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Abstract: In this paper, we investigate the wave damping mechanism caused by the presence of
submerged bars using the Shallow Water Equations (SWEs). We first solve these equations for
the single bar case using separation of variables to obtain the analytical solution for the wave
elevation over a rectangular bar wave reflector with specific heights and lengths. From the analytical
solution, we derive the wave reflection and transmission coefficients and determine the optimal
height and length of the bar that would give the smallest transmission coefficient. We also measure
the effectiveness of the bar by comparing the amplitude of the incoming wave before and after
the wave passes the submerged bar, and extend the result to the case of n-submerged bars. We then
construct a numerical scheme for the SWEs based on the finite volume method on a staggered grid to
simulate the propagation of a monochromatic wave as it passes over a single submerged rectangular
bar. For validation, we compare the transmission coefficient values obtained from the analytical
solution, numerical scheme, and experimental data. The result of this paper may be useful in wave
reflector engineering and design, particularly that of rectangle-shaped wave reflectors, as it can serve
as a basis for designing bar wave reflectors that reduce wave amplitudes optimally.

Keywords: damping; Shallow Water Equations (SWEs); submerged bar; wave transmission coefficient

1. Introduction

Breakwaters are built near shorelines to weaken strong waves that could endanger beachfront
structures. They also control abrasion and erosion of the shoreline and subdue waves in the harbor so
that ships can dock at the port with more ease. Breakwaters can do such protection on the shoreline
due to the process of wave scattering, which allows the reduction of incoming waves’ amplitudes.
In particular, the energy of waves, which is related to amplitude, is partially reflected and partially
transmitted as waves pass through breakwaters [1]. The magnitudes of the reflected and transmitted
waves depend on the characteristics of the breakwater and the incident wave.

In recent years, increased attention has been given to submerged breakwaters. As indicated
by the name, these structures are constructed below a specified water level. In comparison to
sub-aerial breakwaters, submerged structures permit the passage of some wave energy and in
turn allow for circulation along the shoreline zone but at the cost of a reduced level of protection.
In addition to providing environmental benefits, these structures have also found applications
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as preliminary defense measures in extreme wave climates. Many researchers have investigated
the effectiveness of a submerged breakwater experimentally, such as Armono [2], Abdul [3],
Dimitros [4], Hall [5], Lorenzoni [6] and Ahmadian [7]. Particularly, experimental results by
Dimitros [4] showed that a rectangular breakwater performs better in dissipating wave energy in
comparison with the hemi-cylindrical model for the case of rigid breakwaters. Although physical
testing is recommended for all design applications, using experimental data as a benchmark is not
cost-effective and difficult to replicate due to the complexity of site specific considerations.

With these limitations on physical testing, various mathematical models have been formulated to
simulate breakwater-induced wave damping phenomena. However, complicated derivation methods
may arise from the mathematical model and numerical methods that are being used. For example,
studies by Zhao [8], Soo [9], Teixeira [10], Liu [11], Ren [12], and Ataur [13], used Navier–Stokes
as the mathematical model and faced several challenges such as long running time and complex
derivation. Some researchers have used the Reynolds-Averaged Navier–Stokes equations to reduce
the long running time (Wu and Hsiao [14], Sik [15], Le [16], and Inverno et al. [17]). Another example is
the research by Rojanakamthorn [18] that derives a mathematical model using mild-slope assumption
which is complicated in the derivation and relatively difficult to solve. Studies by Cao [19] and
Chen [20] use the finite element and boundary element methods, respectively, which also showed
a complex derivation method of the mathematical model.

Aside from the Navier–Stokes model, the Shallow Water Equations (SWEs) system are also
used by researchers to model fluids in systems where the horizontal length scales of the observed
spaces are much greater than the vertical length scales (depth). Such systems are relevant to
the characteristics of seas and oceans, particularly near the shore. Using this model, we shall study
the effect of submerged rectangular breakwaters with specific lengths and heights on the reduction of
incoming wave amplitude with a specific wave period. We shall solve analytically for wave elevations
and speeds over a submerged breakwater with varying breakwater size and system characteristics.
From these analytical solutions, we will obtain the optimal size of the breakwater for amplitude
reduction. We will also compute for the breakwater’s effectiveness in reducing wave amplitude
through the Transmission Coefficient (Kt)—the ratio between the transmitted wave amplitude after
passing through the breakwater and the incoming wave amplitude. We will also generalize the single
bar into n bars to investigate the effectiveness of n-rectangular submerged breakwaters.

