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Abstract: Human immunodeficiency virus (HIV) is a retrovirus that causes HIV infection and over
time acquired immunodeficiency syndrome (AIDS). It can be spread and transmitted through two
fundamental modes, one by virus-to-cell infection, and the other by direct cell-to-cell transmission.
In this paper, we propose a new mathematical model that incorporates both modes of transmission
and takes into account the role of the adaptive immune response in HIV infection. We first show
that the proposed model is mathematically and biologically well posed. Moreover, we prove that
the dynamical behavior of the model is fully determined by five threshold parameters. Furthermore,
numerical simulations are presented to confirm our theoretical results.
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1. Introduction

Viruses are very small infectious agents that need to penetrate inside a cell of their host to
replicate and multiply. Several viruses attack the human body, such as influenza virus, human
immunodeficiency virus (HIV), hepatitis B virus (HBV), hepatitis C virus (HCV), Ebola virus, Zika
virus, and so on. Viral infections caused by these viruses represent a major global health problem
by causing the mortality of millions of people and the expenditure of enormous amounts of money
in health care and disease control. In this study, we are interested in the viral infection caused by
HIV. The World Health Organization (WHO) estimates that 36.7 million people were living with
HIV at the end of 2016, and more than 1 million people died from HIV-related causes in 2016 [1].
In Morocco, the number of people living with HIV is estimated at 28,740, and 1097 people died from
AIDS in 2014, while the cumulative number of HIV/AIDS cases reported since the beginning of the
epidemic is 10,017 [2].

Many mathematical models have been developed to better understand the dynamics of HIV
infection. One of the earliest of these models was presented by Perelson et al. [3] in 1996. This model is
given by the following system: 

Ṫ(t) = λ− dT(t)− β1T(t)V(t),
İ(t) = β1T(t)V(t)− aI(t),
V̇(t) = kI(t)− µV(t),

(1)

where T(t), I(t), and V(t) are the concentrations of healthy CD4+ T cells, infected cells, and free virus
at time t, respectively. Healthy cells are produced at rate λ, die at rate d, and become infected by
free virus at rate β1. The parameter a is the death rate of infected cells. Free virus is produced by an
infected cell at rate k and is removed at rate µ.
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In the system given by Equation (1), the cell infection is instantaneous and is caused only by
contact with free virus. In reality, there are two kinds of delays: one in cell infection, and the other
in virus production. In addition, HIV can spread by two fundamental modes, one by virus-to-cell
infection, and the other by direct cell-to-cell transmission. For these above reasons, Lai and Zou [4]
improved the model of Perelson et al. [3] by incorporating the two modes of transmission and infinite
distributed delay in cell infection. They obtained the following model:

Ṫ(t) = λ− dT(t)− β1T(t)V(t)− β2T(t)I(t),
İ(t) =

∫ ∞
0 f1(τ)e−α1τ [β1T(t− τ)V(t− τ) + β2T(t− τ)I(t− τ)]dτ − aI(t),

V̇(t) = kI(t)− µV(t),
(2)

where β2T(t)I(t) denotes the rate for a target cell to contact with an infected cell. It is assumed that the
virus or infected cell contacts an uninfected target cell at time t− τ and the cell becomes infected at time
t, where τ is a random variable taken from a probability distribution f1(τ). The term e−α1τ represents
the probability of surviving from time t− τ to time t, where α1 is the death rate for infected but not yet
virus-producing cells. The other parameters have the same biological meaning as in Equation (1).

On the other hand, the adaptive immune responses of cytotoxic T lymphocytes (CTLs) and
antibodies play an important role in the control of HIV infection. The first immune response exerted
by CTL cells is called the cellular immunity. However, the second immune response mediated
by antibodies is called the humoral immunity. In the literature, several authors are interested in
modeling the role of these arms of immunity in viral infections. In 2016, Wang et al. [5] improved the
model given by Equation (2) by considering the role of cellular immune response. In the same year,
Elaiw et al. [6] improved the model given by Equation (2) by considering only the role of humoral
immune response and infinite distributed delay in virus production. In 2017, Lin et al. [7] improved
the models of Wang and Zou [8] and Murase et al. [9] by incorporating both modes of transmission,
intracellular delay and humoral immunity.

The aim of this work is to improve and generalize all the above models by proposing a new
mathematical model that takes into account the role of the adaptive immune response in HIV infection
and incorporates both modes of transmission. To this end, the next section deals with the presentation
of our model and some properties of solutions, such as positivity and boundedness. In Section 2,
we derive the threshold parameters of our model and discuss the existence of equilibria. The global
stability of equilibria is investigated in Section 3. Some numerical simulations of our main results are
presented in Section 4. The mathematical and biological conclusions are given in Section 5.

2. Presentation of the Model

To model the role of the adaptive immune response in HIV infection with both virus-to-cell
infection and cell-to-cell transmission, we propose the following model:

Ṫ(t) = λ− dT(t)− β1T(t)V(t)− β2T(t)I(t),
İ(t) =

∫ ∞
0 f1(τ)e−α1τ [β1T(t− τ)V(t− τ) + β2T(t− τ)I(t− τ)]dτ

−aI(t)− pI(t)Z(t),
V̇(t) = k

∫ ∞
0 f2(τ)e−α2τ I(t− τ)dτ − µV(t)− qV(t)W(t),

Ẇ(t) = gV(t)W(t)− hW(t),
Ż(t) = cI(t)Z(t)− bZ(t),

(3)

where W(t) and Z(t) are the concentrations of antibodies and CTL cells at time t, respectively. Free
HIV particles are neutralized by the antibodies at rate qV(t)W(t). However, the infected cells are
killed by CTL cells at rate pI(t)Z(t). Antibodies develop in response to free virus at rate gV(t)W(t),
and CTL cells expand in response to viral antigens derived from infected cells at rate cI(t)Z(t). The
parameters h and b are, respectively, the death rates of antibodies and CTL cells. Further, we assume
that the time necessary for the newly produced virions to become mature and infectious is a random
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variable with a probability distribution f2(τ). The term e−α2τ denotes the probability of surviving
the immature virions during the delay period, where 1

α2
is the average lifetime of an immature virus.

