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Abstract: Carbon capture, utilization, and storage (CCUS) describes a set of technically viable
processes to separate carbon dioxide (CO2) from industrial byproduct streams and inject it into deep
geologic formations for long-term storage. Legacy wells located within the spatial domain of new
injection and production activities represent potential pathways for fluids (i.e., CO2 and aqueous
phase) to leak through compromised components (e.g., through fractures or micro-annulus pathways).
The finite element (FE) method is a well-established numerical approach to simulate the coupling
between multi-phase fluid flow and solid phase deformation interactions that occur in a compromised
well system. We assumed the spatial domain consists of a three-phases system: a solid, liquid,
and gas phase. For flow in the two fluids phases, we considered two sets of primary variables: the
first considering capillary pressure and gas pressure (PP) scheme, and the second considering liquid
pressure and gas saturation (PS) scheme. Fluid phases were coupled with the solid phase using the
full coupling (i.e., monolithic coupling) and iterative coupling (i.e., sequential coupling) approaches.
The challenge of achieving numerical stability in the coupled formulation in heterogeneous media was
addressed using the mass lumping and the upwinding techniques. Numerical results were compared
with three benchmark problems to assess the performance of coupled FE solutions: 1D Terzaghi’s
consolidation, Liakopoulos experiments, and the Kueper and Frind experiments. We found good
agreement between our results and the three benchmark problems. For the Kueper and Frind test,
the PP scheme successfully captured the observed experimental response of the non-aqueous phase
infiltration, in contrast to the PS scheme. These exercises demonstrate the importance of fluid phase
primary variable selection for heterogeneous porous media. We then applied the developed model
to the hypothetical case of leakage along a compromised well representing a heterogeneous media.
Considering the mass lumping and the upwinding techniques, both the monotonic and the sequential
coupling provided identical results, but mass lumping was needed to avoid numerical instabilities in
the sequential coupling. Additionally, in the monolithic coupling, the magnitude of primary variables
in the coupled solution without mass lumping and the upwinding is higher, which is essential for the
risk-based analyses.

Keywords: multi-phase flow; primary variables; monolithic coupling; sequential coupling;
deformation flow; finite element; heterogeneous domain; compromised well; fracture

1. Introduction

Since the advent of the industrial revolution, the atmospheric concentration of carbon dioxide
(CO2) has gradually increased, which is considered as an important criterion for the global warming. [1].
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Carbon capture, utilization, and storage (CCUS) has been proposed as a technically viable approach
to help reduce anthropogenic CO2 emissions [2]. Once captured from industrial point sources and
compressed to a dense phase, CO2 can be transported for geologic storage in depleted hydrocarbon
reservoirs, coal beds, deep saline aquifers, or other geologic targets [3]. Successful implementation
of geologic carbon storage (GCS) requires effective containment of large volumes of injected CO2 for
long periods of time, and it is necessary to ensure that natural and engineered seals serve as effective
barriers to unwanted fluid migration. The integrity of active and abandoned wells is also an important
aspect of containment assurance [4,5].

The presence of a micro-annulus or crack in the cement sheath of a well system can compromise
the effectiveness of a well as a barrier to unwanted fluid migration [6] in GCS, geothermal energy
production, oil and gas exploration and production, geologic energy storage, hazardous waste disposal,
and other engineered geologic systems. For the well integrity in GCS, zonal isolation is the key concept
that is achieved by a well-functioning barrier between the steel casing and the formation rock [7].
However, the cementing operation is the most influential factor for establishing integrity. During the
hydration process and cement curing, due to the entrapped air or an inappropriate cement formulation,
weak porous space formation may create pathways for existing fluids migration.

In a compromised well several possible leakage pathways can manifest. Gasda et al. [8],
Celia et al. [9], and Wang and Taleghani [10] highlighted six possible reasons for cement sheath
failure: (i) crack along the radial direction, (ii) plastic deformation during the hardening phase,
(iii) separation between the steel casing and the cement, (iv) separation between the cement and the
formation rock, (v) poor cement jobs, and (vi) formation of channel or annulus. Figure 1 presents a
representative illustration of an injection well, a compromised legacy well, and possible pathways for
fluids leakage through a compromised well.

Well stability failure requires expensive structural remedial operations and a contamination
prevention action plan (EPA [11]). Cavanagh et al. [12] reported that in the United States alone,
the annual estimated remedial work cost for cement failure is over $50 million a year. In addition,
Dusseault and Jackson [13] reported that the estimated remedial cost in British Columbia, Canada is
$8 million. Therefore, compromised well, its mechanism, short and long-term effect, and possible
prevention are an active field of research. Fluids (e.g., CO2, brine) may migrate through the annulus
or crack in the compromised well. Due to fluids flow, inside the porous mediums, fluids pressure
develops, which also impacts geo-mechanical aspects of wells [14]. In addition, in the compromised
well, the fluids flow, fluids saturation state change, their pressure evolution, and the associated
deformation flow are considered as a complex coupled problem, which is the motivation of the
present research.

In this paper, for the FE simulations of a field case in Figure 1, we assume that the compromised
well geometry consists of a storage reservoir, cement sheath, and steel casing. In addition, we consider
a horizontal fracture as a leakage path. Additionally, we interpret that the inside of the well is
filled with cement, which represents a plugged and abandoned well. Therefore, the flow problem
presented herein calls for simulation of coupled multi-phase hydro-mechanical response in a complex
heterogeneous media.

The literature describes some field cases for CO2 injection, like, the Ketzin Pilot project (Chen
et al. [15]). The numerical complexities of these types of cases are similar to the Liakopoulos
experiments [16]. In addition, among others, Lewis and Schrefler [17] demonstrated associated
numerical issues in a homogeneous media. Three-phases (solid, liquid, and gas) finite element
simulation in deformable heterogeneous mediums with fractures presents numerical convergence
challenges. Helmig [18] demonstrated the computational complexities of modeling fluid flow
experimental results in heterogeneous sand mediums reported by Kueper and Frind [19]. The literature
reports multiple sources for the numerical instabilities in the multi-phase heterogeneous domains,
including: non-linearity of coupled partial differential equations which hold the complex mediums
(Binning and Celia [20]), coupling mechanisms of fluids and solids (e.g., the monolithic coupling or
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the sequential coupling) (Kolditz et al. [21]), and selection of fluids’ primary variables (the capillary
pressure plus the gas pressure or the liquid pressure plus the gas saturation) (Helmig [18]). Additionally,
for the standard FE, the mass matrices of variables are calculated at each quadrature point, while fluids
flowing in porous media, the time derivative of variables are evaluated at nodes (Zienkiewicz et al. [22]).
There are notable numerical complexities for the two fluids flow simulation, when (i) one fluid
phase approaches to the residual saturation, (ii) the mobility term becomes zero, or (iii) the role
of compressibility is substantial. For cases with three-phases heterogeneous mediums, selection of
(i) numerical solvers (linear and non-linear solvers), (ii) time integration scheme (implicit, explicit,
or automatic time stepping), (iii) preconditioner (Jacobi type or Incomplete Lower Upper (ILU)
factorization type or without preconditioner), and (iv) memory storage (symmetry or asymmetry) are
crucial issues to obtain numerical convergence (Chen et al. [23]).
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Figure 1. Schematic section of a compromised well: (a) Geologic block [24] and (b) possible fluid
leakage path [8].

