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Abstract: According to the behavior of its neuronal connections, it is possible to determine if the
brain suffers from abnormalities such as epilepsy. This disease produces seizures and alters the
patient’s behavior and lifestyle. Neurologists employ the electroencephalogram (EEG) to diagnose
the disease through brain signals. Neurologists visually analyze these signals, recognizing patterns,
to identify some indication of brain disorder that allows for the epilepsy diagnosis. This article
proposes a study, based on the Fourier analysis, through fast Fourier transformation and principal
component analysis, to quantitatively identify patterns to diagnose and differentiate between healthy
patients and those with the disease. Subsequently, principal component analysis can be used to
classify patients, employing frequency bands as the signal features. Besides, it is made a classification
comparison before and after using principal component analysis. The classification is performed
via logistic regression, with a reduction from 5 to 4 dimensions, as well as from 8 to 7, achieving an
improvement when there are 7 dimensions in the precision, recall, and F1 score metrics. The best
results obtained, without PCA are: precision 0.560, recall 0.690, and F1 score 0.620; meanwhile, the
best values obtained using PCA are: precision 0.734, recall 0.787, and F1 score 0.776.

Keywords: computational intelligence; classification; diseases diagnosis; principal component analysis

1. Introduction

According to [1], epilepsy is a common neurological degenerative disorder that causes
recurring seizures. Regarding treatments, in [2], it is estimated that patients could live
with no seizures with early detection. Within the diagnosis techniques, spectral (frequency)
analysis can be used to identify visual patterns as peaks or variations in frequency that
allow the identification of neurological disorders [3]. In this way, the development of
models that allow the diagnosis of epilepsy are important for improving the patient’s
life quality.

For more accurate diagnoses, different data classification techniques, such as logistic
regression (LR), artificial neural networks (ANN), support vector machines (SVM), etc., can
be implemented. In order to extract features for the classification process, EEG signals can
be analyzed in the time and frequency domains. For this, the TUH EEG Corpus (TUEEG)
was employed, described in [4], which contains a dataset related to patients who had an
EEG performed. On the basis of this evidence, 20 epileptic and 20 nonepileptic patients
were selected, between the ages of 19 and 81 years, with average age of 53 years. In this
subset, there are 22 women and 18 men; in this order, Table 1 describes the ages and gender
of the samples that are part of the data set [5].

In this article 40 sessions were used, each one from a different patient from the
TUH EEG epilepsy section of the corpus, whose data was obtained using the temporal
central parasagittal (TCP) configuration, differentiating 21 channels, as shown in Figure 1.
Throughout this article, feature extraction techniques, based on frequency domain and the
use of principal component analysis (PCA), for the classification of patients will be explored.
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Table 1. Ages and gender of the samples that are part of the data set.

Age 1–20 21–30 31–40 41–50 51–60 61–70 71–80

Female 2 2 3 3 4 5 3

Male 2 3 1 2 6 3 1

Fp1 Fp2

F7
F3 Fz

F4

F8

T3

T5

T4

T6

O1 O2

C3 Cz C4

P3 Pz P4

Figure 1. TCP Configuration and channel distribution.

Considering the identification of epilepsy via feature extraction, a relevant approach
using frequency bands for preictal and interictal analysis is displayed in reference [6],
referring to the lapse prior to seizures start in the subject, together with the intermediate
period between a series of seizures. Other remarkable work is displayed in [7], where
an approach is proposed to analyze the EEG signals of epileptic patients using principal
component analysis and wavelet power spectra. By transforming the different EEG signals
into a wavelet power spectra, it makes principal component functional analysis useful for
extracting significant features from the signals. In this way, it is observed how the signals
separation is achieved in a low-dimensional feature space. Regarding seizures detection us-
ing EEG signals, paper [8] proposed a model based on deep learning for seizures detection,
characterized mainly by a two-dimensional representation of the scalability and features
of neural networks. The model sets modules for seizures detection and enhances model
flexibility for implementation in different hardware resources.