Therefore, the integral
∫ ∞

0 f2(τ)e−α2τ I(t− τ)dτ describes the mature viral particles produced at time t.
The other variables and parameters are defined as those in the systems given by Equations (1) and (2).

In this section, we first investigate the nonnegativity and boundedness of solutions under the
following nonnegative initial conditions:

T(θ) = φ1(θ) ≥ 0, I(θ) = φ2(θ) ≥ 0, V(θ) = φ3(θ) ≥ 0,
W(θ) = φ4(θ) ≥ 0, Z(θ) = φ5(θ) ≥ 0, θ ∈ (−∞, 0].

(4)

We define the Banach space for the fading memory type as follows:

Cα =

{
ϕ ∈ C((−∞, 0], IR5

+) : ϕ(θ)eαθ is uniformly continuous

on (−∞, 0] and ‖ϕ‖ = sup
θ≤0
|ϕ(θ)|eαθ < ∞

}
,

where α is a positive constant and IR5
+ = {(x1, ..., x5) : xi ≥ 0, i = 1, ..., 5}.

Theorem 1. For any initial condition φ = (φ1, φ2, φ3, φ4, φ5) ∈ Cα satisfying Equation (4), the model given
by Equation (3) has a unique solution on [0,+∞). Furthermore, this solution is nonnegative and bounded for
all t ≥ 0.

Proof. By the fundamental theory of functional differential equations [10–12], the model given by
Equation (3) with initial condition φ ∈ Cα has a unique local solution on [0, tmax), where tmax is the
maximal existence time for the solution of Equation (3).

First, we prove that T(t) > 0 for all t ∈ [0, tmax). In fact, supposing the contrary, we let t1 > 0
be the first time such that T(t1) = 0 and Ṫ(t1) ≤ 0. By the first equation of the model given by
Equation (3), we have Ṫ(t1) = λ > 0, which is a contradiction. Thus, T(t) > 0 for all t ∈ [0, tmax).
By Equation (3), we have

I(t) = φ2(0)e−
∫ t

0 (a+pZ(s))ds +
∫ t

0
e−
∫ t

ξ (a+pZ(s))ds
∫ ∞

0
f1(τ)e−α1τ [β1T(ξ − τ)V(ξ − τ)

+β2T(ξ − τ)I(ξ − τ)]dτdξ,

V(t) = φ3(0)e−
∫ t

0 (µ+qW(s))ds + k
∫ t

0
e−
∫ t

ξ (µ+qW(s))ds
∫ h2

0
f2(τ)e−α2τ I(ξ − τ)dτdξ,

W(t) = φ4(0)e
∫ t

0 (gV(s)−h)ds,

Z(t) = φ5(0)e
∫ t

0 (cI(s)−b)ds,

which implies that I(t), V(t), W(t), and Z(t) are nonnegative for all t ∈ [0, tmax).
Next, we show the boundedness of each solution. From the first equation of the model given by

Equation (3), we have Ṫ(t) ≤ λ− dT(t), which implies that

lim sup
t→+∞

T(t) ≤ λ

d
. (5)

Then T(t) is bounded. Let

G1(t) = I(t) +
p
c

Z(t) +
∫ ∞

0
f1(τ)e−α1τT(t− τ)dτ.
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Because T(t) is bounded and
∫ ∞

0 f1(τ)dτ = 1, the integral in G1(t) is well defined and differentiable
with respect to t. Hence,

dG1(t)
dt

= λ
∫ ∞

0
f1(τ)e−α1τdτ − d

∫ ∞

0
f1(τ)e−α1τT(t− τ)dτ − aI(t)− pb

c
Z(t)

≤ λη1 − δ1G1(t),

where δ1 = min{a, b, d} and

ηi =
∫ ∞

0
fi(τ)e−αiτdτ, i = 1, 2. (6)

Thus, G1(t) ≤ M := max{G1(0),
λη1

δ1
}, which implies that I(t) and Z(t) are bounded. It remains

to prove that V(t) and W(t) are bounded. To this end, we consider

G2(t) = V(t) +
q
g

W(t);

then

dG2(t)
dt

= k
∫ ∞

0
f2(τ)e−α2τ I(t− τ)dτ − µV(t)− hq

g
W(t)

≤ kMη2 − δ2G2(t),

where δ2 = min{µ, h}. Similarly to the above, we deduce that V(t) and W(t) are also bounded. We
have proved that all variables of Equation (3) are bounded, which implies that tmax = +∞ and that the
solution exists globally.

If in addition to Equation (4), we suppose that φi(0) > 0 for all i = 1, ..., 5; then we obtain the
following remark.

Remark 1. If φ = (φ1, φ2, φ3, φ4, φ5) ∈ Cα satisfies Equation (4) with φi(0) > 0, then each solution of
Equation (3) with initial condition φ remains positive and bounded for all t ≥ 0.

