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Abstract: The current COVID-19 pandemic, caused by the rapid worldwide spread of the SARS-CoV-
2 virus, is having severe consequences for human health and the world economy. The virus affects
different individuals differently, with many infected patients showing only mild symptoms, and
others showing critical illness. To lessen the impact of the epidemic, one problem is to determine
which factors play an important role in a patient’s progression of the disease. Here, we construct an
enhanced COVID-19 structured dataset from more than one source, using natural language processing
to add local weather conditions and country-specific research sentiment. The enhanced structured
dataset contains 301,363 samples and 43 features, and we applied both machine learning algorithms
and deep learning algorithms on it so as to forecast patient’s survival probability. In addition, we
import alignment sequence data to improve the performance of the model. Application of Extreme
Gradient Boosting (XGBoost) on the enhanced structured dataset achieves 97% accuracy in predicting
patient’s survival; with climatic factors, and then age, showing the most importance. Similarly, the
application of a Multi-Layer Perceptron (MLP) achieves 98% accuracy. This work suggests that
enhancing the available data, mostly basic information on patients, so as to include additional,
potentially important features, such as weather conditions, is useful. The explored models suggest
that textual weather descriptions can improve outcome forecast.

Keywords: COVID-19; machine learning; deep learning; NLP; weather; sentiment analysis

1. Introduction

The current COVID-19 pandemic, caused by the rapid worldwide spread of the SARS-
CoV-2 virus, is affecting many aspects of society, in particular human health (at the time
of writing, over 66 million diagnosed cases and 1.5 million deaths [1]), but also social
issues [2,3], mental health, and the economy [4]. Researchers from different scientific fields,
including immunology, genetics, and bioinformatics, are studying the pandemic to find
ways to slow its progression.

Machine learning approaches are also part of this endeavor [5–9]. For example, Shahid
et al. [10] use several models, including ARIMA, SVR, LSTM, and Bi-LSTM, for time series
prediction of confirmed cases, deaths, and recoveries in ten major countries affected by
COVID-19. Shreshth et al. [11] present a machine learning model to predict how the number
of cases of COVID-19 will develop, and to forecast when a specific country can expect to see
an end of the pandemic, using the FogBus framework. Other researchers have built machine
learning models for the classification and diagnosis of COVID-19 that are based on medical
images [12,13]. Further, Yan et al. [14] provide an interpretable mortality model that is
based on a database of blood samples from 485 infected patients in the region of Wuhan,
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China. To date, most machine learning and deep learning research [15,16] on COVID-19
build a classification model on various types of data to investigate which might be the
important features to predict a specific outcome. One potential difficulty when running
such approaches on publicly available dataset is that the features are originally collected so
as to fulfill the needs of the data provider, which then can be a source of bias, when the data
is used to address other questions. In particular, features that have high predictive value
for the outcome for an infected patient might be missing. Generally speaking, the presence
or absence of features will impact the accuracy of a model.

The COVID-19 data provided by Xu et al. [17] contain a large number of samples,
but limited features that mainly provide basic information on patients. Here, we seek to
improve the usefulness of this data by adding a number of features that might help to
increase the accuracy of a predictive model.

Research indicates that local climate plays a roles in pandemic outbreaks [18].
Lowen et al. [19] demonstrated that aerosol spread of the influenza virus is dependent
upon both ambient relative humidity and temperature, using guinea pig as a model host.
Tan et al. [20] investigated the effect of weather in four cities in China and concluded
that SARS outbreaks were significantly associated with the temperature and its variations.
For the SARS-CoV-2 virus, there are some contradicting findings. Initial studies suggested
a negative correlation between temperature and COVID-19 infection [21], or temperature-
independence [22], while other research detected a positive relation between temperature
and COVID-19 cases at temperatures below 3 ◦C [23], and also relates temperature to
decrease in spread parameters of the case dynamics [24]. Therefore, local weather factors
should be taken into consideration.

