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Abstract: We extend the SG4 generalized gradient approximation, developed for covalent and ionic
solids with a nonlocal van der Waals functional. The resulting SG4-rVV10m functional is tested,
considering two possible parameterizations, for various kinds of bulk solids including layered
materials and molecular crystals as well as regular bulk materials. The results are compared to those
of similar methods, PBE + rVV10L and rVV10. In most cases, SG4-rVV10m yields a quite good
description of systems (from iono-covalent to hydrogen-bond and dispersion interactions), being
competitive with PBE + rVV10L and rVV10 for dispersion-dominated systems and slightly superior
for iono-covalent ones. Thus, it shows a promising applicability for solid-state applications. In a
few cases, however, overbinding is observed. This is analysed in terms of gradient contributions to
the functional.

Keywords: density functional theory; exchange-correlation; dispersion corrections; non-covalent
interactions; semiclassical atom

1. Introduction

Non-covalent interactions, especially of the van der Waals type, have been nowadays recognized
as fundamental ingredients of any correct and accurate description of complex materials [1–9]. In fact,
even if the magnitude of non-covalent forces is typically much smaller than that of iono-covalent bonds,
the ubiquity of such interactions makes them significant in large systems. Moreover, for non-polar
complexes and/or at large intermolecular distances, where covalent interactions are negligible, they
play a dominant role. For these reasons, the proper description of dispersion as well as other
non-covalent forces has gained a prominent role in computational chemistry [6,10–16]. Even more
important is the role they play in solid-state applications where extended systems are involved,
whose cohesion is not mainly determined by iono-covalent interactions [3,5,8,9,17–21], e.g., layered or
molecular solids.

One of the most popular computational approaches used in solid-state calculations is Kohn–Sham
(KS) density functional theory (DFT) [22]. In this context, in fact, unlike for chemical applications,
Hartree–Fock based, perturbative, and high-level correlated methods show often an excessive
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computational cost. On the other hand, using DFT, even rather simple semilocal approximations of
the exchange-correlation (XC) functional [23,24], such as generalized gradient approximation (GGA)
functionals, work fairly well allowing for an efficient description of many solid-state systems [24–29].
Nevertheless, one main drawback of semilocal DFT is the poor description of van der Waals
interactions [30–32]. Thus, to be able to apply it to a wide range of solid-state problems (including e.g.,
layered materials, organic crystals, molecular absorption on surfaces) it is necessary to correct this
limitation of the DFT methods, without losing the computational efficiency.

Over the years, several different strategies have been developed to realize “dispersion corrections”
for DFT methods [2,33–46]. In the solid-state context, one of the most popular of such strategies is
to complement the semilocal functional with a non-local correlation term [19,20,47–49]. This has the
advantage of yielding a true density functional approach (unlike for some of the pairwise dispersion
corrections [37,40]), gives a realistic XC hole model [50], which improves over the semilocal XC hole [51],
and, under periodic boundary conditions, it can be implemented in a relatively efficient way. The first
non-local functional was derived within the adiabatic-coupling fluctuation-dissipation formalism,
using a simplified treatment of the electronic polarizability [50]. Since then, several simplifications and
improvements have been proposed to simplify and optimize the functional [44,45,48,52–54]. One of
the most popular, for solid-state applications, is the revised VV10 (rVV10) non-local functional [54].

Recently, a properly reparameterized rVV10 functional has been coupled to several semilocal
XC functionals. Very promising results have been found at the meta-GGA level of theory, e.g.,
considering the SCAN + rVV10 functional [55]. However, meta-GGA calculations on extended
systems (with periodic boundary conditions) are still not routine. On the other hand, relatively good
results can be obtained, with a reduced computational effort, using rVV10 in combination with GGAs.
Recently, in particular, a reparameterization of rVV10 has been coupled to the Perdew–Burke–Ernzerhof
(PBE) GGA functional [56] to yield the PBE + rVV10L functional [57]. This approach has been
shown to be quite successful for the description of layered materials, suggesting that well-designed
dispersion-corrected GGA functionals can indeed be important tools for general solid-state applications,
joining efficiency and accuracy. However, in the case of PBE + rVV10L, the good performance for
layered materials is not paired by a similar good performance for standard iono-covalent solids because
of the intrinsic limitations of the PBE functional in these cases [58,59]. Thus, the method cannot be
considered for broad use in solid-state calculations.