Next, we derive threshold numbers and identify biological equilibria for the model given by
Equation (3). Clearly, Equation (3) always has an infection-free equilibrium of the form E0(T0, 0, 0, 0, 0),

where T0 =
λ

d
. Therefore, the basic reproduction number of Equation (3) can be defined as

R0 =
β1kλη1η2 + β2λµη1

daµ
. (7)

As in [13], R0 can be rewritten as R0 = R01 + R02, where R01 =
β1kλη1η2

daµ
is the basic reproduction

number corresponding to the virus-to-cell infection mode, and R02 =
β2λη1

da
is the basic reproduction

number corresponding to the cell-to-cell transmission mode.
When R0 > 1, Equation (3) has another infection equilibrium without immunity,

E1(T1, I1, V1, 0, 0), where

T1 =
λ

dR0
, I1 =

dµ(R0 − 1)
β1kη2 + β2µ

and V1 =
kdη2(R0 − 1)
β1kη2 + β2µ

.
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If both humoral and cellular immune responses have not been established, we have gV1 − h ≤ 0
and cI1 − b ≤ 0. Thus, we define the reproduction number for humoral immunity:

RW
1 =

gV1

h
=

gkdη2(R0 − 1)
h(β1kη2 + β2µ)

(8)

and the reproduction number for cellular immunity:

RZ
1 =

cI1

b
=

cdµ(R0 − 1)
b(β1kη2 + β2µ)

. (9)

Hence, gV1 − h ≤ 0 and cI1 − b ≤ 0 are equivalent to RW
1 ≤ 1 and RZ

1 ≤ 1, respectively.
When RW

1 > 1, Equation (3) has an infection equilibrium with only humoral immunity,
E2(T2, I2, V2, W2, 0), where

T2 =
aI2

η1(β1V2 + β2 I2)
, I2 =

−B +
√

B2 + 4AC
2A

, V2 =
h
g

, W2 =
µ

q

(
kη2 I2

µV2
− 1
)

,

with A = agβ2, B = a(dg + hβ1)− λη1β2g, and C = λhη1β1.
It is not hard to see that T2, I2 and V2 are positive. It remains to check that W2 is positive. Because

RW
1 > 1 and

µV2

k2η2
2

(
AµV2 + B

)
− C =

µahV2

k2η2
2

(
1− RW

1

)
,

we easily deduce that W2 > 0. If cellular immunity has not been established, we have cI2 − b ≤ 0.
For this, we define the reproduction number for cellular immunity in competition as

RZ
2 =

cI2

b
, (10)

which implies that cI2 − b ≤ 0 is equivalent to RZ
2 ≤ 1.

When RZ
1 > 1, Equation (3) has an infection equilibrium with only cellular immunity,

E3(T3, I3, V3, 0, Z3), where

T3 =
λcµ

dcµ + b(kβ1η2 + µβ2)
, I3 =

b
c

, V3 =
kbη2

cµ
, Z3 =

a
p

(
R0

1 + ab
λcη1

R0
− 1
)

.

We have that T3, I3, and V3 are positive. It suffices to check that Z3 is positive.
Because RZ

1 > 1 and
R0

1 + ab
λcη1

R0
− 1 =

b(kβ1η2 + µβ2)

dcµ(1 + ab
λcη1

R0)

(
RZ

1 − 1
)
,

we deduce that Z3 > 0. If humoral immunity has not been established, we have gV3 − h ≤ 0. In this
case, we define the reproduction number for humoral immunity in competition as

RW
3 =

gV3

h
, (11)

which implies that gV3 − h ≤ 0 is equivalent to RW
3 ≤ 1.

When RZ
2 > 1 and RW

3 > 1, Equation (3) has an infection equilibrium with both cellular and
humoral immune responses, E4(T4, I4, V4, W4, Z4), where

T4 =
λgc

dgc + β1hc + β2bg
, I4 =

b
c

, V4 =
h
g

, W4 =
µ

q
(RW

3 − 1), Z4 =
a
p

(
λcη1(β1hc + β2bg)

ab(dgc + β1hc + β2bg)
− 1
)

.
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We have T4 > 0, I4 > 0, V4 > 0, and W4 > 0 (as RW
3 > 1). It remains to check that Z4 > 1. On the other

hand, RZ
2 > 1 is equivalent to C >

b
c2

(
bA + cB

)
. By a simple computation, we have

C− b
c2

(
bA + cB

)
=

pb
c2

(
dgc + β1hc + β2bg

)
Z4.

Summarizing the above discussions, we obtain the following theorem.

Theorem 2.

(i) If R0 ≤ 1, then Equation (3) always has one infection-free equilibrium, E0(T0, 0, 0, 0, 0), where T0 =
λ

d
.

(ii) If R0 > 1, then Equation (3) has an infection equilibrium without immunity, E1(T1, I1, V1, 0, 0), where

T1 =
λ

dR0
, I1 =

dµ(R0 − 1)
β1kη2 + β2µ

and V1 =
kdη2(R0 − 1)
β1kη2 + β2µ

.

(iii) If RW
1 > 1, then Equation (3) has an infection equilibrium with only humoral immunity,

E2(T2, I2, V2, W2, 0), where

T2 =
aI2

η1(β1V2 + β2 I2)
, I2 =

−B +
√

B2 + 4AC
2A

, V2 =
h
g

, W2 =
µ

q

(
kη2 I2

µV2
− 1
)

.

(iv) If RZ
1 > 1, then Equation (3) has an infection equilibrium with only cellular immunity,

E3(T3, I3, V3, 0, Z3), where

T3 =
λcµ

dcµ + b(kβ1η2 + µβ2)
, I3 =

b
c

, V3 =
kbη2

cµ
, Z3 =

a
p

(
R0

1 + ab
λcη1

R0
− 1
)

.