Within the framework of feature extraction, there is also the approach used in [9] to
develop an efficient method based on a Hjorth parameter called “mobility”. This parameter
seeks to reduce computational complexity and increases the precision of epilepsy detection.
The Hjorth parameters are indicators or metrics of statistical properties of the signal
processing in the time domain [10], the mobility parameter used represents an average
frequency of the power spectrum.

There are also classification techniques and proposals for epilepsy detection and label-
ing. The classifiers are built employing machine learning (ML) techniques. Thus, authors
in references [11,12] use logistic regression to ease the analysis of results in predictive and
explanatory terms.

In connection with the use of EEG signal analysis, in [13] the methods of independent
component analysis (ICA) and electroencephalogram (EEG) dipole source localization are
used in cases of Event-Related Potentials (ERP), Power Spectral Density (PSD), and Event
Related Spectral Perturbation (ERSP) during target detection process with a wireless (EEG)
system, which result suitable for real life application. The experimental results show that
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bodily function affects mental states and psychological performance in cognitive tasks
in humans.

Another application of EEG signals consists of emotion recognition. In [14], from
the view of spatial topology and brain emotional patterns temporal information in an
EEG, such EEG signals are characterized to obtain emotion recognition information. The
effective characteristics are entered into the support vector machine classifier to define
emotion recognition of subjects applying the method of analysis of dimension reduction.
Overall, the experiments showed 18 out of 62 channel EEG signals, chosen by dimension
reduction analysis, were noteworthy. Meanwhile, in [15], it is proposed to evaluate the
EEG patterns recorded by musicians playing a simple piano score, while manipulating
their playing to express specific emotions. In the first instance, a spectral analysis of the
EEG signal is carried out, in order to identify relationships between music and emotions.
In the results, differences were observed in EEG activity between the different emotions
described by the subjects. Regarding related works in [16], a method is proposed to
detect the stage of drowsiness in the electroencephalogram (EEG), using machine learning
techniques, such as stacked autoencoder with softmax layers. The tests were carried out
with 62 volunteers, showing excellent precision in wakeful/drowsy discrimination. Finally,
in [17], the differences in the dynamics of the awake brain with Eyes Open (EO) and Eyes
Closed (EC) are explored, measuring the respective entropy in each case. Approximate
entropy was measured by focusing on the central, frontal, parietal, occipital, and temporal
brain areas. EEG data, from 37 healthy adult subjects while resting, were used, where each
participant underwent an EO and EC recording. According to results, the EO condition is
characterized by higher entropy values than in the EC condition.

Regarding other EEG applications, article [18] revises methods of signal analysis in
the assessment of mental stress; such a review emphasizes the most relevant differences
in research findings and displays that variations in methods of data analysis result in
several conflicting results, caused by a variety of factors, including protocol without
defined standards, brain region of interest, adequate EEG processing, mechanisms of
feature extraction, type of classifier, and duration of experiment. Thus, such a review
suggests the activation of cortical merging with connectivity measures network focused on
deep learning to boost the accuracy of mental stress level assessment. Another important
application refers to healthy sleep, according to [19], sleep is essential to maintain the
body’s metabolism and mental equilibrium to increase concentration and productivity.
In [19], a system is proposed for the automated identification of the cyclic alternating
pattern (CAP), which is a recurrent electroencephalogram (EEG) physiological activity
present in the brain during sleep that seizes the its micro-structure and can be employed to
determine sleep fluctuation. The development of the model is rooted using EEG signals
from healthy subjects and patients affected and suffering from six different sleep disorders.
Finally, a way of measuring presence in virtual environments is proposed in [20], which
consists of evaluating the subjective experience of being in one place, when the person
is physically in another. Two listening tests were made to acquire the EEG signals, using
eight speakers to play urban soundscapes. According to the authors, this study can be
applied in virtual reality and immersive video games.

Article Approach and Document Organization

This article proposes a study based on Fourier analysis of signals through the fast
Fourier transformation (FFT), applying principal component analysis; this is to identify, in
a quantitative way, patterns to diagnose and differentiate between healthy and unhealthy
patients. To observe the feasibility of using APC, patient classification is performed using
logistic regression. This work can be considered as a step to improve the classification
shown in [5] using different classification techniques.