Infection and mortality rates differ between countries, as does the response to the
pandemic. A study on news platforms and social media indicates that more than half (52%)
of all news headlines evoked negative sentiments [25], on the one hand, whereas pub-
lic positive tweets outweighed negative tweets on the other hand [26]. Application of
machine learning algorithms on such data indicates a growth in fear and negative sen-
timent [27]. To explore this further, in this study we assume that a researchers attitude
toward COVID-19, optimistic or pessimistic, will reflect the situation in their country, to
some extent, and might be detectable in their publications on the pandemic.

While most previous work focuses on a single data type, in this study, we combine
multiple data types. While a number of papers focus on country-wise pandemic predic-
tion [28–30], here we develop a classification model that is based on worldwide data.

We first built an initial structured dataset on patients that tested positive for the virus,
based on the work in [17]. We then constructed an enhanced structured dataset by adding
new features based on (1) the local weather conditions when the patient was probably
infected, and (2) the average weighted average polarity score for research abstracts on the
pandemic, per country.

Another reasonable hypothesis is that the specific genome sequence of the virus that
affected a given patient may help predict the outcome for the patient. There is research
that associates genomic variations with mortality rate of COVID-19 [31], and further
research [32] shows that the SARS-CoV-2 virus carries 7.23 mutations per sample compared
to the reference, on average. There is work that attempts to predict outcome using machine
learning and deep learning methods [33,34]. Both NCBI [35] and GISAID [36,37] provide
genomic data for the virus.

Ideally, we would have liked to further enhance the initial dataset by adding virus
genome sequences to each sample. Unfortunately, these sequences are not available.
So, to explore the use of genomic sequences, we created an additional sequence dataset
that consists of unknown patients and their virus sequence, obtained from GISAID.

In this paper, we investigated the application of two algorithms—XGBoost and
MLP—to build models both on the initial structured dataset and also on the enhanced
structured dataset. In addition, we built a Bi-LSTM model on the sequence dataset. The
applied analysis pipelines are summarized in Figure 1.
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Based on the initial dataset, we confirm that age is one of the most important factors
for predicting survival. When considering the enhanced structured dataset, we find
that the weather textual description, followed by local temperature, humidity, and age,
arise as the most important features. On the enhanced data, we found that the Extreme
Gradient Boosting (XGBoost) method achieved 97% accuracy in predicting a patient’s
survival. We describe how to predict patient’s outcome using a combination of a Multi-
Layer Perceptron (MLP) and Bidirectional Long Short-Term Memory (Bi-LSTM), using
both the enhanced structured dataset, and the sequence dataset, respectively.
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Figure 1. Analysis summary. (a) The initial COVID-19 structured dataset was filtered for patients for
which the outcome has been recorded, and then, for these items, the weather was determined using
the Weather Underground website [38]. (b) The WHO, medRxiv, and bioRxiv COVID-19 literature
database were filtered and preprocessed to extract author institute/address/country, and these
were postprocessed so as to obtain a country-wise research sentiment polarity score. XGBoost and
Multi-Layer Perceptron (MLP) were trained on both the initial and the enhanced structured data,
and the accuracy of survival prediction was shown to be 94% and 97% (using XGBoost), and 98%
and 98% (using MLP), respectively. (c) Bidirectional Long Short-Term Memory (Bi-LSTM) was used
to train a classification model on the sequence dataset, the accuracy was 93%. Finally, the MLP model
and Bi-LSTM models were stacked to jointly predict outcome.

2. Materials

2.1. Data Collection

Data were collected from a number of sources.

2.1.1. COVID-19 Structured Dataset

We downloaded COVID-19 patient data provided by Xu et al. [17] from Github [39],
on 21 August 2020 (file latestdata.csv). The dataset includes patient’s basic information
features, including ID, age, sex, city, province, country, etc. All rows that do not contain
a value in the outcome column were dropped, resulting in 307,382 patient data rows out
of 2,676,311. The final dataset contained 301,363 patients from 46 countries. All further
processing was performed on this dataset.