To overcome this limitation, we consider a slightly different strategy and we look at coupling a
reparameterized rVV10 functional to the recently developed SG4 functional [26], derived in the context
of the semiclassical atom theory. The SG4 functional performs remarkably well for iono-covalent
bulk solids [26,27], yielding accurate equilibrium lattice constants, bulk moduli, cohesive, surface,
and monovacancy energies. On the other hand, unlike some other good-performing functionals
for solids [58,60–62], it yields an important underestimation of the interaction energy in various van
der Waals dominated solids (see, e.g., Tables III and IV of Reference [27]). Therefore, it appears to be a
good choice to construct a dispersion-corrected DFT method, with the aim of obtaining an accurate,
broadly applicable, and efficient computational tool for the solid-state framework.

In this work, we carry on this plan and we construct the SG4 + rVV10m functional, using a
reparameterized rVV10m functional to complement the SG4 GGA. Hence, we show that this method
is indeed generally able to describe with good accuracy the cohesive and structural properties of a
broad range of solid-state systems, ranging from bulk insulators to layered materials and molecular
crystals. However, our assessment also highlights a few cases where the SG4 + rVV10m functional
shows a limited accuracy, whereas the bare SG4 functional works better. A density analysis is then
used to characterize these cases and rationalize the performance of the two functionals.

2. Method and Computational Details

To combine the SG4 GGA with the rVV10m non-local functional, we needed to fit the two free
parameters of the latter (i.e., b and C, controlling the damping and the long-range functional behavior
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respectively; see Reference [54]). To perform this task, we have considered the lattice constants and
cohesive energies of two possible training sets: NOB4, i.e., bulk crystals of noble-gas atoms (Ne, Ar, Kr,
Xe) and ALK5, i.e., bulk crystals of five alkali metals (Li, Na, K, Rb, Cs). As reference lattice constants,
we have used the zero-point anharmonic expansion corrected values reported in References [63–65].
The choice of the NOB4 as a training set is rather obvious as this is one of the most classical collections of
dispersion-dominated bulk materials. On the other hand, this choice may lead to an over-consideration
of dispersion interactions; then, pure dispersion-dominated materials might be favored too much
at the expense of other materials (e.g., layered materials or even iono-covalent solids). Thus, the
selection of ALK5 as a second possible training set was motivated by fact that this set, despite the
fact that it includes only five free-electron metals of the same group, provides a collection of systems
characterized by different magnitudes of dispersion effects (the heavy alkali metals (Rb, Cs) contain
long-range dispersion effects, whereas the light alkali metals (Li, Na, K) show less or no dispersion
effects [66]). Thus, it constitutes a minimal training set of rather broad representativity as concerns the
dispersion.

As a result of the fitting, we have obtained b = 8.5 for the NOB4 case and b = 12 for ALK5. In both
cases, the parameter C turned out to have the value C = 10−4 that was our cut-off for low-values.
Note that such a low value of C implies some overestimation of the asymptotic atomic C6 coefficients,
but this appears not to be a big issue for solid-state problems; indeed, our value is in line with the one
found for the AM05-VV10sol functional [19], also fitted to solid-state references.

We remark that, as in any fitting, the values that we found for the parameters represent only a best
compromise for the lattice constants of the NOB4 or ALK5 training sets (although we will show in the
next section that this “good compromise” also holds quite well in general), whereas various properties
of different systems can be improved by specific ad hoc choices of the parameters. This depends on the
fact that different systems or properties require in general different amounts of non-local correlation to
correct the description provided by the semilocal functional. This is shown, for example, in Figure 1,
where we report the mean absolute errors, obtained from SG4 + rVV10m as functions of the value of
the parameter b in the rVV10m non-local term, for the lattice constants of the two training sets we
have employed, i.e., NOB4 and ALK5. It can be seen that the two sets display an opposite behavior.
Therefore, ALK5 systems are slightly overbound when b = 8.5 while NOB4 materials are underbound
using b = 12. Hence, no absolute best value can be identified for the b parameter. This shows that,
in general, obtaining a uniformly good performance is a very hard task.

To test the functional, we have considered a set of layered materials (Graphite, h-BN, MoS2, MoTe2,
VS2, VSe2, PdTe2, WS2, NbTe2, and NbSe2; reference data were obtained from References [20,21]), and
a set of molecular crystals (ammonia and urea [hydrogen-bond], CO2, naphthalene, and pyrazine
[van der Waals]; reference data were obtained from Refences [67–71]). In addition, we have considered
a set of iono-covalent bulk materials (named SET27) including subsets of different characters. In more
detail: Al, Ca, K, Li, Na, Sr, Ba (simple metals); Ag, Cu, Pd, Rh , Pt (transition metals); GaAs, GaP, GaN,
Si, SiC, Ge (semiconductors); LiCl, LiF, MgO, NaCl, NaF (ionic solids); AlN, BN, BP, C (insulators).
Reference data were taken from References [64,72–75]. Finally, we have performed some calculations
on the S22 test set [76,77], in order to verify the performance on non-covalent molecular complexes.