The methodology employed in this work consists of the following steps. For a first
stage is made the data collection, then a preprocessing of this data was carried out (making
the adaptation of these data to be used in Fourier analysis); then, the characteristics were
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extracted, using the frequency bands calculated with the FFT. Then the analysis was carried
out by PCA, performing the respective dimensional reduction. Finally, the implementation
of the classification model was carried out with logistic regression, making the comparison
when PCA was and was not employed.

The article is organized as follows, Section 2 describes features extraction of EEG signal
using Fourier analysis. Principal component analysis theory is displayed in Section 3; then,
in Section 4, the principal component analysis is carried out, using the features of EEGs
signals. Section 5 shows the results of using PCA for logistic regression classification.
In Section 6, the discussion on the applicability of the analysis is carried out; finally, in
Section 7, the conclusions are given.

2. EEG Frequency Features

The first step in feature identification was to check what information could be obtained
through a spectral analysis in the time domain. Exams of epileptic and non-epileptic
patients were compared, and the differences were not noticeable in that domain. Therefore,
a Fourier analysis was applied, and the same analysis was performed on the signals,
showing differences between patients. Figures 2 and 3 illustrate these differences; in
Figure 2, no discernible difference is found in the visual analysis. Meanwhile, in Figure 3,
frequency differences are observed. Based on this situation, it was decided to divide
the EEG signal into frequency bands, obtained through the application of fast Fourier
transform [21]. For this analysis, it is common to take the FFT magnitude square values,
to obtain an estimate of the spectral density of the EEG signal power [22]. Equation (1)
defines the discrete Fourier transform (DFT). In order to represent the frequency, a Hertz
scale can be used the equation f = fsk/N, where fs is the sampling frequency.

X(k) =
N−1

∑
n=0

x(n)e−j 2π
N kn k = 0, . . . , N − 1 (1)
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Figure 2. Signals of an epileptic and non-epileptic patient in the time domain.
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Figure 3. Signals of an epileptic and a non-epileptic patient in the frequency domain.
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Considering the displayed in [21] is used the division into frequencies ranges or bands
as illustrated in Table 2.

Table 2. Frequency bands activity.

Activity Frequency (Hz)

Delta (δ) 0.5–4

Theta (θ) 4–8

Alpha (α) 8–13

Beta (β) 13–30

Gamma (γ) 30–40

In order to obtain the frequency features, the relative power Pi is used, given by
Equation (2), where i = 1, ..., 5 corresponds to the respective frequency band (delta, theta,
alpha, beta, gamma), N number of total data, while Li and Hi are initial and final values
for the i frequency band.

Pi =
1
N

Hi

∑
k=Li

|X(k)|2 (2)

Regarding EEG frequency features analysis, in [5], several signals in time and fre-
quency domains for epileptic and non-epileptic patients can be observed, where the values
of Pi for different channels are calculated, considering, as non-epileptic patient example,
a 75-year-old man (checking the mental status) and, for epileptic patient, a 75-year-old
woman (with urinary incontinence).

3. Principal Component Analysis

Principal component analysis (PCA) is a technique applied to solve the problem of
refining subspace S of dimension d � k for a set of data x1, x2, ..., xk in a space of high
dimensionality Rk [23]. Data can be organized in a matrix X and xij its generic element that
represents the value of variable j on measure i, where i = 1, ..., n and j = 1, ..., k. The data
matrix X will have dimensions n× k and can be represented in Equation (3), in a short
form X = [x1, x2, .., xk].

X =


x11 x12 · · · x1k
x21 x22 · · · x2k

...
...

. . .
...

xn1 xn2 · · · xnk

 (3)

Using Equation (4), each principal component zj is calculated by linear combination
of the original variables xi. Terms φji are the weights (importance) of every single variable
in each component. Consequently, it helps to determine the type of information gathered
by each component [24].

zj = φ1jx1 + φ2jx2 + ... + φkjxk (4)

The respective transformation can be expressed using Equation (5) where W is the
transformation (projection) matrix composed by elements φji.

Z = XW (5)

Figure 4 shows a set of data, where axis x1 and x2 are the original data variables,
and the main number of data is localized in new axis z1 whereby z1 is a principal compo-
nent [25].
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Figure 4. Example of principal axis for a set of data.

