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Abstract: Two equations are considered in this paper—the Black-Scholes equation and an equation
that models the spatial dynamics of a brain tumor under some treatment regime. We shall call the
latter equation the tumor equation. The Black-Scholes and tumor equations are partial differential
equations that arise in very different contexts. The tumor equation is used to model propagation of
brain tumor, while the Black-Scholes equation arises in financial mathematics as a model for the fair
price of a European option and other related derivatives. We use Lie symmetry analysis to establish
a mapping between them and hence deduce solutions of the tumor equation from solutions of the
Black-Scholes equation.

Keywords: Lie symmetry analysis; equivalence transformation; invariant solutions; Black-Scholes
equation; glioblastoma

1. Introduction

The study of the most common and malignant brain tumor, glioblastoma, also known as
glioblastoma multiforme (GBM), and that of option pricing, may be done in tandem. In both cases,
partial differential equations (PDEs) are the central vehicle for mathematically studying the dynamics
of the phenomena. The models that are used to study tumor dynamics and responses to treatment
are often expressed in terms of PDEs [1-6]. Additionally, in financial mathematics, the evolution of
the option value can be modeled via a PDE as a function of time and price of the underlying asset
(see, for example, [7-9]). The connection through PDEs between mathematical models of glioblastomas
and those of option prices can be exploited, courtesy of Lie symmetry analysis [10-19], to study
one model through another arising from the “unrelated” field. There are algorithms in Lie symmetry
analysis that allow one to identify “similar” differential equations and to exploit this phenomenon to
study the equations side by side. However, while the theory on the use of admitted symmetries to
relate differential equations has been available [10], we are not aware of any serious application of the
theory. In this paper we make a contribution in this regard.

In general, given a differential equation to analyze, one may want to start by identifying a class
of differential equations to which the given equation belongs, with a view to benefiting from the
analysis already done on some of the equations that belong to that class. This might require finding
a suitable mapping between the differential equation of interest and an equation from the class.
Such mappings are typically realizable as equivalence transformations between equations that have
similar symmetry structures. An equivalence transformation is essentially a change of variables that
maps a differential equation in a given class to another equation in the same class, and relates
properties of the two equations. Lie point (or contact) symmetries admitted by differential equations
provide a means by which to identify equivalent differential equations and to construct equivalent
transformations between them when such transformations exist [10,12,20-25]. This is an important
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application of Lie symmetry analysis, whereby a given differential equation is mapped to another
equation, typically of a simpler structure. For example, in [20,21,23,24] Lie symmetry analysis is used
to determine whether or not there exists an invertible mapping of a given nonlinear PDE to some linear
PDE, or a linear PDE with variable coefficients to a PDE with constant coefficients. Other studies that
deal with the characterization of related differential equations via their symmetries include studies by
Mahomed [25], Andriopoulos and Leach [26], and Dimas et al. [27].

Two equations are considered in this paper—the very well-known and studied Black-Scholes
equation [7] and an equation that models the spatial dynamics of GBM under some treatment
regime [2—4]. The two equations considered are (superficially) different and arise in very different
contexts. The Black-Scholes equation is central to the mathematical modeling of options and other
derivatives. It is perhaps the best known equation in financial mathematics and has been studied
extensively. In its simplest form, the Black-Scholes equation is a (1 + 1) linear parabolic equation,

2
%4*%0’23(2371; +rxg—Z—ru =0, (1)
where u = u(x, t) is the fair option price depending on the current value of the underlying asset x
and time t. As for the other parameters in the equation, ¢ is the market volatility of the underlying
asset price, and is assumed to be constant for a given interest rate r. Our other equation of interest is
a particular case of a mathematical model, first proposed by Wein and Koplow [2—4], which tracks the
spatial dynamics of an infused cytotoxic treatment and its effect on a brain tumor and the surrounding

normal tissue; namely,
ow L o <Zzaw

Other authors have worked on mathematical models of various aspects regarding the spread of
brain tumors [1,5,6]. In [6] the Adomian decomposition method (ADM) is applied to solve a variant
of Equation (2). In Equation (2), w = w(z, T) is the concentration of tumor cells at location z at
time 7, and L is the diffusion coefficient for GBM. L is a proxy of the invasiveness of the GBM cells.
The tumor spread is assumed to be spherically symmetric in this model, and z measures the distance
from the center (i.e., the origin of the GBM). M is a parameter that represents the resultant effect of the
proliferation rate of the tumor and the (therapy-dependent) killing rate of the tumor cells.