(v) If RZ
2 > 1 and RW

3 > 1, then Equation (3) has an infection equilibrium with both cellular and humoral
immune responses, E4(T4, I4, V4, W4, Z4), where

T4 =
λgc

dgc + β1hc + β2bg
, I4 =

b
c

, V4 =
h
g

, W4 =
µ

q
(RW

3 − 1) and

Z4 =
a
p

(
λcη1(β1hc + β2bg)

ab(dgc + β1hc + β2bg)
− 1
)

.

It is important to note that

RW
3 =

RW
1

RZ
1

=
gkbη2

hµc
, W2 =

µ

q
(RZ

2 RW
3 − 1) and RW

3 >
1

RZ
2

. (12)

3. Global Stability

In this section, we investigate the global stability of the five equilibria of Equation (3)
by constructing appropriate Lyapunov functionals. We first analyze the global stability of the
infection-free equilibrium.

Theorem 3. The infection-free equilibrium E0 is globally asymptotically stable when R0 ≤ 1.
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Proof. To study the global stability of E0, we consider a Lyapunov functional defined as follows:

L0(t) = T0Φ(
T(t)
T0

) +
1
η1

I(t) +
β1T0

µ
V(t) +

qβ1T0

gµ
W(t) +

p
cη1

Z(t)

+
1
η1

∫ ∞

0
f1(τ)e−α1τ

∫ t

t−τ
[β1T(s)V(s) + β2T(s)I(s)]dsdτ

+
kβ1T0

µ

∫ ∞

0
f2(τ)e−α2τ

∫ t

t−τ
I(s)dsdτ,

where Φ(x) = x− 1− ln x for x > 0. It is not hard to see that Φ(x) ≥ 0 for all x ∈ (0,+∞). Hence,
the functional L0 is nonnegative.

In order to simplify the presentation, we use the following notations: Ψ = Ψ(t) and Ψτ = Ψ(t− τ)

for any Ψ ∈ {T, I, V, W, Z}. Calculating the time derivative of L0 along the positive solution of
Equation (3), we obtain

dL0

dt
|(3) =

(
1− T0

T

)
Ṫ +

1
η1

İ +
β1T0

µ
V̇ +

qβ1T0

gµ
Ẇ +

p
cη1

Ż

+
1
η1

∫ ∞

0
f1(τ)e−α1τ [β1TV + β2TI − β1TτVτ − β2Tτ Iτ ]dτ

+
kβ1T0

µ

∫ ∞

0
f2(τ)e−α2τ(I − Iτ)dτ

= − d
T
(T − T0)

2 +
a

η1
(R0 − 1)I − hqβ1T0

gµ
W − p

cη1
Z.

If follows from R0 ≤ 1 that
dL0

dt
≤ 0. It is straightforward to show that the largest invariant set in

{(T, I, V, W, Z)|dL0

dt
= 0} is {E0}. By LaSalle’s invariance principle [14], the infection-free equilibrium

E0 is globally asymptotically stable when R0 ≤ 1.

When R0 > 1, Equation (3) has four infection steady states Ei, 1 ≤ i ≤ 4. The following theorem
characterizes the global stability of these steady states.

Theorem 4. Assume R0 > 1.

(i) The infection equilibrium without immunity E1 is globally asymptotically stable if RW
1 ≤ 1 and RZ

1 ≤ 1.
(ii) The infection equilibrium with only humoral immunity E2 is globally asymptotically stable if RW

1 > 1 and
RZ

2 ≤ 1.
(iii) The infection equilibrium with only cellular immunity E3 is globally asymptotically stable if RZ

1 > 1 and
RW

3 ≤ 1.
(iv) The infection equilibrium with both cellular and humoral immune responses E4 is globally asymptotically

stable if RZ
2 > 1 and RW

3 > 1.

Proof. For (i), consider the following Lyapunov functional:

L1(t) = T1Φ
(

T(t)
T1

)
+

1
η1

I1Φ
(

I(t)
I1

)
+

β1T1V1

kη2 I1
V1Φ

(
V(t)
V1

)
+

qβ1T1

gµ
W(t) +

p
cη1

Z(t)

+
β1T1V1

η1

∫ ∞

0
f1(τ)e−α1τ

∫ t

t−τ
Φ
(

T(s)V(s)
T1V1

)
dsdτ

+
β2T1 I1

η1

∫ ∞

0
f1(τ)e−α1τ

∫ t

t−τ
Φ
(

T(s)I(s)
T1 I1

)
dsdτ

+
β1T1V1

η2

∫ ∞

0
f2(τ)e−α2τ

∫ t

t−τ
Φ
(

I(s)
I1

)
dsdτ.
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Then

dL1

dt
|(3) = (1− T1

T
)Ṫ +

1
η1

(1− I1

I
) İ +

β1T1V1

kη2 I1
(1− V1

V
)V̇ +

qβ1T1

gµ
Ẇ +

p
cη1

Ż

+
β1T1V1

η1

∫ ∞

0
f1(τ)e−α1τ

(
Φ
( TV

T1V1

)
−Φ

(TτVτ

T1V1

))
dτ

+
β2T1 I1

η1

∫ ∞

0
f1(τ)e−α1τ

(
Φ
( TI

T1 I1

)
−Φ

(Tτ Iτ

T1 I1

))
dτ

+
β1T1V1

η2

∫ ∞

0
f2(τ)e−α1τ

(
Φ
( I

I1

)
−Φ

( Iτ

I1

))
dτ.