The S22 calculations have been performed using a local version of the TURBOMOLE program
package (V7.0, TURBOMOLE GmbH, Karlsruhe, Germany) [78,79] and a def2-TZVPP basis
set [80,81]. All solid-state calculations have been carried out with a locally modified version of the
Quantum Espresso program package (V6.0, Quantum Espresso Foundation, Cambridge, UK) [82],
implementing the SG4functional and the modified rVV10m parameters. An energy cutoff 140 Ry was
used for molecular crystals while it was fixed to 120 Ry for all other materials. The following values
have been considered for the Monkhorst–Pack k-point meshes: for SET27 and ALK5 16 × 16 × 16,
for Graphite and h-BN 16 × 16 × 8, for 2H-materials (MoS2, MoTe2, WS2, NbSe2) 8 × 8 × 4, for
1T-materials (VS2, VSe2, PdTe2, NbTe2) 8 × 8 × 6, for the molecular crystals of ammonia, urea, CO2,
and naphthalene 8 × 8 × 8, for pyrazine 6 × 8 × 8. The bulk moduli have been computed applying
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the Murnaghan equation of state [83]. For layered materials, the bulk modulus in the direction
perpendicular to the layers has been considered. Interaction energies have been calculated as

Eint =
Ebulk − Eunits

n
, (1)

where Ebulk is the energy of the unit cell of a bulk, Eunits is the sum of the energies of the unit elements
(molecule, atom, or monolayer) in the cell, and n is number of the unit elements in the unit cell of
the bulk. Cohesive energies are defined as the opposite of the interaction energies. The energies of
the unit elements have been obtained placing them into large boxes, so that interactions between
periodic replicas were negligible. In more detail, for SET27 and ALK5, atoms have been placed in a
box with dimensions 13 × 14 × 15 Å; for layered materials, the monolayer calculations have been
performed at fixed relaxed bulk geometry with vacuum space of about 33 Å for Graphite and h-BN,
and 37 Å for all other materials; for the molecular crystals, the minimum distance between molecular
unit elements has been set to about 14 Å. The atomic data sets required by projected augmented
wave (PAW) calculations [84] have been generated by the ATOMPAW code [85], using the input files
provided on the ABINIT program web site [86]. The SG4 exchange and correlation functionals have
been implemented in a local version of the libXC library [87]. We recall that libXC can be linked
to ATOMPAW.
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Figure 1. Mean absolute errors, obtained from SG4 + rVV10m as functions of the value of the parameter
b in the rVV10m non-local functional (keeping C = 10−4), for the lattice constants of the NOB4 and
ALK5 test sets.

3. Results

In this section, we show the results of our assessment of the SG4-rVV10m functional for different
solid-state tests. For comparison, we also report the results of the PBE + rVV10L [57] and rVV10 [54]
functionals, which are examples of state-of-the-art DFT approaches using an rVV10-like non local term
for treating dispersion in the solid-state framework.

To start our survey of the results, we report in Table 1 the lattice constants, bulk moduli, and
cohesive energies computed for the NOB4 test set with different functionals.

We see that, of course, the inclusion of non-local rVV10m corrections helps to highly improve
with respect to the original SG4 results, especially for lattice constants where SG4 yields a strong
overestimation (even with respect to other GGAs; for example, the mean absolute error (MAE) of
PBE in this case is 0.674 Å), while a more contained improvement is observed for bulk moduli and
interaction energies. Concerning the differences between the two parameterizations of SG4-rVV10m,
the use of b = 8.5, which has been fitted to this set, provides a small improvement but not a very
relevant one. This traces back to the fact that by reducing the value of the parameter b (hence, increasing
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the dispersion correction), the change in the interaction energies is faster than for the lattice constants
while, at the same time, the latter is faster than the change in the bulk modulus (see Figure 2 where
the Xe case is reported as an example; in the inset, we have reported the energy vs. volume curves
for two values of b in order to show how the bulk modulus increases by increasing the amount of
dispersion correction).

Table 1. Lattice constants, bulk moduli, and cohesive energies of the NOB4 test set as obtained
with different functionals. The reference values are taken from Reference [63]. For each property,
we also report the mean error (ME), the mean absolute error (MAE), and the mean absolute relative
error (MARE).