We will show that Equations (1) and (2) are equivalent and transformable into each other. In fact
“every” property of one equation can be transformed into a corresponding property of the other.
In particular, every solution of one equation can be transformed into a solution of the other, which is
what this paper is about. The equivalence between the two equations is suggested by isomorphism of
symmetry Lie algebras admitted by the equations. We use Lie symmetry analysis to construct a point
transformation that maps the Black-Scholes equation to the brain tumor equation and consequently
every solution of the Black-Scholes equation to a corresponding solution of the brain tumor equation.

The paper is organised as follows. In Section 2, we introduce Lie symmetry analysis of differential
equations. Analysis of our two equations of interest is done in Section 3 wherein we determine Lie point
symmetries admitted by the equations and construct an equivalence transformation between them.
In Section 4, we perform the calculus of recovering invariant solutions of the tumor equation from
invariant solutions of the Black-Scholes equation. Finally, we give concluding remarks in Section 5.

2. Preliminaries of Lie Symmetry Analysis

The Lie symmetry analysis of differential equations, on which the work reported here is based,
has its origins in studies by the Norwegian mathematician Sophus Lie who began to investigate
continuous groups of transformations that leave differential equations invariant [10,18,19]. At the center
of Lie symmetry methods is the notion of invariance of differential equations under continuous



Computation 2020, 8, 57 3of11
groups. Consider, for example, a general second-order PDE with one dependent variable u and
two independent variables (x, t),
A(x, 1, Uy, Up, U, Uy, Up) =0, u = u(x, ), (3)
which is a prototype for Equations (1) and (2). A group of continuous point transformations
X=f(xtue), f= g(x, t,ue), u=h(xtuc), (4)

where ¢ is the group parameter, is a symmetry of Equation (3) if the equation has the same form in the
new variables ¥, t, and 7, or equivalently, if the group transformations (4) transform any solution of
Equation (3) into another solution of Equation (3). Thanks to a theorem due to Lie (the first fundamental
theorem of Lie [10]), we can always assume that the parametrization of the group (4) is in such a way
that it is uniquely defined by the first-order differential operator

X =¢&(x,t,u)ox + g(x,t,u)o + n(x,t,u)dy, (5)
where
of dg oh
== (xtue) , (==(xtue) , == (xtue)
e €0 e =0 oe £=0

The operator (5) is called the infinitesimal generator of the Lie group (4), and
X=x+el(x t,u), t=t+el(x,t,u), u=u-+ey(xtu) (6)

is the infinitesimal transformation of the Lie group. We often call the operator (5) a symmetry
of Equation (3). The first fundamental theorem of Lie essentially says that a Lie group of point
transformations is “equivalent” to its infinitesimal transformation, and also to its infinitesimal generator.

A straightforward algorithm is available for finding symmetries admitted by a differential
equation. It is based on the fact that if the operator (5) is an infinitesimal generator of the group (4),
then the group is admitted by Equation (3) if and only if

X@A=0 when A=0, ?)

where X(?) is the second extension of X. Newcomers to Lie group methods are encouraged to read
more on the subject from the many available books on the subject, including [10-19].

Knowledge of Lie groups admitted by a given differential equation can be used for many
things, including the application reported in this paper; namely, identifying and relating equivalent
differential equations.

3. Derivation of an Equivalence Transformation Relating Equations (1) and (2)

Lie point symmetries of the Black-Scholes Equation (1) and the tumor Equation (2) are easily
obtained. Using Program Lie [28], for example, we determine that symmetries of the Black-Scholes
equation are

Zl = at, 22 = xax

Y3 = 2td¢+ (Inx + Dit)xdy + 2rtud,,

Yy = 0%txdy + (Inx — Dt)ud,, 8)
Y5 = 20%t20; +20%txInx9y + [(Inx — Dt)? + 202rt? — 0?t|ud,,

26 = uau/ Z'(P = (P(xr t)all/
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where D = r — 0?/2 and ¢ is any solution of the Black-Scholes equation, and those of the tumor
Equation (2) are

I = 0, To=wdy, T3=09;—(w/z)dy,

I'y = 2719¢+ z9; +2MTwdy, ©)
Is = 4L7%0; +4L7z0; + (4LMT? — 6LT — 2%)wdy

e = 2L19,— (2LT/z+z)wdyw, Ty =1(z,7)0w,

where 1 is a solution of the tumor equation.
The algebra of the symmetries of the Black-Scholes and tumor equations is {sl(2,R) &s W} @&
c0A1, where W = (X3, Xy, X3) is the Heisenberg-Weyl algebra with [29]

[X1,X2] =0, [X1,X3]=0, [Xp X3]=X.

