSCF wave function. The starting 1-RDM has
been created using bonding and antibonding orbitals obtained by the localization of B3LYP
Kohn-Sham orbitals. We choose B3LYP orbitals for two main reasons, (i) they result from a
computation in which electronic correlation is subsumed in the KS potential and (ii) B3LYP
is often used to provide orbitals for standard QMC calculations. However, we believe that
there is some flexibility in choosing the energy density functional for this purpose.
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This picture is appropriate for two-electron two-centre bonds while for the delocalized
π electrons we improved the description by resorting to a complete active space properly
defined. We chose a 1-RDM from a GVB wave function because it has a multiconfigurational
character and the density matrix is diagonal for the representation in terms of bonding and
anti-bonding orbitals. Moreover, the GVB wave function uses Nel active orbitals, enough
to capture the effects of nondynamic correlation. In the case of a perfect pairing, the form
chosen in this study, the number of these configuration functions would be N∗ = 2np where
np is the number of pairs [36]. When the GVB geminals are written in terms of bonding
and antibonding orbitals (see, for example, [37]), the GVB 1-RDM could be expressed in
a diagonal form with the occupation numbers which depends strictly on 2np parameters,
namely

ρGVB(~r,~r1) = ∑
i

νi({C1, ..., CN∗})φi(~r)φi(~r1) (23)

where the configuration coefficients Ck depend on the order of excitation and the φi are
the bonding and antibonding orbitals. We apply such GVB scheme to the skeleton of the
molecules considered in this work while we use a different active space for the remaining
electrons. The two relevant subspaces are strong-orthogonal and the final 1-RDM can be
written as a sum of two contributions, namely

ρT(~r,~r1) = ρNa
CAS(~r,~r1) + ρ

Nel−Na
GVB (~r,~r1) (24)

where ρNa
CAS is the 1-RDM parameterized as in a CASCI wave function with Na orbitals,

while ρ
Nel−Na
GVB is the remaining part of the 1-RDM. The expression of ρNa

CAS is indeed

ρNa
CAS(~r,~r1) =

Na

∑
ij

ρijφi(~r)φ∗j (~r1) (25)

The 1-RDM ρNaa
ij has to be diagonalized in order to obtain the set of natural orbitals

and occupancies. The minimization of ∆2 has been achieved by exploring the full space of
parameters with a Metropolis sampling in order to find the deepest minimum and finally
by a steepest descent to find the minimum.

3.3. Methods and Softwares

In this work, within the QMC method, we used VMC to optimize the wave function
taken in a Slater-Jastrow form for all the systems. In all cases we resorted to the Burkatzki,
Filippi and Dolg (BFD) pseudopotentials [38] with their associated valence triple-zeta (VTZ)
Gaussian basis set. The Jastrow factor included always e− n and e− e two-body terms and
e− e− n three-body terms [33]. The determinantal part of the wave function had a basic
CASSCF structure. We used the suite of programs CHAMP [39] for all QMC calculations.
The program GAMESS-US [40] is also used for the setup of the QMC wave function.
All DFT and UDFT single point calculations have been performed using Gaussian 16 [41]
employing the same pseudopotentials and basis sets used for the QMC calculations. Several
functionals from the Jacob’s ladder of DFT [32] have been tested, these functionals are:
BLYP [42], B3LYP [43], BH&HLYP [44], M06-2X [45], CAM-B3LYP [46] and LC-BLYP [47].
The interpolation of the densities on the grids, the construction of the multiconfigurational
parameterization, the numerical fitting of the density as well as the extraction of single
particle canonical energies from UKS orbitals have been performed through homemade
computer programs.