By λ = dT1 + β1T1V1 + β2T1 I1 = dT1 +
a

η1
I1 and kη2 I1 = µV1, we obtain

dL1

dt
|(3) = − d

T
(T − T1)

2 +
hqβ1T1

gµ
(RW

1 − 1)W +
pb
cη1

(RZ
1 − 1)Z

+
β1T1V1

η1

∫ ∞

0
f1(τ)e−α1τ

[
3− T1

T
− TτVτ I1

T1V1 I
+ ln

(TτVτ

TV
)]

dτ

+
β2T1 I1

η1

∫ ∞

0
f1(τ)e−α1τ

[
2− T1

T
− Tτ Iτ

T1 I
+ ln

(Tτ Iτ

TI
)]

dτ

− β1T1V1

η2

∫ ∞

0
f2(τ)e−α2τ

[
V1 Iτ

VI1
− ln

( Iτ

I
)]

dτ.

Thus,

dL1

dt
|(3) = − d

T
(T − T1)

2 +
hqβ1T1

gµ
(RW

1 − 1)W +
pb
cη1

(RZ
1 − 1)Z

− β1T1V1

η1

∫ ∞

0
f1(τ)e−α1τ

[
Φ(

T1

T
) + Φ(

TτVτ I1

T1V1 I
)

]
dτ

− β2T1 I1

η1

∫ ∞

0
f1(τ)e−α1τ

[
Φ(

T1

T
) + Φ(

Tτ Iτ

T1 I
)

]
dτ

− β1T1V1

η2

∫ ∞

0
f2(τ)e−α2τΦ(

V1 Iτ

VI1
)dτ.

Because Φ(x) ≥ 0 for x > 0, RW
1 ≤ 1, and RZ

1 ≤ 1, we have
dL1

dt
|(3) ≤ 0 with equality if and only if

T = T1, I = I1, V = V1, W = 0, and Z = 0. It follows from LaSalle’s invariance principle that E1 is
globally asymptotically stable.

For (ii), consider the following Lyapunov functional:

L2(t) = T2Φ
(

T(t)
T2

)
+

1
η1

I2Φ
(

I(t)
I2

)
+

β1T2V2

kη2 I2
V2Φ

(
V(t)
V2

)
+

qβ1T2V2

gkη2 I2
W2Φ

(
W(t)
W2

)
+

p
cη1

Z(t)

+
β1T2V2

η1

∫ ∞

0
f1(τ)e−α1τ

∫ t

t−τ
Φ
(

T(s)V(s)
T2V2

)
dsdτ

+
β2T2 I2

η1

∫ ∞

0
f1(τ)e−α1τ

∫ t

t−τ
Φ
(

T(s)I(s)
T2 I2

)
dsdτ

+
β1T2V2

η2

∫ ∞

0
f2(τ)e−α2τ

∫ t

t−τ
Φ
(

I(s)
I2

)
dsdτ.
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Hence,

dL2

dt
|(3) = (1− T2

T
)Ṫ +

1
η1

(1− I2

I
) İ +

β1T2V2

kη2 I2
(1− V2

V
)V̇

+
qβ1T2V2

gkη2 I2
(1− W2

W
)Ẇ +

p
cη1

Ż

+
β1T1V1

η1

∫ ∞

0
f1(τ)e−α1τ

(
Φ
( TV

T1V1

)
−Φ

(TτVτ

T1V1

))
dτ

+
β2T1 I1

η1

∫ ∞

0
f1(τ)e−α1τ

(
Φ
( TI

T1 I1

)
−Φ

(Tτ Iτ

T1 I1

))
dτ

+
β1T1V1

η2

∫ ∞

0
f2(τ)e−α1τ

(
Φ
( I

I1

)
−Φ

( Iτ

I1

))
dτ.

By λ = dT2 + β1T2V2 + β2T2 I2 = dT2 +
a

η1
I2, V2 =

h
g

, and kη2 I2 = µV2 + qW2V2, we obtain

dL2

dt
|(3) = − d

T
(T − T2)

2 +
pb
cη1

(RZ
2 − 1)Z

+
β1T2V2

η1

∫ ∞

0
f1(τ)e−α1τ

[
3− T2

T
− TτVτ I2

T2V2 I
+ ln

(TτVτ

TV
)]

dτ

+
β2T2 I2

η1

∫ ∞

0
f1(τ)e−α1τ

[
2− T2

T
− Tτ Iτ

T2 I
+ ln

(Tτ Iτ

TI
)]

dτ

− β1T2V2

η2

∫ ∞

0
f2(τ)e−α2τ

[
V2 Iτ

VI2
− ln

( Iτ

I
)]

dτ.

Thus,

dL2

dt
|(3) = − d

T
(T − T2)

2 +
pb
cη1

(RZ
2 − 1)Z

− β1T2V2

η1

∫ ∞

0
f1(τ)e−α1τ

[
Φ(

T2

T
) + Φ(

TτVτ I2

T2V2 I
)

]
dτ

− β2T2 I2

η1

∫ ∞

0
f1(τ)e−α1τ

[
Φ(

T2

T
) + Φ(

Tτ Iτ

T2 I
)

]
dτ

− β1T2V2

η2

∫ ∞

0
f2(τ)e−α2τΦ(

V2 Iτ

VI2
)dτ.