In order to simulate the propagation of a monochrome wave passing over a submerged breakwater,
we will construct a numerical code for linear SWEs using the method of finite volume on a staggered
grid as described intensively in [21–28]. This numerical scheme is free from damping error, which is
really important in this research since we want to isolate the damping effect caused by the submerged
breakwater only. Moreover, working with staggered partition gives the advantage of providing only
one boundary condition: either the surface elevation or the horizontal velocity. From the numerical
model, we will simulate the wave propagation through the breakwater with various breakwater
lengths and heights. To validate our results, we will compare the analytical solution, numerical model,
and experimental data. Experimental data will be generated from experiments involving physical models
of rectangular breakwaters done in the Ministry of Public Works’ Coastal Research and Development
Center, Buleleng-Bali, Indonesia. We will compare our numerical results with data from the experiments
in order to assess how well our model calculates the Transmission Coefficient (Kt).

The succeeding sections of this paper will elaborate on the concepts and procedures introduced in
this section. Specifically, the second section will discuss the SWEs, which are the governing equations
used in this paper. The analytical solutions for wave elevation, wave speed and the optimal breakwater
size will be presented in Section 3. In Section 4, the generalization to n-submerged bars will be derived.
We then provide a description of the numerical methods with the finite volume method on a staggered
grid in Section 5. Section 6 is for the numerical results and experimental data from physical models
that are presented to assess model quality. In Section 7, we draw conclusions from our findings.
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2. Mathematical Model

We use the Shallow Water Equations (SWEs) as our mathematical model. To visualize these
equations, we consider an illustration of our problem, as shown in Figure 1.

Figure 1. Description of the variables used in Shallow Water Equations (SWEs).

As seen in Figure 1, η(x, t) denotes the surface elevation, calculated from the undisturbed water
level z = 0. We use the symbol u(x, t) for the horizontal component of water velocity, d(x) for
the bottom topography and h(x, t) = η(x, t) + d(x) for the total water thickness. The system of linear
SWEs over a bottom with depth h(x) is given by

ηt + (hu)x = 0, (1)

ut + gηx = 0, (2)

where g = 9.81 m/s2, the gravity acceleration. The total depth h is defined by

h(x) =

{
h1, for 0 < x < L,
h0, elsewhere.

(3)

In this paper, we shall study the model for various parameters of the system depending on:

1. Incoming wave amplitude,
2. Incoming wave period,
3. Breakwater height (h0 − h1),
4. Breakwater length,
5. Water depth.

For a single breakwater system, we must consider three regions of our observation domain.
These regions are R1 : x < 0, R2 : 0 < x < L, R3 : x > L as illustrated in Figure 2. We divide these
regions based on how waves in each region behave. The behavior of waves is affected by the shape of
the seafloor, which changes due to the existence of the breakwater.

Figure 2. Region diagram of a single breakwater of optimal length.
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3. Analytical Solution

In this section, we solve for the wave elevation and wave speed analytically from the SWEs
using separation of variables. For this case, we consider a harmonic wave with frequency ω given by
the equations

η(x, t) = F(x)e−iωt, (4)

u(x, t) = G(x)e−iωt. (5)

where F(x) and G(x) are functions of x. We derive the solution for η and u in each domain.
Region 1:
For R1, we have the following equations

η1(x, t) = F1(x)e−iωt, (6)

u1(x, t) = G1(x)e−iωt, (7)

Substituting Equations (6) and (7) in Equation (1), we obtain the relation

F1(x) =
h0

iω
G′1(x). (8)

Similarly, substituting Equations (6) and (7) in (2), yields the relation

G1(x) =
g

iω
F′1(x) (9)

which implies that

G′1(x) =
g

iω
F′′1 (x). (10)

Using the above expression for G′1(x) in Equation (8), we obtain the following second order
ordinary differential equation

F′′1 (x) +
w2

gh0
F1(x) = 0. (11)

If we let F1(x) = erx, the characteristic equation for Equation (11) is given by

r2 +
w2

gh0
= 0 (12)

which gives the solution

F1(x) = Aie
( w√

gh0
ix)

+ Are
(− w√

gh0
ix)

. (13)

Hence, the analytical wave elevation in R1 is

η1(x, t) = (Aie
( w√

gh0
ix)

+ Are
(− w√

gh0
ix)
)eiωt (14)

= Aie
( w√

gh0
x−ωt)i

+ Are
(− w√

gh0
x−ωt)i

and the corresponding wave speed in R1 is

u1(x, t) =
√

g
h0

(Aie
( w√

gh0
x−ωt)i

− Are
(− w√

gh0
x−ωt)i

). (15)

Region 2:
Using a similar technique as in Region 1, we obtain these equations for R2