SG4
SG4-rVV10m

PBE + rVV10L rVV10 Reference
b = 8.5 b = 12.0

Lattice constants (Å)

Ne 5.226 4.432 4.668 4.346 4.164 4.464
Ar 6.854 5.555 5.832 5.508 5.181 5.300
Kr 7.459 5.856 6.219 5.892 5.549 5.646
Xe 8.299 6.195 6.535 6.375 6.037 6.132
ME 1.574 0.124 0.428 0.145 −0.153

MAE 1.574 0.140 0.428 0.204 0.153
MARE 28.46% 2.57% 7.83% 3.72% 3.06%

Bulk moduli (GPa)

Ne 0.40 2.10 1.40 2.50 4.00 1.10
Ar 0.20 1.40 1.00 2.30 4.10 2.70
Kr 0.20 1.50 0.70 2.20 4.50 3.60
Xe 0.10 1.90 0.80 2.30 5.10 3.64
ME −2.54 −1.04 −1.79 −0.44 1.67

MAE 2.54 1.54 1.94 1.14 1.67
MARE 86.98% 61.30% 62.20% 54.45% 95.15%

Cohesive energies (eV)

Ne 0.01 0.10 0.06 0.05 0.04 0.02
Ar 0.01 0.13 0.08 0.08 0.11 0.08
Kr 0.01 0.15 0.09 0.09 0.15 0.12
Xe 0.01 0.19 0.11 0.13 0.22 0.16
ME −0.09 0.05 −0.01 −0.01 0.04

MAE 0.09 0.05 0.03 0.02 0.04
MARE 84.18% 121.01% 65.08% 44.71% 56.25%
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Figure 2. Relative variation of different properties of Xe as functions of the parameter b in the rVV10m
correction. The inset reports the energy vs. volume curves for two values of b.
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Thus, it is not possible to find a value of the parameter that yields at the same time very
accurate lattice constants and interaction energies. Instead, our optimal value, b = 8.5, yields a
small underestimation of lattice constants and a small overestimation of interaction energies. On the
other hand, the use of b = 12, derived from the ALK5 fitting, gives an overestimation of the lattice
constants but only a small underestimation of interaction energies (except for Ne). Thus, finally the
overall performance is not much worse than with the optimized parameter.

The situation is somehow different considering the ALK5 set, whose results are reported in
Table 2.

Table 2. Lattice constants, bulk moduli, and cohesive energies of the ALK5 test set as obtained with
different functionals. The reference values are taken from References [64,65] and are corrected for
thermal and zero-point vibrational effects. For each property, we also report the mean error (ME), the
mean absolute error (MAE), and the mean absolute relative error (MARE).

SG4
SG4-rVV10m

PBE + rVV10L rVV10 Reference
b = 8.5 b = 12.0

Lattice constants (Å)

Li 3.452 3.438 3.443 3.429 3.407 3.449
Na 4.212 4.163 4.180 4.180 4.132 4.210
K 5.291 5.196 5.229 5.231 5.136 5.212
Rb 5.665 5.543 5.585 5.600 5.477 5.576
Cs 6.131 5.927 6.001 6.029 5.846 6.039
ME 0.053 −0.044 −0.010 −0.003 −0.098

MAE 0.053 0.044 0.020 0.020 0.098
MARE 0.95% 0.83% 0.40% 0.45% 1.90%

Bulk moduli (GPa)

Li 13.00 13.30 13.20 13.80 14.10 13.30
Na 7.30 7.80 7.60 7.80 8.20 7.50
K 3.40 3.70 3.60 3.70 4.10 3.70
Rb 2.60 3.00 2.80 2.90 3.30 2.90
Cs 1.80 2.20 2.00 2.10 2.50 2.10
ME −0.28 0.10 −0.06 0.16 0.54

MAE 0.28 0.10 0.10 0.16 0.54
MARE 7.53% 2.44% 2.60% 1.55% 11.80%

Cohesive energies (eV)

Li 1.54 1.63 1.60 1.61 1.58 1.67
Na 1.01 1.15 1.10 1.11 1.05 1.13
K 0.83 0.99 0.94 0.95 0.94 0.94
Rb 0.74 0.91 0.85 0.87 0.87 0.85
Cs 0.68 0.89 0.82 0.83 0.86 0.80
ME −0.12 0.04 −0.02 −0.01 −0.02

MAE 0.12 0.05 0.02 0.03 0.05
MARE 11.93% 5.36% 1.89% 2.53% 4.22%

In this case, in fact, the use of b = 8.5 always gives an overestimation of the dispersion, while a
good description of all properties can be achieved by fitting (which gives b = 12), although all materials
are predicted to be slightly softer than they should be (bulk moduli are slightly underestimated).
This behavior can be traced back to the fact that the bare SG4, even if it is always underestimating
the interaction strength, already describes relatively well the lattice constants of ALK5 (e.g., better
than PBE, which has a MAE of 0.065 Å), and thus only a relatively small dispersion correction is
needed. As a consequence, the SG4-rVV10m functional (using b = 12) is competitive with the other
state-of-the-art approaches for the description the ALK5 materials.