Considering that the data of X has been centered to have mean zero the co-variance
matrix Cov(X) is given by Equation (6).

Cov(X) =
1

N − 1
(XTX) (6)

Is notable that XTX is symmetric, diagonalizable and positive semi-definite (all eigen-
values are positive). The covariance matrix containing estimates of how each variable xi
relates to every other variable xj [25].

In this way, from the covariance matrix, the eigenvectors represent the direction and
the associated eigenvalues the magnitude. The higher the eigenvalues, the more important
directions are correlated. It is considered that more variability in a particular direction
correlates with better explaining the behavior of a dependent variable. High variability
usually indicates “Information” while little variability indicates “Noise” [24,25].

This analysis is useful in pattern recognition to classify objects belonging to an ob-
served pattern, as well as the compression of this data, with the purpose of reducing
the number of bits necessary to represent the data without incurring the distortion of its
quality [26].

Typically, PCA is used to reduce the feature dimensions of the original space of
characteristics. For this, the new dimensions are ranked from best to worst, retaining
information (according to variance). To determine relevant variables, dimensions can be
taken until a minimum percentage of variability is reached, for example, 90% of total
variability [24,25]. Figure 5 describes an example of dimension reduction using PCA.
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Figure 5. Example of dimensions reduction.
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As can be seen, selecting the proper vectors can establish the transformation matrix.
According to [24,25] the steps to perform dimension reduction using PCA are:

1. Perform the normalization of the input data (variables normalization).
2. From the covariance matrix, determine eigenvectors and eigenvalues.
3. Arrange the eigenvalues from largest to smallest and choose the d eigenvectors

associated to the largest eigenvalues.
4. Build the projection matrix W which consists of φij with the chosen d eigenvectors.
5. Convert the original X standardized dataset using W to obtain the new d-dimensional

data (in the new feature subspace).

4. Principal Component Analysis for EEG Signal

For this approach, principal component analysis was used mainly as a tool to vi-
sualize the characteristics extracted with fast Fourier transform that have been used for
classification proposals.

For many data processing applications and problems, PCA is useful in visualizing
data. Generally, the visualization of data of dimension 2 or 3 is not a big challenge; however,
it is challenging when required to visualize information with dimensionality greater than 3,
which is the particular case for the data used in this work that has 5 dimensions (according
to the 5 bands in which signal frequency was classified).

Principal component analysis is effective thanks to scaling; therefore, it is relevant the
use of scalers with standard characteristics (normalization) when applying PCA. The data
used (relative power per band) consist of 5 characteristics: Alpha, Beta, Theta, Delta, and
Gamma; considering these features and applying PCA, Figure 6 displays the percentage
of explained variances for the principal components. In this figure a variance of 80.79% is
observed in the first component, in the second component 13.07%, for the third 4.36% and
for the las two 1.77% and 0.01%. This analysis of variance is performed to observe how
much information is lost when dimensional reduction is applied.
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Figure 6. Percentage of explained variances for the principal components.

In a first case, the 5 characteristics are projected in 2 dimensions. After reduction, it is
observed that there is no particular meaning of each component, it can be seen more as a
fit of the original data to two dimensions. In Figure 7 is seen that the reduction from 5 to
2 dimensions does not allow the classes to be separated from each other in the best way.



Computation 2021, 9, 133 8 of 13

−2 −1 0 1 2 3 4 5

−2

0

2

4

6

8

PCA (Two components)

Principal Component z1

Pr
in

ci
pa

l
C

om
po

ne
nt

z 2

Non epileptic
Epileptic

Figure 7. Two-components transformation for the relative power features.

In a second case is performing the description with a 3-dimensional transformation,
as shown in Figure 8. In this case, the classes cannot be completely separated with the
additional dimension either.

Considering these observations, to classify the classes (for the data used), it is suitable
not to carry out the reduction for more than two dimensions.

z1 z2

z3
Non epileptic
Epileptic

PCA (Three components)

Figure 8. Three-components transformation for the relative power features.