4. Results
4.1. Fit of the Electronic Density

To test our approach, we considered a set of eight molecules which present a mul-
ticonfigurational character. This set includes two triatomic system: the ozone molecule
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and the Be + H2 complex in its transition state structure. Moreover, we included five cyclic
compounds: the cyclobutadiene molecule, studied in both D2h and D4h geometries, the
benzyne ortho-, meta- and para-isomers. Finally, we included in this set the retinal proto-
nated Schiff base chromophore with four conjugated π bonds (PSB4). A scheme with all the
molecules employed in this study has been collected in Figure 1. These molecules display
a different multiconfigurational character and therefore a different amount of nondynamic
correlation. The geometries for the first seven molecules have been taken from the work of
Grimme and Hansen [20] while, for the PSB4, we have taken the geometry from the work
of Zulfikri et al. [48].

(a) BeH2(TS) (b) O3 (c) cyclob(D2h) (d) cyclob(D4h)

(e) o-benzyne (f) m-benzyne (g) p-benzyne (h) PSB4

Figure 1. Collection of the molecules investigated in this study. The geometries of the molecules
computed have been reported in Section 1 of the SI.

We report the results of the energies computed with three different wave function
methods: HF, CASSCF, in which the active space has been chosen in order to include all
the orbitals and electrons of the valence shell, and VMC. These total energies are collected
on Table 1.

Table 1. Ground State electronic energies [a.u.] calculated with the different wave function methods.
For the CASSCF calculations m is the number of electrons and n is the number of orbitals of the
active space.

Molecule EHF ECASSCF(m,n) (m,n) EV MC

Be + H2 (TS) −1.53204 −2.00598 (4,6) −2.01200(5)
O3 −47.04377 −47.14969 (4,4) −47.8447(6)
cyclobutadiene (D2h) −24.26855 −24.33294 (4,4) −24.9648(2)
cyclobutadiene (D4h) −24.21910 −24.32268 (4,4) −24.9501(4)
o−benzyne −35.39269 −35.45937 (8,8) −36.3440(2)
m−benzyne −35.36251 −35.43193 (8,8) −36.3198(2)
p−benzyne −35.20607 −35.40144 (8,8) −36.2877(2)
PSB4 −53.97069 −54.06574 (8,8) −55.3412(3)

From this table, we notice that the CASSCF energy is always between the HF and
VMC values recovering from 7 to 18 percent of correlation in all cases except for the
transition state of BeH2 for which, instead, CASSCF and VMC are very close (98 percent).
In these cases, the multireference character of the system is strongly related to the fraction
of VMC correlation energy recovered by CASSCF. In Figure S1 of the SI we reported the
electronic densities resulted from the QMC sampling. In Table 2, we report the results of
the density fit in order to assess the reliability of the method presented in this work. In
this Table, we compare the kinetic energy derived from the occupation numbers of the
fitted one-particle reduced density matrix with the single particle KS kinetic energy and
the correlated Pandharipande-Bethe kinetic energy derived from QMC calculation. The
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expression of the kinetic energy functional is known exactly and it is explicitly written in
terms of the 1-RDM. As expected, the K f it value is in between KS and QMC recovering
from about 20 to about 90 of the difference. The fit is not able to recover exactly the QMC
value but goes beyond the single-particle kinetic energy of KS. This result is not trivial and
we believe that it supports the use of the fitted one particle density matrix in the present
study. Obviously there is room for improvement especially by switching from GVB to a
more flexible functional form for the mapping of the QMC wave function. Finally, in the
last column of Table 2 we report the final values of ∆2 which show that the accuracy is
somewhat dependent on the size of the system.

Table 2. Report on the accuracy of the fit and comparison between the kinetic energies. The number
of digits for the kinetic energy depends on the accuracy of the method of calculation and reflects the
statistical error of VMC and the standard error of the fit.

Molecule
Kinetic Energies [a.u.]