2.1.2. WHO, medRxiv, and bioRxiv COVID-19 Literature Database

We downloaded a database of literature on COVID-19 from the World Health Orga-
nization (WHO) website [40] on 13 April 2020. Of the 5354 downloaded entries, we kept
only those whose Journal Name and DOI fields were not blank, which resulted in 4683
publications in 590 journals. This list was extended with COVID-19 SARS-CoV-2 preprints
published on medRxiv [41] and bioRxiv [42]. For this we used the bioRxiv API [43] to



Computation 2021, 9, 4 4 of 15

download the paper information; a total of 8076 entries were downloaded on 27 August
2020. We then analyzed these publications to determine the authors’ institute and country;
when no country was explicitly given, we used Google Maps [44] and Wikipedia [45] to
determine the country in which the author’s institute is located. This gave rise to 9577
(1501 of 4683 WHO, 8076 of 8076 medRxiv and bioRxiv) entries. Finally, we merged the
two datasets and removed all duplicates, obtaining 9542 (1484 of 1501 WHO, 8058 of 8076
medRxiv and bioRxiv, Additional File 1) entries in total.

2.1.3. GISAID CoV-19 Sequences Dataset

The GISAID sequence repository contains more than 244,000 genomic sequences for
SARS-CoV-2. We downloaded all that were labeled as complete, with high coverage, and
were found in a human host on 25 August 2020. This resulted in 4957 genome sequences
(with metadata). Further, we included the reference SARS-CoV-2 Wuhan genome (NCBI
Accession MN908947.3 [46]) to the dataset and collected the patient information from the
publication [47]. Finally, we removed all those sequences that did not have a patient status
in the metadata file. Our final dataset contained 4720 sequences (Additional File 2).

2.2. COVID-19-Enhanced Structured Dataset

In this paper, we present an enhanced COVID-19 structured dataset, which is based
on the above described initial COVID-19 structured dataset. These data were enhanced
by adding features that reflect the weather situation in the location of the infected person,
and the research sentiment in units of country, as described in the following.

2.3. Addition Feature Construction

It has been demonstrated that there is a link between environmental factors and the
development of COVID-19 [48]. It is reasonable to assume that weather plays a role in
disease progression. Therefore, we collected temperature, humidity, and textual descrip-
tion of the weather for the city where the patient lives from the Weather Underground
website [38]. Assuming that the incubation period of the virus is approximately 14 days,
we collected weather data from 14 days before the patient exhibited relevant symptoms
(as recorded in the initial structured dataset).

We also wanted to explore the assumption that researchers’ attitudes toward COVID-19,
either optimistic or pessimistic, reflect the situation in each country, to some extent,
and might be detectable in their publications on the pandemic. Therefore, we collected
journal publications from the WHO and from the medRxiv and bioRxiv COVID-19 liter-
ature database. For each abstract, we determined the author’s institution with the help
of the paper’s DOI and address by institute name. We applied sentiment analysis to ob-
tain a polarity score on each abstract, and then calculated an weighted average polarity
score for each country. Figure 2 displays the weighted average polarity score inferred for
different countries.

The weather and sentiment features were added to the initial structured dataset so as
to produce the enhanced structured dataset, as outlined in Figure 1.



Computation 2021, 9, 4 5 of 15

) 

� 350 

−100

. ' 

•

Figure 2. Sentiment polarity score. Average research sentiment polarity score of research, for different
countries. Based on a sentiment analysis of abstracts of papers published on COVID-19. One-
thousand times the real value.

2.4. Data Processing
2.4.1. Structured Data

The features present in the initial COVID-19 structured dataset include both categorical
variables and discrete variables. Each sample in the dataset contains the variables sex, age,
the time interval between the patient’s onset date, confirmed infected date and admission
date, symptoms description, presence of chronic disease, and outcome.

To this initial data, we then added local weather variables (temperature, humidity,
and climate description) and the weighted polarity score of the country’s scientific research
sentiment. The result of this is called the enhanced structured dataset.

To prepare the datasets for building classification models using both XGBoost and MLP
(as discussed below), we performed the following steps. We encoded all multi-value text
features, such as symptom description (values such as fever, cough, and sputum) or climate
description (values such as fair, light rain shower, and cloudy) into three-dimensional
embedding vectors, using label encoding on categorical variables such as sex and history
of chronic disease (Additional File 3).