Work described herein seeks to address those challenges for the scenario of leakage through a
compromised legacy well in a GCS system. Using the finite element method, we tested two coupling
mechanisms, and two sets of fluids primary variables and considered their contribution to numerical
instabilities. For the fluids flow, the primary variables are (i) the capillary pressure and the gas pressure
(PP scheme) and (ii) the liquid pressure and the gas saturation (PS scheme). We also use Brooks and
Corey [25] model to account for the transition between the wetting phase fluid and the non-wetting
phase fluid. We also introduced the mass lumping and the upwinding techniques (see Helmig [18]) to
assess the numerical stability in the heterogeneous mediums. Moreover, to verify the performance
of finite element simulations, we compared our FE results with the analytical solutions of Terzaghi’s
1D consolidation (see also Coussy [26]), Liakopoulos [16] laboratory test and Kueper and Frind [19]
experimental results. We conducted these comparisons to assess the accuracy in the coupled FE
solutions and to investigate the effect of fluids’ primary variables on the heterogeneous interface
with relevance to the case of leakage through a compromised legacy well. In addition, the problem
statement in the benchmark solutions are relevant to compromised well. The purposes of our present
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investigations are to (i) assess the risk of CO2 leakage through observation points including in the
fracture zone, (ii) monitor coupled geo-mechanical responses due to CO2 injection, and (iii) investigate
the effect of coupling scheme (e.g., monolithic and sequential coupling) with and without the mass
lumping and the upwinding algorithms on the coupled finite element solutions of CO2 leakage.

An open-source solver named OpenGeoSys [27] was used for finite element modeling.
The Gmsh [28] was used for mesh generation. In the following sections, we will discuss details
of governing equations, coupled finite element formulations, benchmark solutions, and coupled finite
element model of a compromised legacy well.

2. Governing Equations

Considering the average-representative theory (Bear and Bachmat [29]), we present herein the
momentum conservation, the mass conservation for the multi-phase flow type model. We assume that
the modeled system is composed of porous rock media with fluids (gas and liquid) saturating the pore
space such that the system comprises three phases (ψ). In addition, we ignore components of each
phase (e.g., vapor or solid deposition), and geochemical interactions. The phases are the gaseous or the
non-wetting phase (ψ = g), the liquid or the wetting or the aqueous phase (ψ = l), and the solid phase
(ψ = s), which we illustrate in Figure 2. We also assume that the porous media adheres to the “average
volume” theory, and the individual phases are distributed over the “control volume” (de Boer [30]).
Pores of the porous mediums are filled with fluids (i.e., liquid and gas). The three phases of the system
are considered as a mixture, with two-phase fluid flow coupled with the deformation flow for two sets
of fluids primary variables combining the “mixture theory” (Truesdell [31]), and the “volume fraction”
theory (de Boer [30]). In the following section, we present the balance equations.
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Lewis and Schrefler [17]).

2.1. Momentum Conservation Equations

We assume that (i) the porous medium satisfies the quasi-static equilibrium condition and in the
isothermal equilibrium state. Therefore, we ignore the acceleration term. (ii) The porous medium also
supports the Newton’s third law. Thereby, the interaction force of the solid and the fluid are equal
but have an opposite sign. As a result, the interaction forces cancel each other, and we ignore them.
(iii) The porous medium also follows the small deformation theory.

Considering the assumptions mentioned above, we present the momentum conservation
equation as

div σψ + ρψg = 0 (ψ = s, l, g) (1)

where, σψ is the total stress tensor, which is the summation of phases, ρψ is the density of mediums,
which also holds the summation convention of phases (see Bear and Bachmat [29]), g is the gravitational
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acceleration, which is acting in the vertical direction. In addition, we present the details of constitutive
laws of σψ, ρψ and the linear momentum conservation equation in Appendix A.

2.2. Mass Balance Equation

We assume that (i) there is no exchange of mass between the solid and the fluids. Thereby,
we ignore the geochemical interactions. (ii) The solid phase satisfies the isotropic condition. (iii) Fluid
phases are immiscible. (iv) The porous medium satisfies the compositional approach (see Panday and
Corapcioglu [32]). Therefore, the mass balance equation is the summation of the associated phase of
balance equations.

Considering the aforementioned assumptions, we obtain the mass balance equation as

∂ρψ

∂t
+ div

(
ρψvψ

)
= 0 (ψ = s, l, g) (2)

In Appendix A, we discuss details of the constitutive relations for the mass balance equations.
The final form of the momentum equation and the balance equation for a given physical problem
depends on many factors (see Aziz and Settari [33]). However, in this paper, we limit our discussion
to two essential conditions. They are (i) the selection of fluids primary variables: the PP scheme
and the PS scheme, and (ii) assumptions of constitutive relations for coupled solutions. To avoid the
repetition of similar equations, we first present a general form of the coupled equation (see Appendix A,
Equations (A5) and (A17)). Then, we obtain the PS scheme and the PP scheme for our numerical
solutions as follows.

The PP scheme:

div
[
σ́ −

[
pg − Slpc

]
I
]
+

[
(1−ϕ)ρs

R + ϕ
(
1− Sl

)
ρ

g
R + ϕSlρl

R

]
g = 0 (3)

ϕρl
R
∂Sl

∂t
+ ϕSl ∂ρ

l
R

∂t
+ div

ρl
R

kkl
rel

µl

(
−∇pg +∇pc + ρl

Rg
)+ Slρl

R div
.
u = 0 (4)

−ϕρ
g
R
∂Sl

∂t
+ ϕ

(
1− Sl

)∂ρg
R

∂t
+ div

ρg
R

kkg
rel
µg

(
−∇pg + ρ

g
Rg

)+ (
1− Sl

)
ρ

g
Rdiv

.
u = 0 (5)

The PS scheme:

div [σ́ − [(1− Sg)pl + Sg(pl + pc)]I] +
[
(1−ϕ)ρs

R + ϕ
(
1− Sl

)
ρ

g
R + ϕSlρl

R

]
g = 0 (6)

−ϕ
∂
(
ρl

RSg
)

∂t
+ ϕ(1− Sg)

∂ρl
R

∂t
+ div

ρl
R

kkl
rel

µl

(
−∇pl + ρl

Rg
)+ (1− Sg)ρl

Rdiv
.
u = 0 (7)

ϕ
∂
(
ρ

g
RSg

)
∂t

+ ϕSg
∂ρ

g
R

∂t
+ div

ρg
R

kkg
rel
µg

(
−(∇pl +∇pc) + ρ

g
Rg

)+ Sgρ
g
Rdiv

.
u = 0 (8)

In Equations (3)–(8), to obtain the “well posed” (see Peiro and Sherwin [34]) coupled finite element
solutions, we have a total of 34 Equations for 34 variables (see Appendix A and Tables A1 and A2).

In addition, in Equations (3)–(8), we can summarize the second-order partial differential equations
(SOPDE) under three headings depending on conditions (see also Chen et al. [23]). For example, if the
multiplication of coefficients of the SOPDE is greater than zero, it becomes elliptic. The equation
behaves parabolic or hyperbolic, if the multiplication of coefficient is zero or less than zero, respectively.
For the two-phases flow equations, when the phase mobility is zero, the total mobility becomes positive.
Therefore, the pressure equation is treated as elliptic. Again, while one of the fluids phase density
varies (see also Helmig [18]), the equation becomes the parabolic. Moreover, when the capillary
pressure term is zero, the equation becomes hyperbolic. To solve such a complex coupled SOPDE
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solution, there are different approaches, e.g., Implicit Pressure, Explicit Saturation (IMPES), and the
Implicit method (see Gundersen and Langtangen [35]).