η2(x, t) = F2(x)e−iωt, (16)
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u2(x, t) = G2(x)e−iωt. (17)

Substituting Equations (16) and (17) in (1), we obtain

F2(x) =
h1

iω
G′2(x). (18)

Then by substituting Equations (16) and (17) in Equation (2), we have

G′2(x) =
g

iω
F′′2 (x). (19)

Replacing the value of G′2(x) in Equation (18) with the result from Equation (19) yields:

F′′2 (x) +
w2

gh1
F2(x) = 0. (20)

Letting F1(x) = erx gives the characteristic equation for (20):

r2 +
w2

gh1
= 0. (21)

This gives

F2(x) = ae
( w√

gh1
ix)

+ be
(− w√

gh1
ix)

. (22)

So, for R2 we have

η2(x, t) = (ae
( w√

gh1
ix)

+ be
(− w√

gh1
ix)
)e−iωt (23)

= ae
( w√

gh1
x−ωt)i

+ be
(− w√

gh1
x−ωt)i

with the following wave speed:

u2(x, t) =
√

g
h1

(ae
( w√

gh0
x−ωt)i

− be
(− w√

gh0
x−ωt)i

). (24)

Region 3:
For R3 we only have waves moving to the right. Therefore, Ar = 0. Thus, we can assume that

the wave elevation in R3 is

η3(x, t) = Ate
( w√

gh0
(x−L)−ωt)i

, x > L (25)

where At is the transmitted wave amplitude. Thus, we can solve for the wave speed in R3 by
substituting Equation (25) in Equation (1). We obtain

u3(x, t) =
√

g
h0

Ate
( w√

gh0
(x−L)−ωt)i

. (26)

In order to have continuous and smooth functions, we ensure the following conditions are fulfilled:

η1(0, t) = η2(0, t), h0u1(0, t) = h1u2(0, t) (27)

and
η2(L, t) = η3(L, t), h1u2(L, t) = h0u3(L, t) (28)
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By solving the above system of equations, we obtain the transmission coefficient Kt from

At

Ai
=

4
√

h0
h1

(1 +
√

h0
h1
)2e

(− w√
gh1

iL)
− (1−

√
h0
h1
)2e

( w√
gh1

iL)
(29)

Thus, the transmission coefficient is given by

Kt = |
At

Ai
| =

4
√

h0
h1

|4
√

h0
h1

cos ( w√
gh1

L)− 2i sin ( w√
gh1

L)− 2 h0
h1

i sin ( w√
gh1

L)|
. (30)

Notice that this function depends only on h0,h1, and L. By squaring Kt, we obtain

(Kt)
2 =

16 h0
h1

4(1 + h0
h1
)2 sin2 ( w√

gh1
L) + 16 h0

h1
cos2 ( w√

gh1
L).

(31)

To find the breakwater length that reduces the amplitudes of incoming waves optimally,
we determine the smallest possible value of Kt. From Equation (31), we minimize the value of Kt by
letting sin2( w√

gh1
L) = 1 and cos2( w√

gh1
L) = 0, so we get

w√
gh1

L =
π

2
+ 2kπ, k = 0, 1, 2, 3, ... (32)

Then we have Lopt =
( π

2 +2kπ)
√

gh1
w . To maximize breakwater length efficiency, we choose k = 0.

Thus, we have the optimal amplitude-reducing breakwater length

Lopt =
π
√

gh1

2w
. (33)

4. The Two-Bar Wave Reflector Problem and Its Generalization

In this section, we generalize the preceding results to n-submerged bars. First, let us consider
a two-bar wave reflector that is made up of two identical bars with height (h0 − h1), length L1 and
separated by a distance L0. In this case, the bottom topography is given by

h(x) =

{
h1 for (0 < x < L1) ∪ (L0 + L1 < x < L0 + 2L1)

h0 elsewhere.
(34)

The bottom topography described by Equation (34) is illustrated in Figure 3.
Similar to the one-bar wave reflector case, we assume that the governing equation is the linear

SWEs and the solution for the system of this equations are

ηj(x, t) = Fj(x)e−iωt (35)

uj(x, t) = Gj(x)e−iωt, (36)

for j = 1, 2, 3, 4, 5 which corresponds to each region Rj. Table 1 summarizes the result of a lengthy
calculation for ηj and uj (similar to the one-bar case) for each region Rj.
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Figure 3. Diagram of a two-bar wave reflector with height (h0 − h1), optimal length L1 separated by
a distance of L0.

Table 1. Surface elevation η(x, t) and water velocity u(x, t) of an incident wave.