5. Application of PCA for Logistic Regression Classification

Logistic regression corresponds to a technique that allows data classification, usually
employed when having a set of data like those shown in Figure 9, where data with different
characteristics can be classified.
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Figure 9. Example of logistic regression.

In this model, the result is a value between 0 and 1, which can be associated with the
probability h(x) that x belongs to a class. In the logistic regression is used the sigmoid function
given by Equation (7), where z can be calculated as z = β0 + β1x1 + β2x2 + · · · + βnxn,
and, x1, ..., xn corresponds to the values of the n attributes, and finally β0, ..., βn are the
weights [27].

f (z) =
1

1 + e−z (7)

In order to observed the model performance metrics the results are listed in a Confu-
sion Matrix (CM). In Figure 10 each cell of this matrix corresponds to the relations between
actual and predicted values calculated by a model.
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Figure 10. Confusion matrix representation.

The precision, recall, and F1 score (performance metrics) can be calculated from the
values obtained in confusion matrix. According to [28], the precision metric given by
Equation (8) relates the ratio of correctly classified positive data. Meanwhile, recall is
calculated using Equation (9) that corresponds to the proportion of positives correctly
identified. Finally, the metric F1 score given by Equation (10) corresponds to the harmonic
mean between accuracy and completeness.

PR =
TP

TP + FP
(8)

RC =
TP

TP + FN
(9)

F1 = 2× PR · RC
PR + RC

(10)

In order to see the application results of PCA in classification using logistic regression,
four experiments are implemented combining the number of features and the singular
value decomposition method. The experimental implementation uses 840 EEG signals,
taking 420 labeled as epileptic patient examinations and 420 labeled as non-epileptic
patients. Additionally, 80% of the data is used for training (32 patients, 672 signals) and
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20% for testing (8 patients, 168 signals). The results tables show the metrics employing all
840 signals (40 patients and 21 channels for each patient).

As reference for comparison were implemented two configurations without PCA. First
experiment CX1 no using PCA employs the 5 aforementioned input features (frequency
bands). On the other hand, a second experiment CX2 was performed increasing the number
of features to 8. New features were generated by calculating the product of the alpha-
gamma, beta-delta band pairs and the mean values for the 5 frequency bands. Table 3 lists
the results of these experiments without PCA application to the input data. In these results,
experiment CX2 displays the best performance metrics.

Table 3. Results of logistic regression for classification of epileptic and non-epileptic patients (no
PCA used).

Experiment Features Precision Recall F1 Score

CX1 5 0.550 0.377 0.447

CX2 8 0.560 0.690 0.620

Meanwhile, in Table 4 the first two experiments CZ1 and CZ2 correspond to the
application of ARPACK as the SVD technique taking 4 and 7 components. This technique
was developed as a Fortran package to find a few eigenvalues or eigenvectors of large
sparse matrices [29]. On the other hand, experiments CZ3 and CZ4 correspond to the
application of the randomized SVD solver. This technique is based on a stochastic algorithm
called Randomized Principal Components Analysis (RPCA) that allows to quickly find
an approximation of the principal components that will be generated [30]. As can be
seen, PCA was applied in all 4 cases, experiments CZ1 and CZ3 of Table 4 illustrate the
results of reducing the features from 5 to 4 (considering configuration CX1 in Table 3). The
remaining experiments are the result of reducing the number of features of experiment
CX2 of Table 3 from 8 to 7. This reduction is made over the features that were created with
feature engineering (product of features).

Table 4. Experiments summary of PCA as inputs for a logistic regression classifier.

Experiment Components Precision Recall F1 Score

CZ1 4 0.461 0.610 0.513

CZ2 7 0.728 0.750 0.760

CZ3 4 0.502 0.602 0.543

CZ4 7 0.734 0.787 0.776

PCA is usually applied for algorithms enhancement of machine learning to achieve
better performance. Given the analysis and the component reduction in frequency made in
the previous section, those dimensional reductions were used as inputs of a classifier that
uses the logistic regression technique to label individuals as epileptics or non epileptics;
those experiments are shown in Table 4.