In this paper, for a coupled numerical solution, we use two types of numerical solvers. They are
(i) the library of iterative solvers (Lis) for the linear system: SpBICGSTAB type solver (see Chen
et al. [23]), and (ii) for the non-linear solution: PICARD type solver (see Paniconi and Putti [36]).
In addition, for the coupling of two fluids and solid, we use (i) the monolithic coupling and (ii) the
sequential coupling. In the first case, we solve the governing equations concurrently using one solver.
In contrast, in the latter case, we obtain a solution of similar equations using distinct solvers. In the
solution scheme, we use the ILU type preconditioner and the asymmetric storage (see also Saad [37]).
In addition, we consider the saturation and the displacement error threshold as 1 × 10−3 and 1 × 10−5

m, respectively, while a similar magnitude for the pressure is 1 Pa. For the convergence, we consider
the relative error criterion (see also Chen et al. [23]).

3. Coupled Finite Element Formulations

We introduce the weak formulations, and the Galerkin finite element method in the governing
equations to obtain the finite element solution (see also Zienkiewicz et al. [22]). In the matrix notation,
the coupled algebraic equations for the two-phase flow, and the deformation can be written as

C
.

X + KX = F (9)

In Equation (9), in general, C and K are the non-symmetric matrices which depend on solution

vectors, X =
{
u, pg, pc

}T
.

.
X is the time derivative of X. F is the time-dependent function for the gas

pressure, the capillary pressure, and the displacement. Additionally, C and K are known as the “mass
matrix” and the “coefficient matrix”, while F demonstrates the Neumann boundary terms. It is worth
mentioning that we show Equation (9) for the PP scheme only to avoid similar equations.

[C] =


Cgg Cgc Cgu

Ccg Ccc Ccu

Cug Cuc Cuu

 (10)

[K] =


Kgg Kgc Kgu

Kcg Kcc Kcu

Kug Kuc Kuu

 (11)

[X] =


pg

pc

u

 (12)

[F] =


fg

fc
fu

 (13)

Details of matrix elements in Equation (9) can be found in Lewis and Schrefler [17].
There are different approaches to solve Equation (9) (see Wood [38]). However, herein, we use the

θ—method. In addition, following the finite difference method, the time discretization (∆t = tn+1 − tn)

of Equation (9) can be written as

[C + θ∆tK]n+θXn+1 − [C− (1− θ)∆tK]n+θXn − ∆tFn+θ = 0 (14)

where, θ ∈ [0, 1] is the integration parameter. Xn and Xn+1 are vectors corresponding to the time tn and
tn+1, respectively. Additionally, n and n + 1 represent the previous and present time steps, respectively.
We also assume that the initial state of solution vectors X0, at an initial time t0 are known.
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For the coupled hydro-mechanical solutions, the domain Ω is bounded by an arbitrary boundary
Γ. In addition, to obtain solutions of unknown variables, we define the initial conditions and the
boundary conditions as follows

u(t = 0) = u0 in Ω (15)

pc(t = 0) = pc0 in Ω (16)

pg(t = 0) = pg0 in Ω (17)

where, u0, pc0, and pg0 are the initial state displacement, capillary pressure, and gas pressure, respectively.
For the above-mentioned primary variables, boundary conditions are given by

u = uΓ on Γu (18)

σ.n = t on Γt (19)

pc = pcΓ on Γpc (20)

pg = pgΓ on Γpg (21)

wβ.n = qβ on Γqβ (22)

where, uΓ and t are the assigned displacement and tractions, respectively, on the corresponding
boundaries Γu and Γt. Additionally, pcΓ and pgΓ are the prescribed capillary pressure and the gas
pressure, respectively, on the boundaries Γpc and Γpg . n is the unit normal vector. qβ is the assigned
fluids fluxes, where β represents the liquid and gas phases.

Additionally, for the diffusive fluxes, solutions of coupled non-linear balance equations exhibit the
parabolic form. Again, when the diffusive fluxes are small enough compared to the convective fluxes,
the governing equations are treated as the hyperbolic form (see also Aziz and Settari [33]). Moreover,
the non-linear convective term’s differential operator is not symmetric. In such a situation, if one fluid
phase approaches its residual saturation or the mobility term (see Equation (A8)) approaches zero,
then the upwinding technique is convenient (see also Helmig [18]). Furthermore, in a heterogeneous
porous media, without the upwinding method, the primary variables of the governing equations
oscillate strongly, which moreover do not predict fronts perfectly for the convection-diffusion type
problem (see also Aziz and Settari [33]). In addition, a finite element domain comprised of composite
medium and with coarser mesh, the oscillation is also challenging. We also discuss such an oscillation in
the next section. In this regard, possible solutions may be small-time steps and finer mesh, which require
additional computational time.

As in the upwinding method, the central difference solution of the second-order partial differential
equation with respect to space is replaced with the first-order solution in the direction of fluid flow.
Thereby, there is a debate for and against the upwinding method regarding stability and accuracy
issues. It is worth mentioning that selection of the upwind method (see also Helmig [18]) is crucial
for the solution of multi-phase fluids flow in a porous media. A choice of erroneous algorithms may
attempt to withdraw fluid phase from nodal points, where there might not have even fluid (see also
Lewis and Roberts [39]). In such a situation, “fully upwinding” method is numerically advantageous
than other upwinding method, while in other cases, “fully upwinding” method may require a cutoff to
achieve the stability. Thereby, it is worth mentioning that considering the coupling mechanisms of
operational processes (e.g., coupled fluids flow and deformation flow), a selection of the upwinding
technique is critical. Moreover, without the upwinding method, introducing revised “quadrature
rule”, the associated oscillation also can be resolved (see also Lewis and Roberts [39]). However,
the computational time in the “quadrature rule” is challenging.

It is worth mentioning that in the Results and Discussions of a Compromised Well section, we present
a comparison of with and without the mass lumping and the upwinding method for the monolithic
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coupling and the sequential coupling. Additionally, in the next section, we demonstrate benchmark
solutions of the above discussed coupled finite element formulations.

4. Benchmark Solutions

4.1. Terzaghi’s 1D-Consolidation

Terzaghi’s 1D consolidation theory [40] is considered as the necessary foundation of the coupled
hydro-mechanical, and the liquid flow through the porous media. In this section, we compare the
analytical solutions of Terzaghi’s 1D consolidation with the finite element model. In this regard,
we assume that the porous medium is fully liquid saturated; the medium is in the isotropic state,
and homogeneous. Additionally, we consider the single drainage (see also Terzaghi [40]). The analytical
solution for the Terzaghi’s 1D consolidation is available in many textbooks (see also Coussy [26]).
In this section, considering Murad and Loula [41], we obtain the analytical solutions for the pore
pressure and the effective stress as follows

σD = −1 +
∞∑

n=0

2
M

sin(MyD)e−M2tD (23)

plD = pl0 +
∞∑

n=0

2
M

sin(MyD)e−M2tD (24)

where, σD =
σ́y
σ0

, plD =
pl
σ0

, yD =
y
H , tD =

E(1−ν)
(1+ν)(1−2ν)

kt
µlH2 , M = π

2 (2n + 1) are non-dimensional
quantities. σ́y is the effective vertical stress, pl is the pore-pressure or the liquid pressure, pl0 is the
initial pore pressure, σ0 is the initially assigned vertical pressure, k is the permeability of the porous
media, t is the time, E is the Young’s modulus, ν is the Poisson’s ratio, µl is the liquid viscosity, and H
is the drainage path.