We assigned the constant −999 to all missing values. After filtering for samples that
have a valid outcome value and city record, we obtained 301,363 samples. Additionally,
when we ran MLP, we treated sex and binary chronic disease as categorical features and all
others as numerical features, and we normalized all numerical features.

2.4.2. Sequence Data

We performed multiple sequence alignment of the sequence dataset using MAFFT [49],
run as follows.

mafft --retree 2 --maxiterate 1000 --thread 48 DeathAndAliveForMafft.fasta
>DeathAndAliveForMafftAlignment1000Iterate.fasta

The program required 589 walk-clock minutes to align the 4720 virus genome se-
quences. The resulting alignment length was 32,015 (Additional File 4).

Furthermore, we applied character-level one-hot encoding on each sequence, mapping
each position to a six-dimensional vector (one dimension for each of the four nucleotides,
one for the gap character, and one for all ambiguity codes). Each sequence was padded to
a fixed length of 33,100 (a multiple of 100), so as to allow us to use 100 time steps in the
model described below.
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2.5. Data Statistics

We built both a XGBoost model and an MLP model on both the initial structured
dataset and on the enhanced structured dataset, respectively.

To evaluate the methods, we split each dataset into a training set and test set in
proportion 8:2. Further, to prevent overfitting, we used cross-validation on our training
datasets, instead of splitting additional validation sets from the original dataset. As shown
in Table 1, the original dataset is typically imbalanced. To address this, we applied the
Synthetic Minority Oversampling Technique (SMOTE) [50] to the minority group of each
training set, attaining a ratio of positive to negative samples of 10:1. Note that here positive
samples refer to patients that survive.

Table 1. Sampling statistics. For the enhanced structured dataset, we report the number of positive
and negative samples both in the training set and test set, both before and after oversampling,
respectively.

Enhanced Data After Oversampling

Training Set Test Set Training Set Test Set

Positive samples 236,483 59,117 236,483 59,117
Negative samples 4607 1156 23,648 1156
Total 241,090 60,273 260,131 60,273

3. Methods and Experiment

3.1. Sentiment Analysis

A number of papers have studied the forecasting of pandemics using natural language
processing on data obtained from various social media [51–53]. Along these lines, we per-
formed sentiment analysis on the abstracts of research papers (associated with COVID-19)
using the Python package Textblob [54], which operates by analyzing text content and
assigning emotional values to words based on matches to a built-in dictionary.

3.2. Machine Learning Algorithm

Our focus was on the performance of prediction of survival of the infection, based on
either the initial or the enhanced structured dataset.

Here, we use the Extreme Gradient Boosting (XGBoost) [55] method to build a pre-
diction model. XGBoost is a powerful member of the gradient boosting family, which is
designed to perform well on sparse features, and is known to perform well on Kaggle
tasks. This approach avoids overfitting using its built-in L1 and L2 regularization on the
target function:

Obj =
n

∑
i=1

l(yi, ŷi) +
t

∑
i=1

Ω( fi). (1)

As an additive model, XGBoost consists of k base models, and in most cases we choose
the tree model as its base model. Suppose that, for the k-th of t iterations, we train the tree
model fk(x), then

ŷt
i =

t

∑
k=1

fk(xi) = ŷt
i−1 + ft(xi) (2)

is the estimated result for the ith sample after t iterations. During construction of each
tree, XGBoost minimizes the objective function, with the regularization term show in
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Equation (1) in the split phase of each node. In each tree, we calculate the Gain of the
feature and choose the tree that has the biggest value as the leaf node to be split:

Gain =
G2

L
HL + λ

+
G2

R
HR + λ

− (GL + GR)
2

HL + HR + λ
− λ. (3)

3.3. Deep Learning Algorithms

To broaden our research and to allow a comparison of methods, we also built deep
learning models on both the initial and enhanced structured datasets, together with the
sequence dataset, respectively (Figure 3).