Another important class of solid-state materials characterized by dispersion interactions is that of
layered materials. The results for a selection of these are reported in Table 3.
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Table 3. Lattice constants, bulk moduli, and cohesive energies of several layered materials as obtained
with different functionals. The reference lattice constants are experimental values [21] (corrected for
zero-point vibrational effects), reference bulk moduli are VV10 results [20], and reference cohesive
energies are Random Phase Approximation (RPA) values [20,21]. For each property, we also report the
mean error (ME), the mean absolute error (MAE), and the mean absolute relative error (MARE).

SG4
SG4-rVV10m

PBE + rVV10L rVV10 Reference
b = 8.5 b = 12.0

Interlayer lattice constants (Å)

Graphite 10.751 6.582 6.798 6.900 6.721 6.635
H-BN 10.808 6.449 6.654 6.850 6.620 6.635
MoS2 13.177 12.083 12.200 12.570 12.448 12.283
MoTe2 13.848 13.572 13.641 14.130 14.261 13.961

VS2 5.866 5.535 5.624 5.920 5.854 5.748
VSe2 6.196 5.870 5.940 6.290 6.228 6.101
PdTe2 5.002 4.962 4.975 5.130 5.282 5.110
WS2 17.927 12.132 12.283 12.680 12.487 12.308

NbTe2 6.591 6.492 6.519 6.840 6.929 6.606
NbSe2 12.316 12.013 12.093 12.650 12.711 12.534

ME 1.456 −0.223 −0.119 0.204 0.162
MAE 1.547 0.223 0.156 0.204 0.165

MARE 18.64% 2.57% 1.82% 2.48% 2.01%

Intralayer lattice constants (Å)

Graphite 2.452 2.451 2.451 2.470 2.466 2.456
H-BN 2.497 2.498 2.498 2.510 2.514 2.510
MoS2 3.133 3.119 3.124 3.170 3.218 3.162
MoTe2 3.487 3.464 3.473 3.530 3.617 3.518

VS2 3.115 3.108 3.111 3.170 3.229 3.221
VSe2 3.263 3.254 3.259 3.320 3.385 3.358
PdTe2 4.053 4.033 4.040 4.080 4.159 4.024
WS2 3.139 3.124 3.130 3.170 3.217 3.153

NbTe2 3.626 3.606 3.614 3.670 3.760 3.680
NbSe2 3.405 3.383 3.391 3.460 3.509 3.442

ME −0.035 −0.048 −0.043 0.003 0.055
MAE 0.041 0.050 0.047 0.022 0.055

MARE 1.23% 1.51% 1.39% 0.66% 1.57%

Bulk moduli (GPa)

Graphite 0.50 30.00 20.40 - 42.00 34.00
H-BN 0.50 27 18.90 - 37.00 37.00
MoS2 1.20 49.00 39.50 - 52 53.00
MoTe2 42.40 75.00 65.70 - 47.70 50.90

VS2 20.50 43.40 34.40 - 49.40 55.60
VSe2 23.00 52.20 40.40 - 45.10 49.00
PdTe2 92.70 103.90 100.30 - 64.70 72.30
WS2 0.40 52.20 38.80 - 55.90 62.10

NbTe2 48.50 77.00 68.60 - 39.80 57.10
NbSe2 43.50 82.20 70.90 - 51.80 55.00

ME −25.28 6.59 −2.81 −4.06
MAE 29.36 14.61 16.85 5.66

MARE 59.13% 26.61% 32.44% 10.74%

Cohesive energies (meV/Å2)

Graphite 0.14 25.18 16.80 16.04 26.58 18.32
H-BN 0.14 23.51 15.80 14.43 24.66 14.49
MoS2 0.10 28.86 20.90 19.24 28.65 20.53
MoTe2 6.32 35.22 27.60 21.40 28.65 20.80

VS2 3.22 35.83 26.80 20.20 31.08 25.61
VSe2 4.27 37.19 28.24 20.02 31.08 22.26
PdTe2 39.40 70.09 61.69 41.71 49.14 40.1
WS2 0.08 28.87 20.90 19.59 28.74 20.20

NbTe2 10.48 39.23 31.60 23.51 30.95 23.03
NbSe2 6.70 40.21 31.10 21.96 31.67 19.57