Region Solution for η(x, t) Solution for u(x, t)

R1 Ai exp (ik0x− iωt) + Ar exp (−ik0x− iωt)
√

g
h0

(Ai exp (ik0x− iωt)− Ar exp (−ik0x− iωt))

R2 a1 exp (ik1x− iωt) + b1 exp (−ik1x− iωt)
√

g
h1

(a1 exp (ik1x− iωt)− b1 exp (−ik1x− iωt))

R3 a2 exp (ik0x− iωt) + b2 exp (−ik0x− iωt)
√

g
h0

(a2 exp (ik0x− iωt)− b2 exp (−ik0x− iωt))

R4 a3 exp (ik1x− iωt) + b3 exp (−ik1x− iωt)
√

g
h1

(a3 exp (ik1x− iωt)− b3 exp (−ik1x− iωt))

R5 At exp (ik0(x− 2L1 − L0)− iωt)
√

g
h0

At exp (ik0(x− 2L1 − L0)− iωt)

In the above table, Ar, At, ak, and bk, k = 1, 2, 3 are undetermined coefficients. It was argued by
Pudjaprasetya et al. [29] that the optimal length L1 of the bar is equal to one-fourth of the wavelength

λ1 =
2π
√

gh1

ω
and the optimal distance between such bars is one-fourth of the wavelength λ0 given

by
2π
√

gh0

ω
because destructive interference happens when such conditions are satisfied. Now,

to determine how effective a two-bar wave reflector is, we compute its transmission and reflection
coefficients. We do so by equating ηj and ηj+1 (for j = 1, 2, 3, 4) and h0uj = h1uj+1 (for j = 1, 3) or
h1uj = h0uj+1 (for j = 2, 4) at each point of discontinuity. Calculating, we get∣∣∣∣At

Ai

∣∣∣∣ = 4|a2 − b2|
|∆| , (37)

where

∆ = a3c exp(−ik0L0 − 2ik1L1) + a2bd exp(−ik0L0) + a2bd exp(ik0L0 − 2ik1L1) (38)

+ ab2c exp(ik0L0) + ab2c exp(−ik0L0) + b3d exp(−ik0L0 + 2ik1L1)

+ a2bd exp(ik0L0) + ab2c exp(ik0L0 + 2ik1L1)

and

a = 1 +

√
h0

h1
, b = 1−

√
h0

h1
, c = 1 +

√
h1

h0
, and d = 1−

√
h1

h0
. (39)
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Similarly, the reflection coefficient is given by∣∣∣∣Ar

Ai

∣∣∣∣ = |α||β| (40)

where
α = a2cd exp(ik0L0 + 2ik1L1) + abd2 exp(ik0L0) + abd2 exp(−ik0L0 + 2ik1L1)

+ b2cd exp(−ik0L0) + abc2 exp(ik0L0) + b2cd exp(ik0L0 − 2ik1L1)

+ a2cd exp(−ik0L0) + abc2 exp (−ik0L0 − 2ik1L1)

(41)

and
β = abcd exp(ik0L0 + 2ik1L1) + a2d2 exp(ik0L0) + b2d2 exp(−ik0L0 + 2ik1L1)

+ abcd exp(−ik0L0) + b2c2 exp(ik0L0) + abcd exp(ik0L0 − 2ik1L1)

+ abcd exp(−ik0L0) + a2c2 exp(−ik0L0 − 2ik1L1)

(42)

where a, b, c, and d are given as above. Again, we can show that |At|2 + |Ar|2 = |Ai|2, which indicates
that the energy is conserved.

An interesting property of the transmission coefficient function for a two-bar wave reflector, which
we will denote by K2

t , and its corresponding reflection coefficient function K2
r is stated in the following

theorem:

Theorem 1. The transmission coefficient K2
t and reflection coefficient K2

r for a two-bar wave reflector with

optimal dimension (h0 − h1)× L1 separated by a distance L0, where Li =
π
√

ghi

2ω
, i = 0, 1, placed on a flat

bottom topography and submerged in water with depth h0 are given by

K2
t (x) = Kt(x2) and K2

r (x) = Kr(x2), ∀x ≥ 1. (43)

Proof. The proof of the theorem follows immediately from our computations after substituting L0 and
L1 in Equations (37) and (40).

Hence, we do not actually need to work with each matching condition just to find the transmission
and reflection coefficient for a two-bar wave reflector given its optimal dimension (length and
separation distance). This interesting property can be generalized to the case of n bars. We have
the following theorem:

Theorem 2. The transmission coefficient Kn
t and reflection coefficient Kn

r for an n-bar wave reflector with

optimal dimension (h0 − h1)× L1 separated by a distance L0, where Li =
π
√

ghi

2ω
, i = 0, 1, placed on a flat

bottom topography and submerged in water with depth h0 are given by

Kn
t (x) = Kt(xn), (44)

Kn
r (x) = Kr(xn), (45)

for all x ≥ 1.