We consider that the height and the width of the porous media are 1.0 m and 0.1 m, respectively
(see also Figure 3). For any coupled solution of saturated porous media, there should have two types
of boundary conditions. They are the displacement boundary (or similar) and the hydraulic boundary.
At the bottom, we restrict the displacement along the horizontal and the vertical direction. Additionally,
along the lateral direction, we also limit the horizontal displacement. In addition, along the load
application area, we introduced finer mesh and applied a uniform load of 1000 Pa. We perform
the simulation in two steps. In the first step, across the top surface, we constrain the drainage.
Thereby, due to a sudden application of load, along with the porous medium, uniform pore pressure is
developed, which is equivalent to the applied load. At this stage, only the liquid pressure carries the
applied external pressure, and the effective stress is zero. In the second step, the top surface is open and
permeable. Additionally, the lateral boundaries are also impermeable. In Figure 3, we demonstrate the
initial and the boundary conditions, while in Table 1, we present model parameters.

Table 1. Physical parameters for 1D Terzaghi’s consolidation.

Parameters Symbol Unit Value

Young’s Modulus E Pa 3.0 × 104

Poisson’s ratio ν — 0.20
Porosity ϕ — 0.50

Permeability k m2 1.0 × 10−10

Liquid density ρl kg/m3 1000
Liquid viscosity µl Pa-s 1.0 × 10−3
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Figure 3. Initial and boundary condition of Terzaghi’s 1D consolidation solution. 

  

Initial condition

Boundary condition

𝜎 = 𝜎0

𝑢 = 0

𝑢 = 𝑢𝑦 = 0
 = 0.1  

x

y

𝑢 = 0

𝑢𝑦 𝑦, 0 = 0, 𝑝𝑙 𝑦, 0 = 𝜎0

𝑝𝑙 0, 𝑡 = 0

𝑦 = 1.0 

Figure 3. Initial and boundary condition of Terzaghi’s 1D consolidation solution.

It is noteworthy that the 1D consolidation process in the porous media behaves like a diffusion
method. At the initial stage, the liquid pressure/pore pressure and the effective stress are relatively
high. Therefore, we also consider a small-time step during the simulation. We present a comparison
of the analytical and the finite element solutions in Figure 4, which represents a good agreement.
Additionally, we observe that the liquid pressure/pore pressure dissipation results in increasing the
effective vertical stress. Moreover, when the pore pressure decrease with respect to time is negligible,
the effective vertical stress increment rate is also minimal (see also Figure 4).
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4.2. Liakopoulos Test

In the above section, for the 1D Terzaghi’s consolidation representing the two-phases saturated
media, we discussed a comparison of the analytical solution with the finite element results.
In contrast, in this section, we present a comparison analogy of the Liakopoulos experiments (see
also Liakopoulos [42]) showing three-phases media, with finite element solutions. Liakopoulos [42]
performed experiments on a 1.0 m Perspex column filled with the Del Monte sand and instrumented
using the tensiometers to measure the pore pressure change along with the column height (see Figure 5).
The purpose of such a test is to investigate the fully saturated condition (e.g., two-phases media:
solid phase and the liquid phase, with the liquid saturation = 1) to the gradual desaturation state
development (e.g., three-phases media: solid phase, the liquid phase, and the gas phase). During the
test, only the gravitational force is considered for the consolidation process. In the Liakopoulos test,
initially, (t = 0−) constant flow through the column is continued, and free drainage is also allowed
at the bottom through a filter to ensure the initial water pressure gradient is zero. At the bottom,
after achieving the uniform flow condition (∆pl = 0), the liquid flow supply is terminated (t = 0+) at
the top so that only due to the gravitational force, the accumulated liquid in the medium could escape.
Additionally, Liakopoulos [42] presented the measured values of the tensiometer readings and the
outflow rate.
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We present details of the model parameters in Table 2. In addition, we perform two types of
finite element solutions. In both cases, we consider an identical condition, which also provided the
opportunity to compare model performances of two solutions with the experimental results. In the
first case, we couple two-phases fluids flow with the deformation flow. In the latter case, we also
couple the Richards solution [43] with the deformation flow. For the deformation flow, we consider
the poroelasticity (see Coussy [26]). It is worth noting that for the Del Monte sand Liakopoulos [42]
performed laboratory tests to obtain the porosity and hydraulic properties. Liakopoulos did not present
the mechanical properties of sand. However, among others, Lewis and Schrefler [17] back-calculated
the Young’s modulus and the Poisson’s ratio. Comparing with hydraulics properties test results in
Liakopoulos [42] experiments, Lewis and Schrefler [17] also presented the capillary pressure and the
saturation relations (see Table 2), which are valid for the liquid saturation greater than 0.91. In addition,
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considering the Brooks and Corey [25] model, we obtain the relative permeability for the gas phase
from Lewis and Schrefler [17].

Table 2. Physical parameters for the Liakopoulos test.

Parameters Symbol Unit Value

Young’s Modulus * E Pa 1.3 × 106

Poisson’s ratio * ν — 0.40
Porosity ϕ — 0.2975

Solid’s density ρs kg/m3 2000
Permeability K m2 4.5 × 10−13

Liquid density ρl kg/m3 1000
Liquid viscosity µl Pa-s 1.0 × 10−3

Air density ρg kg/m3 Ideal Gas Law’s
Air viscosity µg Pa-s 1.8 × 10−5

Atmospheric reference pressure pg Pa 0
Capillary pressure § pc Pa Sl = 1− 1.9722× 1011p2.4279

c

Liquid phase relative permeability § kl
rel — kl

rel = 1− 2.207
(
1− Sl

)1.0121

Gas phase relative permeability ‡ kg
rel —

kg
rel = (1− Se)

2
(
1− S

5
3
e

)
Se =

(
Sl
− 0.2

)
/(1− 0.2)

Note: *, ‡ Lewis and Schrefler [17], § fitted from Liakopoulos [42] experiments, others from Liakopoulos [42];
Schrefler and Scotta [44].

To maintain the similarity with the Liakopoulos test, we assume that (i) the consolidation happens
only due to the gravity force along the vertical direction, (ii) the medium is in the equilibrium state,
(iii) in the initial state, the medium is fully saturated, then the desaturation started from the top. We also
illustrate the boundary conditions in Figure 5.

Liakopoulos [42] only measured the liquid pressure profile and the fluid outflow rate through
the bottom for time. Due to the unavailability of the Liakopoulos experimental data for the capillary
pressure and saturation, a comparison of the finite element results is not possible. In Figure 6a,
we compare the water pressure measurement with the two fluids phases and the Richards flow.
We observed that before 30 min, predicted finite element (FE) results for the water pressure decreased
rapidly compared to the experimental measurement. Among others, Schrefler and Scotta [44] also
observed a similar phenomenon. After 30 min, both FE results match well with experimental results.
In Figure 6b–d, we also present results for the water outflow rate at the bottom, the water saturation
profile, and the vertical displacement profile, respectively. For the identical conditions and material
properties, the two fluids’ phases result has good agreement with the coupled Richard flow [43].