Because RZ
2 ≤ 1 and Φ(x) ≥ 0 for x > 0, we have

dL2

dt
|(3) ≤ 0 with equality if and only if T = T2,

I = I2, and V = V2. Then İ = 0 and V̇ = 0, which leads to Z = 0 and W = W2. Therefore, the

largest compact invariant set in {(T, I, V, W, Z)|dL2

dt
= 0} is the singleton {E2}, and the proof of (ii)

is completed.
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For (iii), consider the following Lyapunov functional:

L3(t) = T3Φ
(

T(t)
T3

)
+

1
η1

I3Φ
(

I(t)
I3

)
+

β1T3V3

kη2 I3
V3Φ

(
V(t)
V3

)
+

qβ1T3

gµ
W(t) +

p
cη1

Z2Φ
(

Z(t)
Z3

)
+

β1T3V3

η1

∫ ∞

0
f1(τ)e−α1τ

∫ t

t−τ
Φ
(

T(s)V(s)
T3V3

)
dsdτ

+
β2T3 I3

η1

∫ ∞

0
f1(τ)e−α1τ

∫ t

t−τ
Φ
(

T(s)I(s)
T3 I3

)
dsdτ

+
β1T3V3

η2

∫ ∞

0
f2(τ)e−α2τ

∫ t

t−τ
Φ
(

I(s)
I3

)
dsdτ.

From λ = dT3 + β1T3V3 + β2T3 I3 = dT3 +
a

η1
I2 +

p
η1

I3Z3, I3 =
b
c

, and kη2 I3 = µV3, we easily have

dL3

dt
|(3) = − d

T
(T − T3)

2 +
hqβ1T3

gµ
(RW

3 − 1)W

− β1T3V3

η1

∫ ∞

0
f1(τ)e−α1τ

[
Φ(

T3

T
) + Φ(

TτVτ I3

T3V3 I
)

]
dτ

− β2T3 I3

η1

∫ ∞

0
f1(τ)e−α1τ

[
Φ(

T3

T
) + Φ(

Tτ Iτ

T3 I
)

]
dτ

− β1T3V3

η2

∫ ∞

0
f2(τ)e−α2τΦ(

V3 Iτ

VI3
)dτ.

Consequently,
dL3

dt
|(3) ≤ 0 with equality if and only if T = T3, I = I3, and V = V3. It follows from

İ = 0 and V̇ = 0 that Z = Z3 and W = 0. By LaSalle’s invariance principle, we deduce that E3 is
globally asymptotically stable.

Finally, we show (iv) by considering the following Lyapunov functional:

L4(t) = T4Φ
(

T(t)
T4

)
+

1
η1

I4Φ
(

I(t)
I4

)
+

β1T4V4

kη2 I4
V4Φ

(
V(t)
V4

)
+

qβ1T4V4

gkη2 I4
W4Φ

(
W(t)
W4

)
+

p
cη1

Z4Φ
(

Z(t)
Z4

)
+

β1T4V4

η1

∫ ∞

0
f1(τ)e−α1τ

∫ t

t−τ
Φ
(

T(s)V(s)
T4V4

)
dsdτ

+
β2T4 I4

η1

∫ ∞

0
f1(τ)e−α1τ

∫ t

t−τ
Φ
(

T(s)I(s)
T4 I4

)
dsdτ

+
β1T4V4

η2

∫ ∞

0
f2(τ)e−α2τ

∫ t

t−τ
Φ
(

I(s)
I4

)
dsdτ.

By λ = dT4 + β1T4V4 + β2T4I4 = dT4 +
a

η1
I4 +

p
η1

I4Z4, I4 =
b
c

V4 =
h
g

, and kη2I4 = (µ + qW4)V4,

we obtain

dL4

dt
|(3) = − d

T
(T − T4)

2 +
β1T4V4

η1

∫ ∞

0
f1(τ)e−α1τ

[
3− T4

T
− TτVτ I4

T4V4 I
+ ln

(TτVτ

TV
)]

dτ

+
β2T4 I4

η1

∫ ∞

0
f1(τ)e−α1τ

[
2− T4

T
− Tτ Iτ

T4 I
+ ln

(Tτ Iτ

TI
)]

dτ

− β1T4V4

η2

∫ ∞

0
f2(τ)e−α2τ

[
V4 Iτ

VI4
− ln

( Iτ

I
)]

dτ.
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Hence,

dL4

dt
|(3) = − d

T
(T − T4)

2 − β1T4V4

η1

∫ ∞

0
f1(τ)e−α1τ

[
Φ(

T4

T
) + Φ(

TτVτ I4

T4V4 I
)

]
dτ

− β2T4 I4

η1

∫ ∞

0
f1(τ)e−α1τ

[
Φ(

T4

T
) + Φ(

Tτ Iτ

T4 I
)

]
dτ

− β1T4V4

η2

∫ ∞

0
f2(τ)e−α2τΦ(

V4 Iτ

VI4
)dτ.

Thus,
dL4

dt
|(3) ≤ 0 with equality holds if and only if T = T4, I = I4, and V = V4. Let

Γ = {(T, I, V, W, Z)|dL4

dt
= 0}.

From the second and third equations of the model given by Equation (3), we have

İ = η1(β1T4V4 + β2T4 I4)− aI4 − pI4Z = 0,

V̇ = kη2 I4 − µV4 − qV4W = 0,

which implies that Z = Z4 and W = W4. Then the largest compact invariant set in Γ is the singleton
{E4}. Therefore, E4 is globally asymptotically stable.

The conditions of the global stability of E2 and those of E3 given in (ii) and (iii) of Theorem 4
do not hold simultaneously. In fact, supposing the contrary, then RW

1 > 1 ≥ RZ
2 and RZ

1 > 1 ≥ RW
3 .