Proof. We proceed by induction.
Base step: For n = 1, 2, we have already shown above that Equations (44) and (45) hold.
Inductive step: Suppose Equations (44) and (45) hold for n = m ∈ N. This means that there exists

a one-bar wave reflector with height (h0− h2) and length L2 corresponding to the m-bar wave reflector
each with dimension (h0 − h1)× L1. In particular, we take h2 = hm

1 h1−m
0 . Now, we have to show that

the formulas hold for n = m + 1. We ‘group’ the m-bar wave reflector into a one-bar wave reflector
and then form a two-bar wave reflector with a one-bar reflector with the same dimension as the m-bar
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reflector (refer to Figure 4.) Hence, our problem is now reduced to a two-bar wave reflector problem
with non-identical bars.

Figure 4. Diagram of a two-bar non-identical wave reflector.

Like the one-bar wave reflector case, we assume that the governing equation is the linear SWEs
and the solution for the system of equations is given by

ηj(x, t) = Fj(x)e−iωt (46)

uj(x, t) = Gj(x)e−iωt, (47)

for j = 1, 2, 3, 4, 5, which corresponds to each region Rj.
Table 2 below summarizes the result of a lengthy calculation for ηj and uj for each region Rj.

Table 2. Surface elevation η(x, t) and water velocity u(x, t) of an incident wave.

Region Solution for η(x, t) Solution for u(x, t)

R1 Ai exp (ik0x− iωt) + Ar exp (−ik0x− iωt)
√

g
h0

(Ai exp (ik0x− iωt)− Ar exp (−ik0x− iωt))

R2 a1 exp (ik2x− iωt) + b1 exp (−ik2x− iωt)
√

g
h2

(a1 exp (ik2x− iωt)− b1 exp (−ik2x− iωt))

R3 a2 exp (ik0x− iωt) + b2 exp (−ik0x− iωt)
√

g
h0

(a2 exp (ik0x− iωt)− b2 exp (−ik0x− iωt))

R4 a3 exp (ik1x− iωt) + b3 exp (−ik1x− iωt)
√

g
h1

(a3 exp (ik1x− iωt)− b3 exp (−ik1x− iωt))

R5 At exp (ik0(x− L0 − L1 − L2)− iωt)
√

g
h0

At exp (ik0(x− L0 − L1 − L2)− iωt)

Equating η and hu for each pair of adjacent regions, we obtain∣∣∣∣At

Ai

∣∣∣∣ = 16
∣∣∣∣{a1b1c1d1(1/p)(1/q)(1/r) + a1b1c2d2(1/p)q(1/r)+

a1b2c2d1 p(1/q)(1/r) + a1b2c1d2 pq(1/r)+

a2b2c1d1(1/p)(1/q)r + a2b2c2d2(1/p)qr+

a2b1c2d1 p(1/q)r + a2b1c1d2 pqr}−1
∣∣∣∣

(48)
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and ∣∣∣∣Ar

Ai

∣∣∣∣ = |α||β| (49)

where
a1 = 1 +

√
h2/h0 a2 = 1−

√
h2/h0 p = exp ik0L0

b1 = 1 +
√

h0/h2 b2 = 1−
√

h0/h2 q = exp ik1L1

c1 = 1 +
√

h1/h0 c2 = 1−
√

h1/h0 r = exp ik2L2

d1 = 1 +
√

h0/h1 d2 = 1−
√

h0/h1

(50)

and
α = c2d1a1b1 pqr + c2d1a2b2 pq(1/r) + c2d2a2b1(1/p)qr+

c2d2a1b2(1/p)q(1/r) + c1d2a1b1 p(1/q)r + c1d2a2b2 p(1/q)(1/r)+

c1d1a2b1(1/p)(1/q)r + c1d1a1b2(1/p)(1/q)(1/r),

(51)

β = c2d1a1b2 pqr + c2d1a2b1 pq(1/r) + c2d2a2b2(1/p)qr+

c2d2a1b1(1/p)q(1/r) + c1d2a1b2 p(1/q)r + c1d2a2b1 p(1/q)(1/r)+

c1d1a2b2(1/p)(1/q)r + c1d1a1b1(1/p)(1/q)(1/r).

(52)

Upon substitution of Li =
π
√

ghi

2ω
, i = 0, 1, 2, we indeed obtain Equations (44) and (45) for

n = m + 1.