ME −15.41 13.93 5.65 −0.68 8.63
MAE 15.41 13.93 5.96 1.70 8.63

MARE 75.72% 61.01% 23.68% 7.45% 41.46%
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Inspection of the data shows that the bare SG4 functional does not perform very well for these
systems (compare the MAEs for inter- and intra-layer lattice constants to those of PBE which are 1.417 Å
and 0.034 Å, respectively). Thus, a consistent improvement can be expected after applying a dispersion
correction. However, using b = 8.5, the SG4-rVV10m functional gives a non-negligible overestimation
of the dispersion interaction, leading to underestimated lattice constants and overestimated interaction
energies. On the opposite, for b = 12, it performs overall well for the layered materials, being the
best method for lattice constants (both interlayer and intralayer ones) and being competitive with
rVV10 and PBE + rVV10L for bulk moduli and cohesive energies (note that PBE + rVV10L has been
fitted to layered materials [57]). Note, however, that on these latter properties a proper quantitative
comparison is not possible since the reference values are not experimental results but are obtained
from different computational methods whose accuracy cannot be verified exactly.

Despite this good performance, we must note that there are also a few cases where the
SG4-rVV10m functional does not yield accurate results and instead bare SG4 results are better
(MoTe2, PdTe2, NbSe2). In these cases, in fact, the SG4 functional is already describing quite well
the lattice constants (even slightly underestimating them) and does not give too much pronounced
underestimation of the interaction energy. Thus, when the rVV10m correction is plugged in, the results
are not improved. This drawback is clearly related to the fact that, unlike in most of the other cases,
for these particular systems, the SG4 functional already includes a significant amount of dispersion
interaction. Thus, the addition of rVV10m results in a sort of double counting of this effects. The reason
for this behavior of the SG4 functional is discussed in the next section.

As a further test, we consider, in Table 4, the lattice constants and interaction energies of some
molecular crystals. These are in fact important systems for materials science but also difficult cases for
conventional DFT approaches due to the relevant role of dispersion in determining the intermolecular
interactions and the crystal packing [8,18,88].

Table 4. Lattice constants and cohesive energies of several molecular crystals as obtained with different
functionals. The reference values are taken from References [67–71]. For each property, we also report
the mean error (ME), the mean absolute error (MAE), and the mean absolute relative error (MARE).

SG4
SG4-rVV10m

PBE+rVV10L rVV10 Reference
b = 8.5 b = 12.0

Lattice constants (Å)

CO2 6.810 5.616 5.801 5.722 5.561 5.624
NH3 5.066 4.880 4.916 5.033 4.962 5.048

Urea (a) 5.665 5.448 5.526 5.600 5.493 5.565
Urea (c) 4.634 4.628 4.629 4.676 4.676 4.684

Naphthalene (a) 11.426 8.019 8.273 8.406 7.972 8.108
Naphthalene (b) 6.750 5.863 5.938 5.951 5.858 5.940
Naphthalene (c) 9.536 8.606 8.688 8.686 8.596 8.647

Pyrazine (a) 9.039 9.167 9.223 9.345 9.241 9.325
Pyrazine (b) 5.664 5.701 5.757 5.759 5.684 5.850
Pyrazine (c) 5.405 3.663 3.855 3.847 3.630 3.733

ME 0.976 −0.090 0.030 0.061 −0.095
MAE 1.022 0.083 0.096 0.088 0.095

MARE 17.01% 1.61% 1.73% 1.45% 1.67%

Interaction energies energies (KJ/mol)

CO2 −5.00 −33.40 −22.40 −22.60 −35.11 −27.20
NH3 −25.50 −40.90 −39.90 −38.40 −46.00 −39.20
Urea −72.60 −98.70 −108.40 −101.50 −118.70 −103.60

Naphthalene −5.90 −95.20 −62.40 −58.30 −91.60 −70.40
Pyrazine −16.02 −76.70 −54.70 −52.30 −74.60 −61.50

ME 35.38 −8.60 2.82 5.76 −12.82
MAE 35.38 10.56 5.02 5.76 12.82

MARE 62.41% 18.36% 9.30% 10.63% 22.48%
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Also in this case, the SG4-rVV10m functional, with b = 12, gives a significant improvement over
SG4 and is overall competitive with other dispersion-corrected DFT methods. In particular, it yields
the best performance for interaction energies and a similar mean absolute error as rVV10 for lattice
constants (note that, however, the rVV10 mean absolute error for interaction energies is more than twice
as large as the SG4-rVV10m one). When the NOB4 parameterization (b = 8.5) is considered, a slight
but not systematic improvement with respect to the ALK5 parameterization (b = 12) can be obtained
for lattice constants. However, interaction energies are generally overestimated (in absolute value).

To conclude our assessment, we consider in Table 5 the mean absolute errors for the lattice
constants, bulk moduli, and cohesive energies of several classes of iono-covalent bulk solids (simple
metals, transition metals, semiconductors, ionic crystals, and insulators). These systems are not
dominated by dispersion effects and they are well described by the original SG4 functional [26,27].
Nevertheless, it is important to check that the addition of the rVV10m correction is not worsening this
accuracy for these materials, in order to verify the broad applicability of the method.