∆2 × 1000Kks K f it KV MC

Be + H2 (TS) 1.25440 1.3555 1.3928 ( 7) 0.06
O3 35.28944 35.690 35.764 (4) 2.12
cyclobutadiene (D2h) 18.74213 18.815 19.203 (4) 0.84
cyclobutadiene (D4h) 18.83450 19.016 19.397 (5) 1.15
o-benzyne 27.17912 27.308 27.849 (3) 2.24
m-benzyne 26.85206 27.050 27.585(3) 2.00
p-benzyne 26.66995 26.963 27.482 (3) 1.85
PSB4 42.25434 42.462 42.468 (3) 7.56

At this point, our fitted 1-RDM can be used to compute global and local indicators
of correlation introduced by Ramos-Cordoba and Matito [17,18]. The values of global
indicators for CASSCF and the fitted occupancies are reported in Table S1. For further
information to the reader, we have also calculated the local indicators of correlation, these
are displayed in Figures S2 and S3 of the SI. In Figure 2, we show a comparison between
the results obtained from the QMC fit and the CASSCF calculations. More precisely, we
compare the two fractions IND/ITOT and ID/ITOT for the two sets of calculations. From
this Figure, we can see that the eight systems cover a wide range of the intervals [0:1] of
these fractions. Moreover, the QMC fit recovers essentially the nondynamical CASSCF
correlation and adds some more dynamical correlation.

Figure 2. Comparison of the relative dynamic (ID/ITOT) and nondynamic (IND/ITOT) indicators
with respect to CASSCF ones.
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4.2. Unrestricted Computations

The breaking of the spin symmetry is strongly system and functional dependent. For
the systems in which nondynamic correlation is predominant (Be + H2, cyclobutadiene
(D4h), m-benzyne and p-benzyne) all the functionals considered in this study were able to
break the spin symmetry leading to a lower unrestricted KS energy. However for systems in
which nondynamic correlation effects are moderate (O3, cyclobutadiene (D2h), o-benzyne
and PSB4) the results differ from case to case. In particular, for O3 and PSB4 none of
the density functionals tested was capable of breaking the spin symmetry. The same
happens for the molecules cyclobutadiene (D2h) and o-benzyne employing UBLYP and
UM06-2X. Instead, the GGA and RS functionals which have a BLYP core approximation
broke the symmetry for all the other six molecular systems. UHF calculations introduced
the largest spin contamination for all the systems except for O3 molecule. Finally, we
wanted to compare the correlation indicators of these unrestricted calculations with the
corresponding values coming from the QMC fit. Pulay localization can be used to construct
the unrestricted natural orbitals (UNO) which can be used to compute IND. All global
indicators relevant to unrestricted computations are reported in Table S3 of the SI. In
Table 3, we reported the values of IND (a) and IND/ITOT (b) calculated through UHF, four
functionals (UB3LYP, UBH&HLYP, UCAM-B3LYP and ULC-BLYP) and the QMC fit. The
values of the corresponding Mean Average Error (MAE) and Mean Absolute Percentage
Error (MAPE) with respect to QMC-fit indicators are also reported.

Looking at Table 3 (a), we can observe a general agreement of IND between the DFAs
and the reference while UHF indicators results largely overestimated (MAE[UHF] 0.24
against MAE[UDFT] between 0.05 and 0.08). The largest discrepancies occur with UB3LYP
for o- and m-benzyne and it can be traced back to the difficulty of some functionals in
breaking symmetry (MAE 0.08 and MAPE 31.08). The other three functionals possess very
similar indicators with LC-BLYP slightly outperforming (MAE 0.05 and MAPE 14.22). In
Table 3, (b) we confirm what already observed, indeed, also for relative values UB3LYP
performs poorly while the other functionals give optimal results. Interestingly, we can
observe that for UHF the relative indicators IND/ITOT excellently agree with the reference
results even if the global values of IND are very overestimated. Overall, ULC-BLYP gives
the best performance among the cases treated in this work.

Table 3. In the table are reported the values of (a) IND and (b) IND/ITOT of each density functional
approximation employed plus the UHF values as reference. The MAPE and MAE are computed with
respect to the reference QMC-fit which are also reported in the last two lines.