Notice that we set our domain for the functions Kn
t and Kn

r to be [1,+∞) because from our
calculations, these functions admit values of

√
h0/h1 ≥ 1. As an immediate consequence of our

formulas, we can find a series of identical n-bar wave reflector of height
(

h0 − hn
1 h1−n

0

)
that is equally

effective in terms of transmission and reflection to a one-bar wave reflector with height (h0 − h1).
For example, a two-bar wave reflector with height 0.6h0 is equally effective with a one-bar wave
reflector each with height 0.84h0. It can be concluded that energy is also conserved for this type of
wave reflector. We can try to do the lengthy computation (e.g., for the three-bar wave reflector case, we
can set-up the 12 matching conditions just to find K3

t and K3
r ). However, with the aid of a computer

software, we can just set-up the matrix equation

Ax = b (53)

where A4n×4n is the coefficient matrix and b =
[
1 1 0 · · · 0

]T

1×4n
and n is the number of identical

parallel bars. Finally, we note that in the solution vector x, x1 = Ar and x4n = At.

5. Numerical Method

We now solve Equations (1) and (2) numerically using the finite volume method on a staggered
grid. The finite volume method is one of the known numerical methods for solving partial
differential equations (see [30] for details of the method). We will define the scheme to simulate wave
propagation and see what happens to the wave that passes through the breakwater and how effective
the breakwater is on reducing wave amplitude. Furthermore, we investigate the wave when it passes
through a domain with various system conditions. We base these system conditions on varying
incoming wave amplitude, wave period, water depth, breakwater length, and breakwater height.
Figure 5 below illustrates how the staggered grid works. In the staggered grid arrangement, the value
of η is calculated on a full grid and u is calculated on a half grid.
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Figure 5. Illustration of staggered grid method.

Mass conservation (Equation (1)) is approximated at a cell centered at xi, while momentum
conservation (Equation (2)) is approximated at a cell centered at xi+1/2. Afterward, we discretize
Equations (1) and (2) and approximate them using the numerical equations below, which are based on
the finite volume method on a staggered grid:

ηn+1
j − ηn

j

∆t
+

(hu)n
j+1/2 − (hu)n

j−1/2

∆x
= 0 (54)

un+1
j+1/2 − un

j+1/2

∆t
+ g

ηn+1
j+1 − ηn+1

j

∆x
= 0 (55)

In this case, the values of water elevation η will be computed at every full grid point xi, with i =
1, 2, 3, ..., Nx using mass conservation (Equation (54)). Velocity u will be computed at every staggered
grid point xi+1/2, with i = 0, 1, 2, ..., Nx using momentum conservation (Equation (55)). Using Von
Neumann’s stability analysis, we obtain the Courant–Friedrichs–Lewy condition for Equations (54)
and (55), which is

√
gh1

∆t
∆x ≤ 1.

6. Results and Discussion

In this section, we will implement the numerical scheme that has been formulated in the previous
section to simulate wave propagation over rectangular submerged breakwater. Further, we will
compare the numerical results with the analytical solutions, literature data, and experimental
measurements to validate the scheme.

6.1. Wave Propagation over a Submerged Breakwater

Here, we simulate the wave propagation over a rectangular breakwater using the numerical
scheme of Equations (54) and (55) from the previous section. We will simulate the wave in three
states: before it encounters the breakwater, as it passes above the breakwater, and after it passes
through the breakwater. We do this by defining the value of h in each region. For the region behind
the breakwater and in front of the breakwater, we take the value of h = h0 as the water depth from
the undisturbed wave surface to the bottom. For Region 2, where the breakwater exists, we take
h = h1 as the distance between the top of the breakwater and the undisturbed wave surface.

The incoming wave is modeled using the sinusoidal function with specific wave amplitudes and
periods. The numerical Kt is calculated by determining the ratio of the maximum value of η in region 3
at the end of wave iteration to the generated incoming wave amplitude Ai. Below is an example of
a numerical model simulation (Figure 6).

We obtained Kt = 0.9393 from our numerical model, meaning that the incoming wave amplitude
is reduced by 0.0607 or about six percent. Notice that the simulation example gives us Kt < 1,
which means that the breakwater is effective in reducing relatively small wave amplitudes. However,
a relatively high value of Kt means that the breakwater may increase the wave amplitude instead of
reducing it, and its existence could be harmful to structures near the shoreline.
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Figure 6. Numerical model figure result with Ai = 1 m, wave period 0.5 s, h0 = 10 m, L = 5 m and
h1 = 4 m.