Because RW
3 ≤ 1 and RZ

2 >
1

RW
3

, we have RZ
2 > 1. This is a contradiction with RZ

2 ≤ 1.

According to Equation (12) and Theorem 4, we have the following important result.

Remark 2. Assume R0 > 1.

1. If max(RW
1 , RZ

1 ) ≤ 1, then Equation (3) converges to E1 without immunity.
2. If max(RW

1 , RZ
1 ) > 1, two cases arise:

(i) When max(RW
1 , RZ

1 ) = RW
1 , the humoral immunity is dominant, and Equation (3) converges to E2 if

RZ
2 ≤ 1 or to E4 if RZ

2 > 1.
(ii) When max(RW

1 , RZ
1 ) = RZ

1 , the cellular immunity is dominant, and Equation (3) converges to E3

without humoral immunity.

From this important remark, we can define the over-domination of humoral immunity when
RZ

2 > 1 and RW
3 > 1 and the over-domination of cellular immunity when RZ

2 > 1 and RW
3 < 1.

4. Numerical Simulations

In this section, we present some numerical simulations in order to validate our theoretical results.
For simplicity, we chose f1(τ) = δ(τ− τ1) and f2(τ) = δ(τ− τ2) with τ1 and τ2 to be the delays in cell
infection and virus production, respectively, and δ(.) to be the Dirac function; then our model becomes

Ṫ(t) = λ− dT(t)− β1T(t)V(t)− β2T(t)I(t),
İ(t) = [β1T(t− τ1)V(t− τ1) + β2T(t− τ1)I(t− τ1)]e−α1τ1

−aI(t)− pI(t)Z(t),
V̇(t) = kI(t− τ2)e−α2τ2 − µV(t)− qV(t)W(t),
Ẇ(t) = gV(t)W(t)− hW(t),
Ż(t) = cI(t)Z(t)− bZ(t).

(13)
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This system improves the model presented in 2017 by Lin et al. [7], which considered only the
humoral immunity and discrete delay in cell infection and ignored the time delay in virus production;
that is, τ2 = 0. In addition, Equation (13) includes many special cases existing in the literature. For
example, when β2 = 0 and τ1 = τ2 = 0, we obtain the model presented by Wodarz in [15] and
analyzed by Hattaf et al. in [16]. When β2 = 0 and τ2 = 0, we obtain the model of Yan and Wang [17].

The algorithm for the numerical treatment of the delay differential system given by Equation (13)
can be derived for the numerical method presented in [18,19]. Recently, this numerical method has
been used for delayed partial differential equations [20]; it is called the “mixed” Euler method, as it is
a mixture of both forward and backward Euler methods. In addition, it is shown that this mixed Euler
method preserves the qualitative properties of the corresponding continuous system, such as positivity,
boundedness, and global behaviors of solutions. Hence, we discretize the continuous system given
by Equation (13) by this numerical method. Thus, we let ∆t be a time step size and assume that there
exist two integers (m1, m2) ∈ IN2 with τ1 = m1∆t and τ2 = m2∆t. The grids points are tn = n∆t for
n ∈ IN. By applying the mixed Euler method and using the approximations T(tn) ≈ Tn, I(tn) ≈ In,
V(tn) ≈ Vn, W(tn) ≈Wn, and Z(tn) ≈ Zn, we obtain the following discrete model:



Tn+1 = Tn +

(
λ− dTn+1 − β1Tn+1Vn − β2Tn+1 In

)
∆t,

In+1 = In +

(
[β1Tn−m1+1Vn−m1 + β2Tn−m1+1 In−m1 ]e

−α1τ1

−aIn+1 − pIn+1Zn

)
∆t,

Vn+1 = Vn +

(
ke−α2τ2 In−m2+1 − µVn+1 − qVn+1Wn

)
∆t,

Wn+1 = Wn +

(
gVn+1Wn+1 − hWn+1

)
∆t,

Zn+1 = Zn +

(
cIn+1Zn+1 − bZn+1

)
∆t,

where the discrete initial conditions are

Ts = φ1(ts), Is = φ2(ts), Vs = φ3(ts), Ws = φ4(ts), Zs = φ5(ts),
for s ∈ {−m,−m + 1, · · · , 0} and m = max(m1, m2).

The five threshold parameters R0, RW
1 , RZ

1 , RZ
2 , and RW

3 for Equation (13) are given by
Equations (7)–(11) with η1 = e−α1τ1 and η2 = e−α2τ2 . In order to study the impact of cell-to-cell
transmission and both arms of adaptive immunity on the HIV dynamics, we chose β2, g, and c as free
parameters. The units of state variables T, I, and Z were given by cells µL−1. Further, the units of V
and W were given by virions µL−1 and molecules µL−1, respectively. The other parameter values for
the simulation are listed in Table 1.
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Table 1. List of parameters.