4.3. Kueper and Frind Test

In the above two benchmark solutions, we present a homogeneous medium for two phases
and three phases. However, in this section, we present a heterogeneous medium for the benchmark
comparisons, and the mechanisms are closely similar to heterogeneous compromised well problems in
the next section.

Kueper and Frind [19] performed laboratory experiments to investigate the dense non-aqueous
phase liquid (DNAPL, e.g., the tetrachloroethylene) infiltration. An acrylic glass flume of dimension
0.7 m × 0.5 m × 0.006 m (see Figure 7) is filled with four different types of uniformly distributed
sand (e.g., sand 1 = # 16 Silica, sand 2 = #25 Ottawa, sand 3 = #50 Ottawa and sand 4 = #70
Silica). Initially, mediums are adequately water saturated. Then, the infiltration is controlled with a
constant tetrachloroethylene saturation of 0.38. Additionally, in Figure 7, we present details of the
boundary conditions. From Kueper and Frind [19], we demonstrate fluids properties in Table 3 and
the Brooks-Corey model parameters in Table 4.
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Figure 6. Finite element results and Liakopoulos experiments: (a) water pressure, (b) outflow rate,
(c) water saturation, and (d) vertical displacement.
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Figure 7. Configuration of heterogeneous sand lenses in parallel plate cell (see Kueper and Frind [19]).

For the finite element (FE) simulation, we use the two-phases model considering two sets of
primary variables. They are (i) the capillary pressure and the gas pressure (the PP scheme) and (ii)
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the liquid pressure and the gas saturation (the PS scheme) (see also Equations (3)–(5) and (6)–(8)).
We also include the upwinding and the mass lumping techniques for numerical simulation. For the
FE model, we use three nodes of triangular elements. The number of nodes and elements are 18,475
and 37,914, respectively. In Figure 8, we present a comparison of experimentally observed response
with numerically predicted tetrachloroethylene infiltration at 34 s and 313 s. The purpose of such a
comparison is to investigate the importance of primary variables selection for fluids flow modeling at
the interface of heterogeneous composite media. From comparisons in Figure 8, we observe that at
34 s, before the plume reaches to the heterogeneous interface, both numerical schemes (e.g., PP and PS)
produce reasonably well plume distribution. However, due to dissimilarities in the hydraulic properties
(see Table 4), when plume reaches to the heterogeneous interface at 313 s, we notice a notable difference
in the PP scheme and the PS scheme. The PP scheme captures the observed response well compared to
the PS scheme. In addition, the accuracy has been compromised in the PS scheme. Moreover, we also
observe that heterogeneity has a significant impact on the two-phases fluids flow behavior. In addition,
in such a case, the PS scheme provides unphysical fluids flow results. Additionally, we also run a total
of eight simulations comparing with and without the mass lumping and the upwinding using different
time steps to assess their effect on simulations, which is demonstrated in Table 5.

From Table 5 and Figure 9, we observe that the selection of the mass lumping and the upwinding
techniques and the time step significantly impact the computational time. Additionally, to address
fluids migration through different material properties in Kueper and Frind [19] test, we also use very
fine mesh. Moreover, Kueper and Frind [19] performed the experiment for a shorter time, thereby the
effect of with and without the mass lumping and the upwinding methods in the finite element solutions
are negligible. However, for a more extended period in well modeling, such an effect is significant.
In the next section, for the compromised well, we discuss (i) selection of coupling mechanism effect
(ii) with and without the mass lumping and the upwinding methods, and (iii) the effect of injection
rate. In addition, in the compromised legacy well modeling section, as we also have a heterogeneous
medium; therefore, to avoid the numerical instability in the PS scheme, we consider the PP scheme
algorithms for the finite element simulation of fluids migration.

Table 3. Fluid properties.

Fluid Properties Symbol Unit Water Tetrachloroethylene

Density ρβ kg/m3 1 × 103 1.63 × 103

Viscosity µβ Pa-s 1 × 10−3 0.90 × 10−3

Table 4. Brooks–Corey model parameter for heterogeneous sand lenses in parallel plate cell.

Sand Pd (Pa) λ (-) S k (m2) n (-)

#16 Silica 369.73 3.86 0.078 5.04 × 10−10 0.40
#25 Ottawa 434.45 3.51 0.069 2.05 × 10−10 0.39
#50 Ottawa 1323.95 2.49 0.098 5.26 × 10−11 0.39
#70 Silica 3246.15 3.30 0.189 8.19 × 10−12 0.41

Table 5. Computational time with and without the mass lumping and the upwinding.

Time Step Computational Time (Hours) for the PP Scheme

With the Mass Lumping and the Upwinding Without the Mass Lumping and the Upwinding

Auto Time Step 27.06 34.70
∆t = 0.1 15.41 17.03
∆t = 0.5 7.14 8.04
∆t = 1.0 5.76 Convergence problem

Note: Computational time in the HP Z840 Workstation (Xeon (R) 2.60 GHz Processor and 16 gb memory).
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Figure 8. Comparison of observed (redrawn) and predicted tetrachloroethylene distribution in terms
of the liquid at 34 s (a–c) and 313 s (d–f).
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Figure 9. Comparison of predicted tetrachloroethylene distribution in terms of the liquid at 313 Sec: (a–c)
with the mass lumping and the upwinding and (d–f) without the mass lumping and the upwinding.

5. Numerical Modeling of Compromised Well

5.1. Geometry and Properties

Following Figure 1, we schematically illustrate a compromised legacy well in Figure 10 for
coupled finite element (FE) simulations. We assume that the geologic storage medium has two main
components. They are (i) a porous CO2 storage reservoir (6.0 m), and (ii) a relatively impermeable
caprock (20.0 m) and stress above the caprock. We also assume that the storage reservoir is located
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900 m below the surface. It is worth mentioning that we consider a simplified geometry for the
coupled FE modeling to reduce the computational time. Thereby, in the numerical model, above the
CO2 storage reservoir, we assume the stress state as an overburden pressure (see also Figure 10b).
In addition, in Figure 10b, we consider fracture in the left wall of the steel casing, while its right wall
is intact. Hence, we also assume that fluid will not flow through the steel wall’s right impervious
wall. As a result, in Figure 10b, possible fluid flow paths are compromised fracture zone and the
porous medium. Moreover, in Figure 10b, to minimize the right end-boundary effect in the numerical
simulation, we extend the longitudinal dimension to 50.0 m on the other side of the CO2 injection
face. Theoretically, depending on the injection rate and geophysical properties of the study domain
(see Figure 10b), coupled hydro-mechanical responses to any points are proportionate from the fluid
injection phase distance. However, such responses in coupled finite element modeling also depend on
the selection of the coupled algorithms (see also Figures 8 and 9), which we investigate herein for a
compromised well. Therefore, considering the above-mentioned assumptions, we use a total of four
observation points in Figure 10b to monitor the coupled hydro-mechanical behavior.
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Figure 10. (a) Schematic diagram of the cross-section of the compromised well and (b) schematic
dimensions of the cross-section and locations of observation points (see also Ravi et al. [45]).