For representation of the Heisenberg—Weyl algebra in the Mubarakzyanov classification scheme,
see [30].

The commutator table for the finite part of the Lie algebra, sI(2,R) @&; W, wherein the homogeneity
symmetry is excluded, for the Black-Scholes symmetries, is presented in Table 1. The corresponding
table for symmetries of the tumor equation is Table 2.

Table 1. Commutator table for the basis operators X; of the Black-Scholes equation.

I )} X3 Ty s L6
o 0 0 2% +2rXg+ DXy 02Zy— DXy  20%33-2DX4—0%%g 0
)N 0 0 b 6 2%, 0
s —2%,-2r%—DX, -3, 0 4 2%5 0
4 —0?%y + D% —% -3y 0 0 0
p —20’223 +2DXy +(7226 —2%y —2%5 0 0 0
%6 0 0 0 0 0 0

Table 2. Commutator table for the basis operators I'; of the tumor equation.

I I, Iy Iy Is e
I 0 0 0 271 +2MT, 4LT4—6LT, 2LT3
I 0 0 0 0 0 0
I's 0 0 0 I3 2T —I»
Ty 7(21“1 +2MF2) 0 —1I'3 0 2T | IS
I's 6LT, —4LTy 0 —2T% —2T5 0 0
T¢ —2LT3 0 I —T 0 0

We now wish to find an invertible mapping
z=ua(x,tu,), T=PBxtu), w=e¢(xtu) (10)

which transforms Equation (1) into Equation (2). To exploit symmetries in the search for this mapping,
we need to find suitable bases { X;} and {Y;} for the Lie algebras of the Black-Scholes and the tumor
equations, respectively, so that their commutator tables are identical in the sense that if

[Xa, Xp] = CagXy then [Yq, Yp] = c;jﬂyv,

with the same structure constants CZ/}’ o, B,v=1,...,6[10,12]. We achieve this via the following
renaming and scaling of the symmetries in (8) and (9):
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Xi=23 — mly=Y;
Xo=2y — @mlr=Y,
X3=2y <— a3lg=Y3 (11)
Xg=2p — mlz3=Y,
X5 =25 +— asl5=7Y;s
Xo =21+ D3y 41Xy +— a6(1"1 + Mrz) = Y6

where

2
ap =1, ay=3, a3=ioy/ %, ag = %3, as = 2(;71;' ag = A, (A arbitrary).

The renaming and scaling of symmetries in (11) was done by inspection, thanks to
Mathematica [31]. The nonzero commutators for the new basis of the finite part of the Lie algebra of
the Black-Scholes equation (respectively tumor equation, with X; replaced by Y;) are given in Table 3.

Table 3. Commutator table for the new basis {X;} of the Lie algebra of the Black-Scholes equation
(and tumor equation with X; replaced by Y;).

X1 X2 Xz Xy . ¢ Xe
X, 0 0 X3 —-X4 2Xs —2X
X, 0 0 O 0 0 0
X3 0 0 0 —-X» O —02Xy
X, 0 0 0 02X 0
Xs 0 0 0 0 0 02X, —20%X
Xs 0 0 0 0 0 0

The implication of the alignment in (11) is that the symmetry Lie algebras generated by the
two basis symmetries in (8) and (9) are isomorphic. This phenomenon provides a set of necessary
conditions out of which the mapping (10) can be constructed (if it exists). In the case of our
two equations of interest, Equations (1) and (2), we note that they belong to the class of linear parabolic
equations (by virtue of them admitting 6 to co symmetries) that are reducible to the standard heat
equation (see [32,33] and the references therein),

Wr = QWxx, (12)

an equation that necessarily admits a two-dimensional Abelian subalgebra generated by translations
of the independent variables,