(a) IND

Molecule UHF UB3LYP UBH&HLYP UCAM ULC-BLYP QMC-fit

Be + H2 (TS) 0.54 0.50 0.50 0.50 0.51 0.50
cyclo (D2h) 0.48 0.08 0.13 0.12 0.17 0.17
cyclo (D4h) 0.62 0.53 0.54 0.54 0.55 0.52
o-benzyne 0.69 0.01 0.12 0.08 0.15 0.27
m-benzyne 0.47 0.30 0.37 0.36 0.41 0.38
p-benzyne 0.91 0.49 0.52 0.51 0.54 0.43

MAE 0.24 0.08 0.05 0.06 0.05
MAPE [%] 38.19 31.08 17.83 21.01 14.22

(b) IND/ITOT

Molecule UHF UB3LYP UBH&HLYP UCAM ULC-BLYP QMC-fit

Be + H2 (TS) 0.83 0.89 0.87 0.87 0.86 0.81
cyclob (D2h) 0.53 0.27 0.33 0.33 0.38 0.39
cyclob (D4h) 0.74 0.71 0.69 0.70 0.69 0.74
o-benzyne 0.52 0.08 0.32 0.28 0.36 0.34
m-benzyne 0.44 0.62 0.67 0.68 0.71 0.37
p-benzyne 0.60 0.71 0.66 0.69 0.64 0.77

MAE 0.10 0.13 0.10 0.10 0.10
MAPE [%] 22.44 32.46 21.14 23.54 21.09
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4.3. Fit of the Fermi Distribution

We performed the fit of the Fermi distribution of the canonical single particle energies
for the QMC results and for the different functionals following Equation (14). The results
highlight that there is a good correlation between the energies and the occupation numbers
for both the QMC and UDFT calculations. The fitted distributions obtained for the LC-BLYP
functional for the molecules o-, m- and p-benzyne have been reported in Figure 3, while
the other plots have been reported in in Figures S4–S10 of the SI.

Figure 3. Fit of the Fermi distribution for the o-, m-, p-benzyne molecules evaluated at ULC-BLYP
level. In the figure ni are the natural occupancies of the UNOs, while ε̃i are the canonicalized single
particle orbitals. In black is reported the Fermi distibution calculated using Equation (14) and the
parameters collected in Table S4 of the SI.

The parameters of the fit and the standard deviations have been reported in Table S4
of the SI. In Table 4, we compare the resulting effective temperatures Te f f coming from
each functional with respect to QMC-fit reference.

Table 4. Comparison between the Te f f obtained with the fit of the Fermi distribution for the different
density functional approximations. The corresponding MAE and MAPE are calculated with respect
to reference values obtained from the QMC-fit.

Te f f [Kelvin · 104]

Molecule UHF UB3LYP UBH&HLYP UCAM ULC-BLYP QMC-Fit

Be + H2 (TS) 3.3 (4) 2.38 (3) 2.51 (7) 2.42 (6) 2.48 (1) 2.2 (7)
cyclob (D2h) 3.59 (6) 1.841 (6) 2.088 (8) 2.057 (8) 2.30 (1) 2.46 (2)
cyclob (D4h) 3.8 (1) 2.83 (8) 2.99 (7) 2.98 (8) 3.17 (9) 2.87 (2)
o-benzyne 3.5 (2) 1.13 (4) 2.0 (1) 1.86 (9) 2.2 (1) 2.91 (4)
m-benzyne 3.1 (2) 2.5 (1) 2.7 (1) 2.7 (1) 2.9 (2) 2.75 (7)
p-benzyne 3.0 (2) 2.1 (1) 2.0 (1) 2.1 (1) 2.1 (2) 1.96 (7)

MAPE [%] 35.6 18.3 11.8 12.2 11.1
MAE * [Kelvin · 103] 8.5 4.9 3.0 3.2 2.9

All the tested functionals give similar results for the systems for which nondynamic
correlation is predominant, with a discrepancy in the range between 0 and 15% with
respect to the reference TQMC. However these methods differ and give worse results for
the systems in which nondynamic correlation is low. In particular, for o-benzyne all the
resulting effective temperatures are significantly lower than the reference. UHF generally
overestimate Te f f for all the systems tested. Furthermore, in this case, the best results are
obtained with the ULC-BLYP approach (MAPE 11.1 and MAE 2.9 × 103).