In addition, we obtain the well geometry from Ravi et al. [45] (see also Figure 10b). The diameter
of the wellbore is 0.2413 m. The outer diameter and the inner diameter of the casing are 0.1936 m and
0.1718 m, respectively. Thereby, the steel casing thickness is 0.0109 m, which we also assume as an
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impervious media. Additionally, to mimic the legacy well, we assume that inside of the well’s steel
casing is sealed using cement. Moreover, the cement thickness between the legacy well’s outer wall
and the steel casing is 0.02385 m. We also assume the fracture aperture is 625 µm, which allows fluids
migration through cement porous media. We ignore the fracture propagation. We present material
properties of casing, reservoir, cement, and fracture in Table 6.

Table 6. Properties of casing, reservoir, cement, and fracture.

Section Properties Symbol Unit Value

Casing Mechanical

Young’s Modulus Ecasing Pa 1.7 × 1011

Poisson’s Ratio vcasing 0.27
Density ρcasing kg/m3 8000
Porosity φcasing — —

Flow Permeability kcasing m2 1.0 × 10−21

Reservoir Mechanical

Young’s Modulus Erock Pa 2.0 × 1011

Poisson’s Ratio vrock 0.30
Density ρrock kg/m3 2650
Porosity φrock — 0.30

Flow Permeability krock m2 1.0 × 10−13

Cement Mechanical

Young’s Modulus Ecement Pa 8.3 × 109

Poisson’s Ratio vcement 0.25
Density ρcement kg/m3 2000
Porosity φcement — 0.132

Flow Permeability kcement m2 1 × 10−20

Fracture
Mechanical

Young’s Modulus Efracture kPa 2.0 × 108

Poisson’s Ratio v f racture 0.20
Density ρ f racture kg/m3 1600
Porosity φfracture — 0.80

Flow Permeability kfracture m2 3.25 × 10−8

Geometry Thickness b Micro-m 625

We assume that the study domain is in the quasi-continuum condition, and in the equilibrium
state. We also assume that the average density of the overburden medium is 2650 kg/m3. In addition,
we consider the domain’s temperature is 34 ◦C and in the isothermal state. With such a stress state
and temperature condition, we obtain corresponding fluid properties from the National Institute of
Standards Technology webbook (NIST [46]), and we present them in Table 7. Additionally, to account
for the transition of the wetting phase to the non-wetting phase, we consider the Brooks and Corey
model, which we demonstrate in Table 8.

5.2. Initial Conditions and Boundary Conditions

We consider that the vertical stress (σv), the minimum horizontal stress (σh), and the maximum
horizontal stress (σH) are acting along the y-axis, z-axis, and x-axis, respectively. We also assume
that the ratio between the horizontal stress (σh and σH) to the vertical stress (σv) is 0.8. During the
initial state, we also obtain the “geostatic” condition due to the gravity force. Additionally, in Table 9,
we present the initial stress conditions.

To assign the boundary condition, we restrict fluids flow along the bottom, right, and top of
the domain. In Figure 10b, we present CO2 injection boundary on the left side. We introduce fluids
saturation in terms of the capillary pressure. To maintain the quasi-static condition, we assume
small-time incremental and a constant CO2 injection rate, so that we may avoid any disturbance
during CO2 injection. Additionally, at the top and the bottom of the domain, we restrict the vertical
displacement. We also consider that along the horizontal direction (x-axis), the CO2 injection face (see
Figure 10b) is movable. In contrast, we assume another front of the horizontal direction is the fixed
boundary by restricting the displacement.
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Table 7. Fluid properties (From NIST webbook NIST [46]).

FluidProperties Symbol Unit
Fluids

Brine CO2

Density ρβ kg/m3 1004.6 895.39
Viscosity µβ Pa-s 7.3446 × 10−4 9.0285 × 10−5

Table 8. Relative permeability and capillary pressure parameters.

Items Unit Symbol Reservoir Cement Fracture Casing

Values

Residual CO2 saturation — Srg 0.03 0.20 0.05

N/A

Maximum CO2 saturation — Smg 0.60 0.70 0.90
Residual brine saturation — Srl 0.40 0.30 0.10

Maximum brine saturation — Sml 0.97 0.80 0.95
Brooks-Corey parameter — λ 2 2 2

Air entry pressure Pa pd 104 104 104

Table 9. Initial stress conditions.

Input Values Unit

Overburden pressure
(
σy

)
−23.40 × 106–25,996.5 × y Pa

Maximum horizontal stress (σx) −18.72 × 106–20,797.2 × y Pa
Minimum horizontal stress (σz) −18.72 × 106–20,797.2 × y Pa

6. Results and Discussions of a Compromised Well

6.1. Effect of Coupling Mechanisms

In Figures 8 and 9, we demonstrate the selection of multi-phase flow algorithms and coupling
mechanisms on the accuracy of the results in heterogeneous porous media. In this section, we extend
our study to a compromised well, which is also a heterogeneous media and holds a similar complexity
as we noticed in the benchmark validation for Kueper and Frind [19] test. In addition, we found in
Figures 8 and 9 that in the interface layer of two different porous media, the selection of multi-phase
flow primary variables has a significant effect on the results and computational time.

In our compromised legacy well geometry, we have four different sets of material properties
(see also Table 6), and the study domain is relatively more complicated compared to Kueper and
Frind [19] test. Additionally, when fluid phases front pass through an interface layer of storage
reservoir-cement or cement-steel or steel-cement (inside the well) or through the horizontal fracture
(see also Figure 10b), it is challenging to obtain numerical stability. In addition, we assume that the steel
is impervious to fluid transport. Therefore, during finite element mesh generation using Gmsh [28],
for each material properties (see Table 6), we introduce four sub-domains. To couple multi-phase fluids
flow and deformation flow, we implement the domain deactivation technique (see also Zienkiewicz,
Taylor, and Zhu [22]) for the steel, so that steel does not participate in the fluids phase interchange,
and to behave as an impervious medium. Such a technique is required because the steel domain or
impervious medium makes it difficult and at some points impossible to obtain numerical stability due
to the convergence problem.

To address the effect of coupling mechanisms in the multi-phase porous media, we consider
two different types of coupling for Figure 10b. They are the monolithic coupling and the sequential
coupling. Additionally, we also introduce the mass lumping and the upwinding methods (see also
Zienkiewicz, Taylor, and Zhu [22]; Helmig [18]) to comprehend their effects in the coupling processes.
Additionally, we consider four observation points: OP1, OP2, OP3, and OP4 in Figure 10b.

In Figure 11a, we observe that with the mass lumping and the upwinding, both couplings
provide almost identical results. However, without the mass lumping and the upwinding, in the
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sequential coupling endures the convergence problem. Additionally, in Figure 11b, we also compare
the monolithic coupling with and without the mass lumping and the upwinding, which demonstrate a
notable effect in the predictions. It is worth mentioning that in the compromised well, to assess the
risk, it is desirable to predict the maximum worst-case through the observation points. In addition,
from Figures 11 and 12, we find that without the mass lumping and the upwinding, for each primary
variable, the maximum magnitude is relatively high. We also notice a similar response in Figures 13
and 14 for the gas phase saturation and the gas phase velocity. Additionally, for Figures 13b and
14b, we notice that along the fracture without the mass lumping and the upwinding, the numerical
solution experiences notable prediction differences of the gas phase saturation and the gas phase
velocity. Therefore, it is evident that for the risk base compromised well analyses, careful consideration
is essential to select coupling mechanisms, the mass lumping, and the upwinding.
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It is worth mentioning that to select coupling mechanisms, the mass lumping, and the upwinding,
the most critical three criteria are the accuracy of the results, the numerical convergence, and the
computational time. In addition, we discussed earlier the possible solutions to overcome such
complexities for the benchmark validation (see Section 4).