T1 = aT and \Pz = aX (13)
Therefore, each of Equations (1) and (2) must admit two symmetries
Xi = §i10x + §io0t + 1m0y and  X;j = §j10x + 20t + 17j0u

that are equivalent (in the sense defined in [10,12]) to ¥; and ¥, in (13); ie., X; and X; generate
an Abelian subalgebra. Furthermore, the coefficients ¢;1, {o, ¢j1, and ¢j» must be such that

¢in Cio
det< Er il > #0 (14)

if the mapping (10) is (to be) invertible. The symmetries X4 and X4 of Equation (1) generate an Abelian
subalgebra and satisfy (14), as do the symmetries Y; and Ys of Equation (2). (Another pair of
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two-dimensional Abelian subalgebras of which the basis symmetries satisfy (14) and may be used to
search for a map (10) is (X3, Xs5) and (Y3, Y5) for the Black-Scholes and tumor equations, respectively).

We therefore proceed to determine functions &, 8 and ¢ in the mapping (10) by requiring that the
mapping takes Xy to Y4 and Xg to Yg; ie.,

Xga(x, t,u) =Ysz, XaPB(x,t,u)=Yy7r, Xgp(x,tu)=Ysw, (15)
Xea(x, t,u) =Yez, XeP(x,t,u) =Ye1, Xeo@(x,t,u)=Ysw.

The equations in (15) are determining equations for the functions &, B, and ¢ in (10).
Written explicitly, they are six first-order PDEs; namely,

K—xay = 0 (16)
Bx 0 (17)
K@+ xa @y 0 (18)
ap+ruay +Dxoay 0 (19)
Bi+rufu+Dxpx—A 0 (20)
pr+rugy,+Dxpr—AMge = 0, (21)
where
Kk=iVv6AL/o.
The solution of the system in Equations (16)—(21) is easy, albeit tedious. We obtain
5 urM/r
a—K(lnx—Dt), ﬁ—)\t"’él, @—m, (22)
where 41 and 4, are arbitrary constants. We set
r 1

the first assignment being done to preserve linearity of the map while the second is innocuous but
convenient. From Equations (22) and (23) the map in (10) becomes

z=% (Inx —Dt), T:Lt+§1, w -

M :K(lnx—Dt)' @)

We now invert the mapping (24) and use the chain rule to compute formulae for the relevant
partial derivatives of u with respect to x and ¢ in terms of partial derivatives of w with respect to
z and 7. We obtain

x=u(z,T,w) = exp %—F%(T—(ﬁ) (25)
t=B(z,T,w) = g(r—él) (26)
u=9(z,T,w) = wz (27)
and
uy = xu+zuy)/a(z,7,w) (28)
u = rzur/M—xD(u+zuy) (29)

Uxy = [Kz (uz +zuz) —x (u+ ”Z)} /&(z, wa)z- (30)
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Upon substituting Equations (25)—(30) into Equation (1), Equation (1) is transformed into the PDE

dw 3L o [ ,0w
= 25 (z ) + Mw, (31)

0z

which is not quite the tumor equation, Equation (2). It is, however, easy to determine the appropriate
scaling of z, T, and w in Equation (31) to obtain the tumor equation. This is easily achieved by replacing
z and w by v/3z and 3 w, respectively. We also conveniently (but w.l.o.g.) set §; = 0 so that the map
from Equations (25)—(27) becomes

M
XxX=e« o, t:T, u:3ﬁwz, (32)

which is the desired mapping that transforms the Black-Scholes equation into the tumor equation.
Consequently, any solution u = ©(x,t) of the Black-Scholes Equation (1) is transformed via the
mapping (32) into a solution

1
w(z,T) = 3ﬁzu<x(Z'T)'t(Z'T))
1 \/EZJrDIrV[T Mt
Sﬁzu(e T ) 9

of the tumor Equation (2).

4. Recovering Invariant Solutions of Equation (2) from Those of Equation (1)

In this section we transform four solutions of the Black-Scholes equation into solutions
of the tumor equation. The Black-Scholes solutions used were constructed from symmetries of
the Black-Scholes equation as invariant solutions via the well-known algorithm [10,11,16-18].
The symmetries used are Xj, X3, X5, and X¢ from (11).