(a)

(b)

…

Input Layer

…
…

BiLSTM Layer

…

Dropout and
full connection

y

Output Layer

Input Layer

Categorical features

Numerical features

Hidden Layers Output Layer

Average 𝑦!

y

Figure 3. Ensemble deep learning model. (a) The MLP is trained on the structured dataset. (b) The
Bi-LSTM model is trained on the sequence dataset. The two models are stacked in the prediction step.

3.3.1. Multi-Layer Perceptron

As indicated in Figure 3b, we use a simple Multi-Layer Perceptron (MLP) as neural
network structure, which has an input layer, hidden layer, and output layer, to build a
classification model on the structured dataset.

3.3.2. Bidirectional Long Short-Term Memory

Each sample in our sequence dataset has length 33,100 after alignment and data
processing. We can interpret each sequence X = (x1, x2, · · · , xn) as a time-series, where xt
is the data associated with the tth time point. Recurrent neural networks (RNN) proposed
by Elman [56] are commonly used for time series; however, they are not suitable for our
task due to the length of the alignments. Long short-term memory (LSTM) [57] is a special
variant of RNN. It uses a gate structure in the hidden layer of each time step to protect and
control the cell state.

An LSTM cell employs three gates, namely, a forget gate, an input gate, and an
output gate, operating as shown in Figure 4. An LSTM learns to memorize and forget
specific information during the training step. It provides the ability to capture long-term
dependency relationships.

Each gate employs a sigmoid function that aims at producing output values of 0 or 1,
defined as

σ(t) =
1

1 + e−t (4)
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An LSTM does not encode the information in inverse order, so it does not capture
the impact of later words on previous words. A bidirectional long short-term memory
(Bi-LSTM) overcomes this problem by combining a forward LSTM with a backward LSTM
in each time step. This design addresses the issue of bidirectional semantic dependency
during model building.

Therefore, we use a Bi-LSTM on our sequence data. Assume we are given a sequence
X = (x1, x2, · · · , xn), where xt reflects the one-hot encoding. The hidden state of each time
point is

ht = [
−→
ht ,
←−
ht ] (5)

In summary, this allows us to consider the impact of the virus sequence information
on the patient’s condition.

(a) (b)

(c) (d)

Figure 4. Operation of gates in an LSTM cell. The LSTM determines the hidden state and cell state
at the present sequence location as follows. (a) A forget gate ft controls the input of the (t− 1)th
hidden state, (b) an input gate it controls the input of xt, (c) a transitional phase calculates the tth
positions cell state, and then, finally, (d) an output gate Ot returns the tth position’s hidden state ht.

Finally, we stacked the MLP and Bi-LSTM deep learning classification models to
jointly predict whether the infected patient will survive.

3.4. Implementation

3.4.1. Machine Learning Algorithms

In this study, we ran the XGBoost algorithm both on the initial structured dataset and
also on the enhanced structured dataset, the latter additionally containing local weather
and research sentiment. To determine the model parameters with the best capacity for
prediction, we used GridSearchCV (a function of sklean) to systematically traverse multiple
parameter combinations and determine the best parameters through cross-validation.
Each subtree in our model is a complicated tree whose maximum depth is 10. Based on
the result of model tuning, we set the learning rate to 0.05 and eta to 0.2. Further, we used
1500 estimators, and gamma, alpha, and lambda equal to 0.01, 0.5, and 0.8, respectively.

Each tree was trained on half of the features and half of the samples, chosen at random.

3.4.2. Deep Learning Algorithms

In Figure 3a we show the architecture of the model that accepts aligned sequences.
It is a single Bi-LSTM with 128 hidden units and 100 time steps. After randomly dropping
1% of neurons, we use a fully connected layer and ReLU (rectified linear unit) activation
function. Output is passed through a sigmoid function.

To model datasets that include both categorical features and normalized numerical
features (Figure 3b), we used a 2-layer full connected neural network with 256 hidden units
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for each layer. To prevent model overfitting, we dropped a neuron with 5% probability
during the forward propagation. A sigmoid function was used to determine output.