In accordance with the results experiments in Table 4, the score of those models obtain
an improvement in regards to the experiments without dimensional reduction. Comparing
the results when employing PCA in Table 4 and Table 3 (when no PCA), the best results are
obtained for experiments CZ2 and CZ4. It is also noteworthy that in some configurations
using SVD a lower performance is obtained as occurs with the CZ1 configuration in the
precision metric.

In addition, to observe the results for the training and validation process, Table 5
displays the Mean Squared Error (MSE) results using training and validation data. From
these results, there is a tendency to present a lower MSE value with the validation data.
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Table 5. MSE results for training and validation process.

Experiment Components Training MSE Validation MSE

CX1 5 0.4591 0.3518

CX2 8 0.4565 0.3333

CZ1 4 0.4697 0.4635

CZ2 7 0.4120 0.3129

CZ3 4 0.4608 0.4404

CZ4 7 0.4107 0.3095

Finally, Table 6 shows a comparison (for the bests cases) with the models developed
in [5] where the classification is carried out without PCA. This table shows the imple-
mentation with logistic regression with and without PCA, as well as the implementation
with artificial neural networks and vector support machines. As can be seen, the neural
network models and vector support machines present a better result than logistic regres-
sion, however, when using PCA there is a better result when using logistic regression
for classification; thus, it is observed that when using PCA, it is possible to improve the
classification by using neural networks and vector support machines.

Table 6. Comparison considering others models.

Technique Precision Recall F1 Score

LR-CZ4 0.734 0.787 0.776

LOG-REG-02 [5] 0.739 0.680 0.708

LOG-REG-03 [5] 0.673 0.768 0.717

NN-FF-02 [5] 0.810 0.840 0.824

SVM-04 [5] 0.775 0.743 0.758

6. Discussion

The data for this investigation was taken from a public repository, provided by the
Temple University [4]. The research included 20 records of epileptic and 20 non-epileptic
patients. In this way, new examinations may permit further approaches and obtain infor-
mation from specific cases.

Regarding the limitations of this work, there are database restrictions, since it is subject
to measurements in medical institutions; also, the classification in real time is not considered.
Besides, the scope is limited to carry out the classification with logistic regression, since
an additional exploration of principal components analysis can be made incorporating
characteristics in the time domain, the type of canal, and its location in the patient’s head.
Then, the classification with other techniques, such as vector support machines or neural
networks, can be carried out in a later work since the principal component analysis can be
expanded using other characteristics. Considering this, the work presented in [5] can be
complemented via PCA.

The comparison with other models is carried out with the previous implementa-
tions performed in [5], where the analysis of principal components and the reduction of
dimensions are not implemented.

It should also be considered that the data from the 21 channels were used; therefore,
in a later work, the additional analysis should be carried out to identify the most relevant
channels to perform the classification.

7. Conclusions

This work aimed to determine if PCA can be applied to enhance the classification of
epilepsy-related abnormalities through EEGs. Classification features were expressed, in
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terms of power associated to frequency bands. From these data, a base data set could be
labeled in a binary way (for healthy patients, class 0 was used and for epileptic patients,
class 1).

It should be recalled that experiment CZ4, in Table 4, shows the bets improvements
in its metrics after applying PCA. However, in some cases, using PCA the improvement
is not allowed; this shows that it is also important a suitable selection of features before
applying PCA.

As seen in the results, a reduction is made from five to four dimensions, as well as
from eight to seven, in the precision metric, an improvement is obtained for the reduction
from eight to seven dimensions, while the recall and F1 score were obtained improvements
for the reduction from five to four and eight to seven dimensions. Considering the different
implementations, the best metric values obtained without PCA were: precision 0.560, recall
0.690, and F1 score 0.620; meanwhile, the best results obtained using PCA were: precision
0.734, recall 0.787, and F1 score 0.776.

In a further work, to improve the classification before applying PCA, a clustering
technique can be used to select the relevant channels and include this information in
classification features.

The input data set for the models can be supplemented with characteristics extracted
not only from frequency bands but also considering other metrics. Finally, the current
system corresponds to a model to detect epilepsy; however, its implementation is extensible
to other diseases, as well as its use in portable devices.
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