4.1. Solution from X3 = 02t x 9y + (Inx — D t)ud,

The Black-Scholes Equation (1) admits the solution

2 2
(D +02)%t lnx}’ o)

_ 1
u(xt) = xD/e*\/t exp{ 202 + 202t

where C; is an arbitrary constant. This solution arises from X3 as an invariant solution. According
to (33) the solution in (34) is transformed into a solution of the tumor equation as follows:

1 \/§Z+DMT Mt

w(z,t) = 3\/gzu(eT = )
N D +0?)?
_ G r/Mexp M (D +0?) T ,p \@z+DMT
33 2ro? K r
T (e -1
+ MTln(e ) ] (zv/7) (35)

After simplification, the solution (35) of the Black-Scholes equation is reduced to the following
solution of the tumor equation:

K1 Z2
w(z,T) = ez exp{MT—4LT}, (36)
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where Kj is arbitrary constant.

4.2. Solution from X1 = (Dt +Inx) xdy + 2t0; + 27t ud,

This symmetry of the Black-Scholes Equation (1) leads to the following invariant solution of
the equation:

u(x,t) =e't {Q + Cyerfi <[i;2_\/l;;ﬂ , (37)

where C; and C; are arbitrary constants, and erfi is the imaginary error function. Proceeding as we did

in Section 4.1 above, we found that solution (37) was transformed according to (33) into a solution of
the tumor equation:

Mt 7
w(z, T) = K; + K erﬁ()}, 38
51 = [k Kaerfi (o @9
where K; and Kj arbitrary constants.
4.3. Solution from Xg = D x9dx + 0t + 11 0y
In this case the corresponding invariant solution of the Black-Scholes equation is
u(x, t) =€ [C;+C; (Inx — Dt)], (39)

where C; and C; are arbitrary constants, and is transformed according to (33) into the following
solution of the tumor equation:

K
w(z,7) =M™ (Kl + ZZ) , (40)
where K; and Kj arbitrary constants.

4.4. Solution from X5 = 202 t x Inx dy + 2 02t29; + [(2rt202 —?t+(Inx—D t)z)} Uy

The invariant solution of the Black-Scholes equation that arises from this symmetry is

(D2+2“72)t Inx—2Dt

u(x, t) = 1o 22 x 2102 {Cl +QG ln(xl/t)} , (41)

where C; and C; arbitrary constants. This solution is transformed according to (33) into the following
solution of the tumor equation

_2 (K K

where K; and K; arbitrary constants.

We remark here that the solutions of the tumor equation derived from invariant solutions of the
Black—-Scholes equation are indeed (as we should expect) invariant solutions of the tumor equation
associated with symmetries of the tumor equation obtainable from corresponding symmetries of the
Black-Scholes equation via the constructed map.

When we invert the mapping (32), we obtain

Z_K(lnx—Dt) _ort u

N T T )

Therefore, any symmetry

X =&(x, t,u) 0y + (x, t,u) 0t +1(x,t,u)dy (44)
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of the Black-Scholes equation is transformed under the mapping (43) into a symmetry of the
tumor equation

X = ¢&(z,7,w) 92 + {(z,T,w) 9r +7(z, T, w) Ay (45)

where

&(z,t,w) = X (z)

C(z,t,w) =X (1) 7(z, 7, w) = X (w) ‘ .

‘ (43)’ ‘ (43)’ (43)
The symmetries X, X3, X5, and X¢ of the Black-Scholes equation used in Section 4 are transformed

under the mapping (43) into corresponding symmetries of the tumor equation as follows:

1
Xl}—>Yl—7Y2, X3I—>

3 Y;, X5 — Y5, Xg — Y (46)

1
V3
5. Concluding Remarks

When studying a given differential equation, it is prudent to explore equivalent differential
equations that have been studied before, and then, if possible, lift solutions and/or other properties
of interest of the known equation(s) via some mapping to the given equation. In this paper, we have
done so with two equations that are supposedly different and arise in two very different settings.
It so happens that the Black-Scholes and tumor equations, both of which admit 6 4 co Lie point
symmetries, can be reduced to the heat equation via an equivalence transformation. We have exploited
an algorithm by means of which a variable coefficient PDE is transformed into a constant coefficient
PDE to construct an equivalent transformation between the Black-Scholes and tumor equations.
The transformation is then used to deduce four invariant solutions of the tumor equation from
invariant solutions of the Black-Scholes equation.

The work reported in this paper contributes a nontrivial example to this important aspect Lie
symmetry analysis of differential equations—the derivation via admitted Lie point symmetries and
use of mappings between equivalent differential equations. In fact, many differential equations that
have equivalent symmetry structures can be studied in a similar fashion.
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