Computation 2020, 8, 98 22 of 30

6.2. Effect of the Injection Rate

In this section, we present the injection rate effect of primary variables in the coupled
hydro-mechanical solutions. We consider three different injection rates. In addition, for this investigation,
we present results for two observation points. They are close to the injection face (OP1) and a point in
the cement’s fracture (OP3) (see also Figure 10b). Additionally, for this study, we use the monolithic
coupling. In addition, we did not use the mass lumping and the upwinding so that with respect to
the injection rate, we may obtain the maximum values of primary variables in the coupled solution.
The objective of such an investigation is to find the effect of the injection rate on the hydro-mechanical
behavior of compromised well. It is worth mentioning that to store CO2 in a storage reservoir; it is
desirable to calculate the CO2 injection rate so that the stress state does not exceed the failure criterion,
which can be obtained from the laboratory experiments. In addition, it is to note that herein, we use
finite element model parameters for the compromised well as an arbitrary value. Therefore, to present
a comparison of the experimental results are beyond the scope of this paper.

From Figure 15a, we find that with the increase of time, the displacement component along the
x-axis gradually increases. Then, after attaining the peak, the displacement component starts to decline.
In addition, from Figures 16a and 17a, we notice that with the increase of the injection rate, time for the
phase transition of the stress component along the x-axis, and the y-axis decreases. In these two Figures,
the straight-line portion on the left side represents the phase transition of the stress state. We also
notice from Figures 16a and 17a that after the transition of stress state, the stress components start
to decline, which is inversely proportional to the injection rate. Additionally, we find that the stress
state starts to increase with the injection rate after the maximum decrease of the stress following the
transition. The possible reason to develop such a transformation is relevant to the stress shock during
CO2 injection, which results from dropping the stress state. Moreover, the required time to change the
stress state from the lowest values to the increase of stress may be related to the energy dissipation of
the porous media. It is worth mentioning that during and after the CO2 injection, the dilative and
contractive nature of the stress components are crucial for the stability of the compromised well. If such
a stress reversal exceeds the limiting stress condition of geomaterial, it may result in a failure state.

Additionally, from Figures 18a and 19a, the gas phase saturation and the gas pressure follow a
similar trend to the stress component, as discussed earlier. Moreover, along the fracture, we notice an
oscillation in the stress component and the gas pressure. In this regard, it is noteworthy that considering
the parallel plate concept for fracture and ignoring the fracture propagation; it is assuming that the
fluid phases are flowing through a thin conduit. From the experimental and numerical evidence, in a
thin conduit, development of these types of oscillations are also common (see also, Islam et al. [47]).
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7. Conclusions

In this paper, we present a coupled multi-phase flow and deformation flow model. In addition,
assuming the gas phase is immobile, we obtained the coupled Richards flow. Then, we compared
coupled two-phase flow, Richards flow with Liakopoulos experiments. We found good agreement with
the numerical results with an experimental benchmark solution, demonstrating the efficacy of both
coupled solutions. It is worth mentioning that even though both solutions provided identical results,
but when both fluids (e.g., brine and CO2) are mobile, like, CO2 injection, the Richards solutions may
not be appropriate for its assumptions.

Additionally, in the two-phase flow solutions, we present the effect of primary variables selection,
considering two sets of primary variables: capillary pressure and the gas pressure (PP scheme) and
liquid pressure and the gas saturation (PS scheme). For the homogeneous medium, the effect of
fluid primary variables scheme is not significant, but for heterogeneous media (e.g., compromised
well scenario), the selection of fluids’ primary variables significantly impacts the accuracy of results.
We compared results from both schemes using the Kueper and Frind benchmark experiments. We found
that before the displacing fluid plume reaches different interface layer, both algorithms provide similar
results, due to homogeneity. However, when the displacing fluid plume reaches the interface layer of
two different materials, the PS scheme failed to capture the experimental results. In contrast, the PP
scheme results showed good agreement with the benchmark experiments. Based on this comparison,
we note that for the heterogeneous media, careful consideration of the fluid phase primary variable
scheme is critical to ensure accuracy of the predicted system behavior.

In heterogeneous medium, convergence in numerical modeling proved challenging. Introducing
mass lumping (wherein the mass matrix is diagonalized) and the upwinding (wherein the second-order
partial differential equation is replaced with the first-order solution along the flow direction) in the
numerical solution scheme was used to address this problem. From the benchmark comparison
of the Kueper and Frind experiments, we found that with the mass lumping and upwinding,
the simulation time is significantly reduced as compared to simulations without applying those
approaches. In short-term simulation, both techniques (with and without the mass lumping and
the upwinding) provided an identical result. This suggests that these approaches can be used in
longer-term simulations of the benchmark problem without impacting fidelity, but this finding must
also be tested on the more-complex compromised well scenario. We also presented an optimization
method to reduce the computational time for the Kueper and Frind experiments. We found that
the auto time-stepping algorithms required between four and five times more computational time.
These types of optimization methods are essential to reduce the computational time for the long-term
prediction in the compromised legacy well simulation.

A geologic carbon storage compromised plugged legacy well scenario was developed consisting
of a geologic CO2 storage reservoir, cement sheath between steel casing and host rock, and a horizontal
fracture. Numerical simulation results of this compromised well scenario for the monolithic coupling,
with and without the mass lumping and the upwinding techniques. Considering this heterogeneous
problem, using upwinding alone in the sequential coupling did not address convergence issues.
We also found that using both mass lumping and the upwinding for the long-term prediction yielded
results that were significantly lower than the monolithic coupling case. In contrast, to the Kueper and
Frind benchmark experiment where the convergence was achieved, computational time was reduced,
and fidelity was maintained, the mass lumping and the upwinding techniques failed to work on the
long-term compromised legacy well scenario, and should be avoided on problems of this complexity.

Lastly, we found that a safe CO2 injection rate is needed to avoid the mechanical failure condition
in the compromised well. Considering three different types of injection rates we found that long-term
predictions showed gradually increasing radial displacement of the solid phase. After reaching peak
radial displacement energy dissipated and the displacement magnitude began to decrease. At higher
injection rate, stress shock resulted in reduction to the stress component (inversely proportional to the
injection rate), with subsequent increase in stress component. In addition, for the initial phase of the
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CO2 injection due to the developed extension at the well surface, the stress component starts to decline.
Then, in the domain, the fluid phase displacement results to increase the fluid pressure progressively
and the stress component also increases. These types of dilative and contractive geo-mechanical
behaviors are critical for the compromised legacy well. The gradual increase of the CO2 pressure in the
storage reservoir resulted in changing the hydro-mechanical behavior of the system. It is important that
CO2 injection operations should be controlled such that maximum magnitude of the stress component
should be lower than the failure condition to ensure safe CO2 injection.
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Appendix A. Constitutive Relations

From the volume balance relation, we obtain a relation between the liquid phase saturation (Sl)
and the gas phase saturation (Sg) as (see Bear and Bachmat [29])

Sl + Sg = 1 (A1)

In addition, we assume that the porous medium consists of two fluids (liquid and gas). We obtain
fluids’ pressure relations in terms of the capillary pressure (pc) as (see Bear and Bachmat [29])

pc = pg − pl (A2)

In Equation (1), the constitutive relations of σψ and ρψ are written as, respectively (see Lewis and
Schrefler [17])

σψ = σs + σl + σg = σ́ −
[
Slpl + Sgpg

]
I (A3)

ρψ = ρs + ρl + ρg = (1−ϕ)ρs
R + ϕSgρ

g
R + ϕSlρl

R (A4)

where σ́ is the effective Cauchy stress tensor. σs, σl, and σg are stress tensor of solid, liquid, and the
gas phase. ρs, ρl, and ρg are density of each phase. ϕ is the porosity. ρs

R, ρl
R, and ρg

R are the reference
density of each phase.