Now, we will conduct another simulation for wave propagation over a submerged rectangular
breakwater using our numerical scheme. The results will then be compared to the numerical results
obtained by Rambabu and Mani [31] to confirm our model. In this case, the ratio between the length of
the breakwater (L) and the water depth (h0) is set to be L/h0 = 1, while the ratio between the depth
on top of the breakwater and on the deeper bottom is h1/h0 = 0.2. Using both models, the values of Kt

are calculated for different values of kd. Figure 7 presents the comparison between the Kt obtained
using our model and using the model proposed by Rambabu and Mani [31]. The comparison gives
a very good agreement where our model confirms the model in [31] perfectly.

Figure 7. Comparison between numerical Kt obtained by [31] and by our model (SWE model).
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6.2. Validation with Analytical Solution

Next, we will validate our numerical scheme by comparing the results against the analytical
solutions obtained from Section 3. Figure 8 shows the comparison between numerical results and
analytical solutions for the value of Kt and Kr for various

√
h0/h1. In this case, we set the water depth

without breakwater as h0 = 10 m, while the depth on top of the crest is varied.

Figure 8. Comparison between numerical results and analytical solutions for Kt (Upper) and Kr

(Lower) with h0 = 10 m.

From Figure 8, we can investigate further the transmission and reflection coefficient, especially
how the depth of the breakwater’s crest affects the value of Kt and Kr. Note that by making the value√

h0/h1 larger, the value of Kt will be smaller, Kr becomes larger. From this, we can conclude that by
increasing the breakwater’s height, we also increase the efficiency of the breakwater itself. However,
keep in mind that building high breakwaters may cost more. From this result, we can calculate
the breakwater’s height to fit the needs of its structure as well as its budget.

Now, there is one more factor that could significantly affect the transmission and reflection
coefficient: the length of the breakwater. Figure 9 illustrates the changes in the value of Kt and Kr

affected by the changes in the breakwater’s length. The figure only shows the case for analytical
Kt and Kr. From the figure, we can see that the value of Kt and Kr are both affected by the length
of the breakwater periodically, with the maximum value of Kt = 1 and minimum value Kr = 0.
The results in the form of a periodic function mean that we can determine the optimum value of
L. Analytically, we have determined in Section 3 that the optimal breakwater length for reducing
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the wave amplitude is given as follows:

Lopt =
π
√

gh1

2ω
. (56)

Figure 9. Analytical Kt and Kr for breakwater’s length in the range of 0 ≤ L ≤ 50 m. h0 = 10 m and
h1 = 4 m.

Furthermore, we want to see how effective the submerged breakwater is in reducing wave
amplitude if we use the optimal length. Figure 10 shows a plot of the Kt value when Lopt and other
values of L are used. It can be inferred from this plot that the value of Kt when the breakwater has an
optimal length will always be smaller than the values of Kt for other L. This means that our equation
for Lopt is physically correct. Therefore, it can be concluded that when the submerged breakwater used
is rectangular, we can select Lopt as its length and set the breakwater height as high as possible while
still keeping it underwater.

Figure 10. A comparison of Kt for values of L, which varies with h0 = 10 m and w = π.

This model can be developed further by considering the wave reflected from the wave damper,
which can also affect Kt. In addition, for further research, we can also take into account the wave
damper’s influence on wave amplitude. Therefore, by using this numerical and analytical model, we
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can determine the optimal size of the breakwater on reducing the wave amplitude with results that are
even closer to those obtained from experiments using a physical model. That means we can use this
model instead of constructing expensive physical models in future research relevant to Linear Shallow
Water Equations.

6.3. Validation with Experimental Data

In this subsection, we will compare the values of Kt from our numerical simulations with the data
collected from experiments involving physical models of submerged breakwaters. It is hoped that
the error calculated from comparing these results will be small, so that we can use this numerical model
to emulate the physical phenomenon of scattering waves due to the existence of a breakwater structure.

Experiments involving physical models of our system were carried out in the Indonesian Ministry
of Public Works’ Coastal Research and Development Center, Buleleng-Bali, Indonesia. We set up
the model and collected data. The results contain the transmission coefficients corresponding to
each system scenario. Each system scenario is created by setting the breakwater length, breakwater
height, water depth, wave height, and wave period. The wave channel has a length of 40 m, a width
of 0.6 m and a height of 1.2 m. With variations of placement of structures on the wave channel,
the model test area utilizes 34 m of space. The laboratory wave channel is equipped with a piston-type
generator engine powered by an electric motor capable of generating regular waves up to a height
of 25 cm with a period of 1–2.6 s. The wave channel also has wave probes behind and in front of
the breakwater, allowing us to gather information on wave amplitudes before and after waves pass
through the breakwater. A pile of hollow stone mounted on the wave channel acts as a wave damper.
Figure 11 illustrates the physical model set-up used in the experiment. The various breakwater sizes
used in the physical model are listed in Table 3 with water depth variations of 35, 40, 45, 50, and 60 cm.