Table 5. Mean absolute errors on lattice constants, bulk moduli, and cohesive energies of different
classes of iono-covalent bulk solids as obtained with different functionals.

SG4
SG4-rVV10m

PBE+rVV10L rVV10
b = 8.5 b = 12.0

Lattice constants (Å)

simple metals 0.038 0.065 0.052 0.035 0.091
transition metals 0.013 0.024 0.019 0.051 0.110
semiconductors 0.012 0.022 0.015 0.052 0.133

ionic crystals 0.062 0.030 0.040 0.080 0.074
insulators 0.012 0.012 0.012 0.024 0.037

overall 0.028 0.034 0.030 0.049 0.093

Bulk moduli (GPa)

simple metals 0.86 0.33 0.51 1.36 1.53
transition metals 9.96 16.14 13.20 19.42 37.30
semiconductors 12.35 8.78 10.12 19.80 23.87

ionic crystals 9.20 4.88 6.54 7.24 8.60
insulators 8.88 7.13 7.78 19.55 31.70

overall 7.83 6.99 7.19 12.59 18.90

Cohesive energies (eV)

simple metals 0.22 0.35 0.29 0.12 0.06
transition metals 0.33 0.91 0.69 0.17 0.12
semiconductors 0.13 0.44 0.33 0.09 0.27

ionic crystals 0.26 0.11 0.15 0.12 0.09
insulators 0.38 0.59 0.50 0.31 0.10

overall 0.25 0.46 0.38 0.15 0.13

Inspection of the table shows that indeed the SG4-rVV10m functional performs quite similarly
to the parent SG4 functional (except for cohesive energies; see below). This happens especially for
the parameterization using b = 12.0, while using the value b = 8.5 derived from the fitting to the
NOB4 training set, the dispersion correction is stronger and thus the results are slightly more different
from the SG4 ones. In more details, we see that the rVV10m correction has little impact on the lattice
constants of transition metals, semiconductors, and insulators, whereas it produces a small worsening
for simple metals and a slight improvement for ionic crystals. Hence, the overall mean absolute error is
comparable to the SG4 one and clearly smaller than for PBE + VV10L and rVV10. For the bulk moduli,
the effect of the addition of the rVV10m correction is even more positive, since only the transition
metals results are somehow worsened while improvements are observed in all other cases. Thus, for
this property, the SG4-rVV10m functional performs definitely better than PBE+VV10L and rVV10 and
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even slightly better than the SG4 functional itself. An opposite behavior is found instead concerning
the cohesive energies. In this case, the SG4 functional is already generally slightly overestimating the
correct energy, thus the addition of the rVV10m correction leads to a worsening of the results. The only
exception is for ionic crystals, where a clear improvement is observed. Consequently, the SG4-rVV10m
performance is worse than for the parent SG4 and than both PBE+VV10L and rVV10. We remark,
anyway, that the overall mean absolute error on cohesive energies of the SG4-rVV10m functional using
b = 12 is similar to that of other popular solid-state XC functionals such as PBEsol [26].

4. Discussion

In the previous section, we have discussed the assessment of the SG4-rVV10m functional for
different problems in solid-state physics. In Figure 3, we summarize these results to obtain an overall
picture of the performance of the functional.
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Figure 3. Mean absolute errors of different functionals for the lattice constants (upper panel, Å), bulk
moduli (middle panel; GPa), and cohesive energies (bottom panel, eV or eV/bohr2) of various test sets.

One can see that, for lattice constants and bulk moduli, the SG4-rVV10m functional (with b = 12)
is competitive with the PBE + VV10L and rVV10 methods for all the dispersion tests (NOB4, ALK5,
layered materials, molecular crystals) and better than the latter for iono-covalent solids. When cohesive
or interaction energies are considered, SG4-rVV10m yields a good performance for dispersion tests,
being almost comparable to PBE + rVV10L and better than rVV10, but shows some limitations for
iono-covalent systems, in particular for transition metals (that are anyway a known difficult case for
DFT [75]). As mentioned, the accuracy for these latter cases is anyway in line with that of other popular
approaches for iono-covalent solids and it is thus not preventing the application of the functional
in these situations (even though, if only these kinds of systems and properties are considered, other
functionals may be a better choice). Thus, we can conclude that the SG4-rVV10m functional displays
a broad applicability for solid-state simulations, being able to yield reasonably accurate results for a
large palette of systems and properties.