Parameter Unit Value Range Source

λ cells µL−1 day−1 10 5.9770–24.1860 [21]
d day−1 0.0139 — [22]
β1 µL virion−1 day−1 2.4× 10−5 2.4× 10−5–4.8× 10−3 [3,23]
a day−1 0.29 0.2666–0.7073 [3,24,25]
α1 day−1 0.01 — [26]
µ day−1 3 2.06–3.81 [3]
k virion cell−1 day−1 50 27–7073 [21]
α2 day−1 0.01 — [26]
p cell−1 µL day−1 0.001 0.001–1 [27–30]
q molecule−1 µL day−1 0.5 — Assumed
h day−1 0.5 — Assumed
b day−1 0.1 0.05–0.15 [28,29]
τ1 days 1.5 0-2 [31]
τ2 days 0.5 — [32]

For the case in which β2 = 10−6, g = 10−5, and c = 0.002, we obtained R0 = 0.9751. It follows
from Theorem 2 that Equation (13) has one infection-free equilibrium E0(719.4245, 0, 0, 0, 0). From
Figure 1, we see that the concentration of uninfected CD4+ T cells increased and tended to the value
T0 = 719.4245, while the concentrations of infected cells, free HIV particles, antibodies, and CTL cells
decreased and tended to zero. This means that E0 is globally asymptotically stable and that the virus
will be cleared. This confirms the result in Theorem 3.

For the case in which β2 = 1.5× 10−4, g = 10−5, and c = 0.002, we obtained R0 = 1.3392,
RW

1 = 0.0143, and RZ
1 = 0.1721. It follows that case (i) of Theorem 4 occurs, and the infection

equilibrium without immunity E1(537.9692, 8.5643, 142.0261, 0, 0) is globally asymptotically stable (see
Figure 2).

For the case in which β2 = 3.4× 10−4, g = 10−3, and c = 0.002, we obtained R0 = 1.8036,
RW

1 = 2.5099, and RZ
2 = 0.2000. From (ii) of Theorem 4, the infection equilibrium with only humoral

immunity E2(507.5951, 10.0014, 99.9785, 3.9525, 0) is globally asymptotically stable (see Figure 3).
For the case in which β2 = 5.4 × 10−4, g = 10−3, and c = 0.02, we obtained R0 = 2.2923,

RZ
1 = 3.8301, and RW

3 = 0.8292. By (iii) of Theorem 4, the infection equilibrium with only cellular
immunity E3(537.3806, 5.0015, 83.1539, 0, 211.6047) is globally asymptotically stable (see Figure 4).

For the case in which β2 = 5.4 × 10−4, g = 10−2, and c = 0.02, we obtained R0 = 2.2923,
RZ

2 = 1.8783, and RW
3 = 8.2918. Using (iv) of Theorem 4, we deduce that the infection equilibrium

with both arms of immunity E4(594.0271, 4.9769, 10.0246, 43.3843, 53.3821) is globally asymptotically
stable (see Figure 5).
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Figure 1. Demonstration of the global stability of the infection-free equilibrium E0 for R0 = 0.9751 ≤ 1.
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Figure 2. Demonstration of the global stability of the infection equilibrium without immunity E1 for
R0 = 1.3392 > 1, RW

1 = 0.0143 ≤ 1, and RZ
1 = 0.1721 ≤ 1.
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Figure 3. Demonstration of the global stability of the infection equilibrium with only humoral immunity
E2 for R0 = 1.8036 > 1, RW

1 = 2.5099 > 1, and RZ
2 = 0.2000 ≤ 1.
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Figure 4. Demonstration of the global stability of the infection equilibrium with only cellular immunity
E3 for R0 = 2.2923 > 1, RZ

1 = 3.8301 > 1, and RW
3 = 0.8292 ≤ 1.
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Figure 5. Demonstration of the global stability of the infection equilibrium with both arms of immunity
E4 for R0 = 2.2923 > 1, RZ

2 = 1.8783 > 1, and RW
3 = 8.2918 > 1.

5. Conclusions

In this paper, we have modeled the role of the adaptive immunity in HIV infection by proposing
a new mathematical model that takes into account the classical virus-to-cell infection, the direct
cell-to-cell transmission, and the two kinds of delays during infection processes and virus production.
By a rigorous mathematical analysis, we have proved that the global dynamics of the proposed model
is fully determined by five threshold parameters, which are the basic reproduction number R0, and
the reproduction numbers for humoral immunity RW

1 , for cellular immunity RZ
1 , for cellular immunity

in competition RZ
2 , and for humoral immunity in competition RW

3 . More precisely, the infection-free
equilibrium is globally asymptotically stable if R0 ≤ 1, which biologically means that the HIV is
cleared and the infection dies out. When R0 > 1, our model has four infection equilibria, which are the
following: (i) the infection equilibrium without immunity is globally asymptotically stable if RW

1 ≤ 1
and RZ

1 ≤ 1; (ii) the infection equilibrium with only humoral immunity is globally asymptotically
stable if RW

1 > 1 and RZ
2 ≤ 1; (iii) the infection equilibrium with only cellular immunity is globally

asymptotically stable if RZ
1 > 1 and RW

3 ≤ 1; (iv) the infection equilibrium with both cellular and
humoral immune responses is globally asymptotically stable if RZ

2 > 1 and RW
3 > 1. Biologically, this

implies that the HIV persists and the infection becomes chronic when the basic reproduction number
is greater than 1. Additionally, the activation of one or both arms of immunity is unable to eliminate
the virus in the human body.

From Remark 2, we can deduce that the over-domination of cellular immunity leads to the absence
of the humoral immunity, and the over-domination of the humoral immunity leads to the persistence
of HIV infection with a weak response of both arms of immunity. This biological result may be an
explanation for the dysfunction of the adaptive immunity in HIV-infected patients. Our model can
be adapted for HBV infection, and the above result can also explain the dysfunction of the adaptive
immune response in patients infected with HBV, which is still largely incomplete [33].

Furthermore, the model and the results presented in this study improve and generalize the
models and the corresponding results in more recent papers with only cellular immunity [5], with only
humoral immunity [6–9], and with both arms of immunity [15,17].
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