Substituting Equations (A3) and (A4) into Equation (1), we find

div
[
σ́ −

[
Slpl + Sgpg

]
I
]
+

[
(1−ϕ)ρs

R + ϕSgρ
g
R + ϕSlρl

R

]
g = 0 (A5)

Assuming the solid phase is inert and substituting Equation (A4) into Equation (2) and expanding
for the solid and the fluids, we obtain

∂(1−ϕ)ρs
R

∂t
+ div

(
(1−ϕ)ρs

Rvs
)
= 0 (A6)

∂
(
ϕSβρβR

)
∂t

+ div
(
ϕSβρβRvβ

)
= 0 ; β ∈

{
l, g

}
(A7)

where vs and vβ are the solid phase velocity and the absolute velocity of the fluid phases [β ∈
{
l, g

}
],

respectively. For the two-phases fluids flow, including the relative permeability, we find the Darcy’s
equation as (see also, Helmig [18]; Bear and Bachmat [29])
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ϕSβwβ = −
kkβrel

µβ

(
∇pβ − ρ

β
Rg

)
(A8)

where
kkβrel
µβ

is known as the phase mobility. k, and kβrel are the intrinsic permeability and the relative

permeability, respectively. µβ is the viscosity of the fluids and can be written as

µβ = µ
β
0

(
1 +

dµβ

dpβ

(
pβ − pβ0

))
(A9)

In Equation (A7), using the chain rule,
∂
(
ϕSβρβR

)
∂t can be expanded as

∂
(
ϕρ

β
RSβ

)
∂t

= ϕSβ
∂
(
ρ
β
R

)
∂t

+ ϕρ
β
R

∂
(
Sβ

)
∂t

+ ρ
β
RSβ

∂(ϕ)

∂t
(A10)

We assume that fluids’ phases densities are the function of pressure, only. In addition, we consider
the isothermal condition and ignore the geochemistry. Moreover, we ignore components of the fluids

phase (e.g., vapor). Thereby, we obtain
∂
(
ρ
β
R

)
∂t term in Equation (A10) as

ρl
R = ρl

R0

(
1 + βl

p(pl − pl0)
)

(A11)

∂
(
ρl

R

)
∂t

= ρl
R0β

l
p
∂pl

∂t
(A12)

ρ
g
R =

Mpg

RT
(A13)

∂
(
ρ

g
R

)
∂t

=
M
RT

∂pg

∂t
(A14)

where ρl
R0 is the initial density at the initial time when initial liquid pressure is pl0. βl

p is the
compressibility coefficient. M, R, and T are the molar mass, the universal gas constant and the

isothermal state temperature. In addition,
∂(Sβ)
∂t in Equation (A10) can be expanded with respect to the

fluids phase primary variables.
In Equation (A6), div vs is written as (Bear and Bachmat [29])

div vs =
∂εv

∂t
=

1
(1−ϕ)

Dϕ
Dt

(A15)

where D(.)
Dt represents the time derivative. εv is the volumetric strain.

Satisfying the small deformation theory and the symmetry condition, we find

.
εv =

∂(trε)
∂t

=
∂
∂t

(
∂ui
∂xi

)
= div vs (A16)

Combining Equations (A6)–(A16), then simplifying (see also Islam et al. [47])

ρ
β
R
∂Sβ

∂t
+ ϕSβ

∂ρ
β
R

∂t
− div

ρβR kkβrel

µβ

(
∇pβ − ρ

β
Rg

)+ SβρβRdiv
.
u = 0 (A17)

Depending on the primary variables of the fluid phases, Equations (A5) and (A17) can be
reformulated using Equations (A1) and (A2) for the PP scheme (see Equations (3)–(5)) and the PS
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scheme (see Equations (6)–(8)). Again, in Equations (A5) and (A17), assuming the gas phase is immobile,
we also find the coupled Richards solutions. The number of equations and variables for (i) two-phase
fluids, (ii) coupled two-phase fluids and deformation, and (iii) coupled Richards flow and deformation
flow are 12 (see Bear and Bachmat [29]), 34 (Tables A1 and A2), and 25, respectively.

In this paper, we assume that the medium is the isotropic poroelastic material. The elastic strain is
given by (see Lubliner [48])

.
ε

e
i j =

1 + ν
E

.
σ
′

i j −
ν
E

( .
σ
′

kk

)
δi j (A18)

where E is the Young’s modulus, and ν is the Poisson’s ratio,
.
σ
′ is the effective stress. δi j is the Kronecker

delta (δi j = 1(i = j), 0(i , j)).
Additionally, in Equation (A17), to model the transition between the wetting phase (liquid) and the

non-wetting phase (gas) saturation, we obtain the capillary pressure (pc) and the relative permeability(
k βrel

)
relationship using the Brooks and Corey [25] model as follows

Se =
Sl
− Slr

1− Slr − Sgr ; Slr
≤ Sl

≤ 1− Sgr (A19)

kl
rel = S

2+3λ
λ

e (A20)

kg
rel = (1− Se)

2
(
1− S

2+λ
λ

e

)
(A21)

pc = pdS
−

1
λ

e ; pc ≥ pd (A22)

where Se, Slr, and Sgr are the effective saturation, the residual liquid saturation, and the residual gas
saturation, respectively. kl

rel and kg
rel are the relative permeability of the liquid and the gas, respectively.

λ is the Brooks–Corey parameter. pd is the air entry pressure. It is worth noting that Lenhard et al. [49]
presented an empirical relation to transfer model between the Brooks and Corey [25] model and the
van Genuchten [50] model.

Table A1. List of equations.

Equation Name References Number of Equations

Linear momentum equation for solid
Equation (1)

3

Linear momentum equation for liquid 3

Linear momentum equation for gas 3

Mass conservation equation for solid
Equation (2)

1

Mass conservation equation for liquid 1

Mass conservation equation for gas 1

Stress–strain equation Equation (A18) 6

Strain displacement equation Equation (A16) 6

Darcy’s law for liquid Equation (A8) 3

Darcy’s law for gas 3

Capillary pressure and saturation relation Equation (A22) 1

Density equation for solid Equation (A4) 1

Density equation for liquid Equation (A4) 1

Density equation for gas Equation (A4) 1

Total 34
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Table A2. List of unknown variables.

Variables σ́ ε vs vl vg pl pg Se ρs ρl ρg wl wg ϕ Total

Number of unknowns 6 6 3 3 3 1 1 1 1 1 1 3 3 1 34
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