During training of both models, we split validation set from training set as proportion
1:3, and to moderate bias created by imbalanced data distribution, we set the class weight
ratio between positive samples and negative samples to 1:10. After training as described
above, we stacked the two models together so as to obtained average probability, passed
through a sigmoid function (Figure 3).

4. Results

We evaluated the algorithms’ performance using multiple metrics (Table 2).

Table 2. Performance measures. We report accuracy (Acc.), area under the curve (AUC), F1 score,
recall, and precision (Prec.) for the named models and datasets. To compare the performance of
the models using the initial or enhanced structured datasets, superior values are shown in bold.
(for confusion matrices see Additional file 5).

Model Dataset Acc. AUC F1 Score Recall Prec.

XGBoost Initial structured dataset 0.94 0.61 0.97 0.96 0.98
Enhanced structured dataset 0.97 0.77 0.99 0.99 0.98

MLP Initial structured dataset 0.98 0.56 0.99 1.0 0.98
Enhanced structured dataset 0.98 0.59 0.99 1.0 0.98

Bi-LSTM Sequence dataset 0.93 0.73 0.96 1.0 0.93

4.1. Machine Learning Model

The accuracy of the model created by using the initial structured dataset (no added
features) is 94%, whereas using the enhanced structured dataset (with added features),
the model’s accuracy is 97%. As accuracy on an imbalanced dataset is limited, we display
the receiver operating characteristic (ROC) curve of both datasets in Figure 5 to provide a
further comparison. The enhanced structured dataset has significantly higher area under
the ROC curve (AUC) scores than the model built on the initial structured dataset. There
also exist tiny differences between the F1 score, recall, and precision of the two models.
The method we chose to evaluate the importance score of feature is based on counting the
number of times that a feature occurred in a tree. The feature importance for both datasets
is shown in Figure 6. For the initial structured dataset, age plays a more important role
than other features. For the model based on the enhanced structured dataset, the weather
description, temperature, and humidity are more important than age; moreover, the level
of importance of weather is higher than that of age. We visualized the frequency of the
textual weather description on survivors and non-survivors, respectively (Figure 7). The
weighted average research sentiment polarity score does not have an exceptional f score.
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Figure 5. ROC of XGBoost. XGBoost shows an the accuracy of 94% on the initial structured dataset
and an accuracy 97% on the enhanced structured dataset, with an increase of the area under the curve
from 61% to 77%.

(a) (b)

Figure 6. Feature scores on the enhanced structured dataset. (a) XGBoost processing of the initial
structured dataset identified age as an important feature. (b) XGBoost processing of the enhanced
structured dataset identified in the weather as an important feature.

(a) (b)

Figure 7. Textual weather description. (a) Word cloud visualization of the frequency of textual
weather description for survivors. (b) Word cloud visualization of the frequency of textual weather
description for non-survivors.

4.2. Deep Learning Model

As shown in Table 2, on both the initial and enhanced structured datasets, the MLP
method demonstrated higher accuracy than the XGBoost method. For both datasets,
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the accuracy using MLP is 98%. However, the ROC curve (Figure 8) indicates that the
model shows a better classification ability on the enhanced structured dataset.

Taking sequence data into account, we obtained 93% accuracy and the area under the
ROC curve is 0.73, as shown in Figure 9. Among all the models we built, the AUC score
was highest when using a Bi-LSTM on the sequence data.

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

ROC Curve

Enhanced dataset, area=0.59
Initial dataset, area=0.56

Figure 8. ROC of MLP. MLP shows an accuracy of 98% on both the initial and the enhanced structured
dataset, with an increase in area under the curve from 56% to 59%.

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6
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1.0

TP
R

ROC Curve

Sequence dataset, area=0.73

Figure 9. ROC of Bi-LSTM. Bi-LSTM shows an accuracy of 93% on sequence dataset, with an area
under the curve of 0.73.

5. Discussion and Conclusions

The performance of machine learning and deep learning methods depends on the
amount and quality of available features. Our analysis illustrates that current publicly
available data can be enhanced, so as to increase the accuracy of survival prediction by
3% along with positive changes in other model validating metrics, such as AUC (16%),
F1 score (2%), and Recall (3%) in case of XGBoost. For MLP the accuracy, F1 score, Recall,
and Precision remained the same both for the initial and enhanced structured dataset,
but the AUC increased by 3%.