Figure 11. Physical model of the breakwater.

Table 3. List of various breakwater size that are used in the experiment.

Type No. Height (H) Length (L)

1 30 cm 45 cm
2 30 cm 30 cm
3 30 cm 15 cm
4 20 cm 45 cm
5 20 cm 30 cm
6 20 cm 15 cm

We obtain Kt values from the variations of the physical model that meet the linear SWEs
assumptions for various breakwater sizes, water depths, wave heights, and wave periods. In Table 4,
H denotes the incoming wave height, A is the incoming wave amplitude (half of the wave height),
T is the wave period in seconds, h0 is the undisturbed water depth without breakwater, and BW is
the breakwater height. In order to analyze the effect of incoming wave amplitude, we use the wave
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amplitude in meter units. The experimental data, numerical results, and the relative error of our model
can be seen in Table 4.

Table 4. Comparison between physical and numerical Kt for various model scenarios.

No. H (m) A (m) T (s) h0 (cm) BW (cm) L (cm) Physical Kt Numerical Kt Error (%)

1 0.10879 0.05439 1.61 60 30 30 0.8435 0.8870 5.15708
2 0.07156 0.03578 2.04 60 30 15 0.8580 0.8578 0.02331
3 0.06793 0.03396 2.04 60 20 15 0.9483 0.9209 2.88938
4 0.10757 0.05378 1.61 60 20 30 0.9687 0.9392 3.04532
5 0.19330 0.09665 1.08 60 20 45 0.8311 0.8770 5.53380
6 0.09281 0.04641 1.61 50 20 30 0.8899 0.9295 4.44994
7 0.05919 0.02959 2.04 50 20 15 0.9254 0.9047 2.23687
8 0.09060 0.04530 1.61 50 30 30 0.8442 0.8652 2.48756
9 0.04082 0.02041 2.04 45 20 15 1.0860 0.9890 8.93186

10 0.08762 0.04381 1.61 45 20 30 0.9539 0.9249 3.04015
11 0.09100 0.04550 1.61 45 30 30 0.8492 0.8462 0.35317
12 0.06249 0.03125 1.61 40 20 30 1.0339 0.9209 10.92949
13 0.05665 0.02833 2.04 35 20 15 0.8240 0.8649 4.96359
14 0.06912 0.03456 1.61 35 20 30 0.8591 0.9179 6.84437
15 0.11318 0.05659 1.08 35 20 45 0.9158 0.9528 4.04018

From the comparison above, with certain characteristics of wave amplitude, wave period,
breakwater size, and water depth, the transmission coefficient values obtained using the numerical
model have an average error of 4.2% when compared to transmission coefficients obtained from
the physical model data. For numerical mathematical modeling in general, this error is relatively small.
Therefore, we can conclude that the model adequately simulates wave reduction.

7. Conclusions

In this paper, the linearized Shallow Water Equations is solved analytically and numerically using
the Separation of Variables Method and Finite Volume Method on a Staggered Grid, respectively,
to obtain the transmission coefficient (Kt). Analytically, we have found the solution for Kt for single-bar
and two-bar submerged breakwater, which strongly depend on the dimension of the breakwater
itself. While the Kt for a single-bar case only depends on the size of the bar, Kt for a two-bar case also
depends on the distance between the two bars. The generalized Kt for an n-bar submerged breakwater
is obtained using a theorem of which proof is presented in this paper. The higher the breakwater,

the lower Kt we get. Moreover, the optimal length of each bar Lopt =
π
√

gh1
2ω has also been obtained for

specific incoming wave amplitudes. Moreover, solving the model numerically using the finite volume
method on a staggered grid, resulted in a very accurate simulation where the wave amplitude is
reduced after it passes the bar. To validate the numerical scheme, comparisons between our numerical
results against previous numerical model results, analytical solutions, and experimental data have
been conducted. The comparison between our numerical model against the previous numerical model
based on the Potential Theory as well as the analytical-numerical comparison give almost identical
results for both cases. Agreeing with those results, the comparison between our numerical results
against the experimental data gives a very good agreement with only 4.2% of error, which is relatively
small for the comparison. Those results indicate that our model is quite good at simulating the real
phenomena, which is important because then we can use this research to provide a good preliminary
design tool for the implementation of submerged breakwaters as a coastal protector.
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