5. Conclusions

The objective of this study has been to present a method able to recover a 1-RDM
derived from an accurate wave function and then studying the nondynamic correlation
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effects included by unrestricted KS-DFT calculations. As accurate wave function, we mean
a function of at least multireference configuration interaction quality. For this purpose, we
have chosen a VMC wave function which shows a better scaling with the size of the system
under study.

We propose a novel method to reconstruct the 1-RDM of a molecule at QMC level
avoiding computing the challenging N particle integrals of the QMC wave function. This
method consists of fitting the QMC density, properly defined through a large enough
number of electronic configurations, using the density produced by a correlated wave
function of which the 1-RDM is easily obtainable. In this way, in some sense, we move
from the ideal non-interacting KS system toward the physical one along a path in which
the density is the same but the reference wave function is modified to include, although
not exhaustively, the e-e interaction. As mapping wave function, we chose a function
that has a GVB structure for the skeleton of the molecule and a CASCI structure for
the π electrons. The parameters of this fit are the coefficients of the Slater determinants
of the mapping function. The subsequent analysis of the 1-RDM obtained in this way
showed that it is possible to capture the main contributions related to both dynamic and
nondynamic electronic correlation of the QMC wave function. To assess the reliability
of the this procedure, we compared the resulting kinetic energy with the corresponding
VMC value.

The 1-RDM extracted from the QMC approach above has been considered as a refer-
ence for comparison with the 1-RDM derived from unrestricted KS-DFT calculations. The
spin broken symmetry that occurs in unrestricted calculations of an independent particle
model system is due in part to static correlation. The associated 1-RDM can thus be ob-
tained from a natural bond analysis such as the one we describe in Section 2.2. We applied
this study on a selected set of molecules which have an electronic ground state with a non
negligible multireference character. We noticed that broken symmetry KS computations,
performed with density functionals with an high percentage of explicit exchange, are able
to reproduce the global nondynamic correlation index IND [17] computed through the
QMC fitted 1-RDM. In particular, the best agreement occurs with the functional ULC-BLYP.

As a further test, we reconstructed a Fermi like distribution for each system and
approach based on occupation numbers and canonicalized orbital energies. In each one of
these distributions we have calibrated the effective temperature and chemical potential
needed for the best fit. Although it is necessary a deeper investigation to understand a
real meaning of such parameters, we notice that there is a general agreement between
the effective temperature resulting from UDFT calculation with the QMC reference for
the systems in which nondynamic correlation is important. For the other systems, the
discrepancies are more evident. Again, the best functional among the ones included in the
set is ULC-BLYP.

As for future work, we intend to improve the form of the mapping function to derive
the 1-RDM from the QMC calculation. The need for a large active space, essentially
a full valence active space, leads to a method that does not scale exponentially in the
computation time with the size of the system under study. In this regard, the Density
Matrix Renormalization Group (DMRG) method (see, for example, Ref. [49]) is a valid
alternative to our GVB plus CASCI approach. DMRG method, in fact, is able to achieve a
polynomial scaling under well defined conditions of calculation. As a final remark, we think
that the present suggestion, namely the comparison of QMC and KSDFT through modeled
1-RDM, could be useful in the design of new functionals for DFT and FTDFT calculations.

Supplementary Materials: A Supporting Information file is available online at https://www.mdpi.
com/article/10.3390/computation9120135/s1. This file contains detailed information on: (1) The
geometries of the molecules in xyz format, (2) The VMC wave function used in this work, (3) The
electronic densities computed at QMC level, (4) Tables with the global indicators of correlation for
CASSCF and QMC results, (5) The local indicators of correlation calculated with the QMC results, (6)
The global indicators of correlation computed at UKS-DFT level as well as the mean values of the S2

https://www.mdpi.com/article/10.3390/computation9120135/s1
https://www.mdpi.com/article/10.3390/computation9120135/s1
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operator and the difference between the restricted and unrestricted energies, (7) The results of the fit
of the Fermi distribution and the corresponding plots.
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