To further evaluate the capability of the proposed models, we repeated the construc-
tion of all models on the same datasets, however, with the roles of positive and negative
samples reversed, that is, this time considering patients who did not survive as positive
samples. We observed that for XGBoost and MLP, the models based on the enhanced struc-
tured dataset perform better than those based on initial structured dataset in all aspects
except recall (see Table 3). Further, it can be observed that even the best model has really
poor performances in detecting patients who did not survive, as witnessed by the F1 score
of 0.20.
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Table 3. Performance measures (predicting death). Considering patients that die as positive sam-
ples, we report performance as in the previous Table (for confusion matrices see Additional file 5).

Model Dataset Acc. AUC F1 Score Recall Prec.

XGBoost Initial structured dataset 0.96 0.60 0.15 0.19 0.12
Enhanced structured dataset 0.98 0.77 0.20 0.13 0.50

MLP Initial structured dataset 0.98 0.55 0.15 0.11 0.21
Enhanced structured dataset 0.98 0.59 0.13 0.21 0.10

Bi-LSTM Sequence dataset 0.93 0.64 0.21 0.35 0.14

Our study shows how one might enhance a dataset by adding informative features
that are not available in the original dataset. Here we demonstrated this for local weather
and country-wise research sentiment. Local weather conditions has been implicated as an
important feature previous studies.

Our analysis also shows that age is an important factor for survival of COVID-19 as
well. However, in the data considered here, the total number of deaths above age 60 were
793 and 2887 survived or were still alive, while in the age group between 40 and 60 there
were 421 deaths and 10,346 alive or survived. Therefore, linking mortality to a particular
age group is not appropriate based on the current data.

While this analysis suggests that elderly have a higher risk of death, which has
already been observed [58,59], saying that mortality is associated with old age is probably
generally true for any infectious disease. Age is one of the confounding factors that could
be responsible for an increased COVID-19 mortality rate [60,61].

For the model based on the enhanced structured dataset, the weather textual descrip-
tion, followed by local temperature, humidity, and age, appear as the most important
features and account for the increase in the accuracy of the model. The most apparent
difference in the weather attributes for survivors and non-survivors (Figure 7) is “smoke”.
This suggests that environmental conditions, in particular air pollution, may play a role in
determining the outcome of the disease.

In contrast, in our investigation, the research sentiment score did not show the im-
portance that we had suspected. The values of this feature are never particular high or
low, and the highest value of this feature is only 0.35, and thus the difference between the
highest score and lowest score is also small. We assume that one of the reasons for this is
that academic writing aims for a neutral tone.

The model that we developed on the virus genome dataset failed to provide added
predictive power. We suspect that virus genome data would be much more useful, if it
were available for the large, structured dataset. However, our study may provide a starting
point for further work.

Further, this analysis confirms that enhancing a dataset, rather than just analyzing
the originally given features, might lead to a better prediction of a particular outcome.
Along with some of the features which should be paid more attention while collecting
the data.

There are a number of possible directions for future work. As more viral genomes
become available, more powerful Deep Learning methods can be applied to them to help
predict patient survival. Additional features such as patient health status, weight, height,
medical history should also be integrated. The effect of climate on patient survival warrants
more investigation. Finally, methods such as a Recurrent Neural Network-based LSTM
might help to study how mutations influence the transmissibility of the virus [62].
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Supplementary Materials: Additional files, datasets and models analyzed during our study along
with the supplementary materials (like scripts) can be accessed at https://github.com/husonlab/
covid19paper. Additional file 1: Merge and processed publication data downloaded from WHO,
medRxiv and bioRxiv COVID-19 literature database; Additional file 2: Sequences used for MAFFT
alignment downloaded from GISAID and NCBI; Additional file 3: COVID-19 Enhanced structured
dataset; Additional file 4: Aligned sequence used for Bi-LSTM; Additional file 5: Confusion matrices
for all the build models.
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