Computation 2018, 6, 7 11 of 18

Hence, we saw that the SG4-rVV10m functional is generally performing well for the description
of dispersion in different solid-state systems. This depends on the fact that in most cases the original
SG4 functional is not including dispersion contributions, thus the addition of a dispersion correction
via the rVV10m non-local term is correctly patching the XC contribution. In this way, the systematic
underbinding of dispersion-dominated systems can be corrected and, within some limits due to
the parameterization, accurate results can be achieved. Nonetheless, we have also observed that in
some cases (e.g., MoTe2) the SG4 functional is not displaying any underbinding. Consequently,
the SG4-rVV10m functional provides quite underestimated lattice constants and overestimated
interaction energies. The origin of this peculiar behavior for some systems can be understood
considering the gradient contributions of the particular system and the features of the SG4 functional
form.

Before doing this, however, to put the whole discussion into the right perspective, we need
to shortly discuss the common underestimation of the dispersion interaction by GGA functionals.
We recall that this is not only an important practical feature, which allows the functional to be more
easily compatible with a van der Waals corrections [89], but also an important theoretical result. In fact,
in principle, all GGA functionals should not describe dispersion interactions, especially the long-range
ones. Nevertheless, in practice, all of them partially include (short range) dispersion forces via an
error compensation effect. This effect is related to the shape of the XC enhancement factor, which is
defined as

Fxc(rs, s, ζ) ≡ εxc(n↑(r), n↓(r),∇n↑(r),∇n↓(r))/ε
uni f
x (n), (2)

where εxc is the XC energy per particle of the given functional, ε
uni f
x is the exchange energy per particle

of the spin-unpolarized uniform electron gas, rs = (3/(4πn))1/3, s = |∇n|/[2(3π2)1/3n4/3], and
ζ = (n↑ − n↓)/n is the spin polarization. It is found that GGA functionals, which have smaller values
of the enhancement factor at large values of the reduced gradient s, generally favor an overestimation
of interaction energy in low density regions. This traces back to the fact that the dispersion bonds
occur in regions of small density, which are characterized by a relatively large value of the reduced
gradient s, we can denote this value with s̄, but at the bond the reduced gradient is zero. Hence,
the XC contribution to the interaction energy due to the dispersion is approximately proportional to
ε

uni f
x (Fxc(s ≈ 0)− Fxc(s ≈ s̄)). This implies that the more Fxc(s ≈ s̄) is larger than Fxc(s ≈ 0), the more

non-bonding is the XC contribution to the interaction energy (a positive contribution is added to the
negative interaction energy). In fact, some semilocal functionals obtain a fairly good description of
dispersion interaction via a de-enhancement at large reduced gradient values [90–92].

Figure 4 reports the XC enhancement factors of several GGA functionals, for the spin-unpolarized
case (ζ = 0) and the bulk parameter rs = 10, which corresponds to a small density case, often found in
van der Waals bonding regions. Looking at the plots, we see that, for s & 3, the SG4 functional has
indeed a larger enhancement factor than other functionals, especially if we compare it to functionals of
common use in solid state (e.g., PBEsol [58]).

Thus, we can infer that, in most cases (i.e., those where s̄ ' 3), SG4 can be expected to give smaller
dispersion interaction energies with respect to other GGAs (e.g., PBE [56], and PBEsol [58]). Evidence
for this fact can be found in the previous section, and it is especially perceptible considering the S22
test [76,77] reported in Table 6. In fact, for molecular systems, due to the exponential decay of the
density in the tail, the dispersion bond concerns regions with especially large values s̄ of the reduced
gradient. On the other hand, in some solids, the value of s̄ may be relatively small because the electron
density diminishes only slowly in the interstitial regions. This is the case, for example, of MoTe2,
whose density versus gradient plot is reported in Figure 5. In this case, we can observe indeed that the
reduced gradient is barely exceeding the value s = 1. At such small values of s, the SG4 enhancement
factor shows, however, a significant de-enhancement. Consequently, the functional provides a bonding
contribution from the dispersion bond (this can be also noted in the plot of the non-covalent interaction
(NCI) indicator [93] (Figure 5) where peaks at negative values of λ2ρ indicate bonding interactions
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(whereas positive values indicate repulsive interactions); thus, the downwards peak at λ2ρ ≈ −0.01
indicates the presence of a van der Waals bond).
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Figure 4. LDA, PBE, PBEsol, and SG4 xc enhancement factors Fxc(s, rs, ζ = 0) versus the reduced
gradient s, for the spin-unpolarized case (ζ = 0) and the bulk parameter rs = 10.

Table 6. Errors (kcal/mol) of different functionals for the S22 test [76,77]. The last line of each panel
reports the mean absolute error (MAE) for that set of molecules.

LDA SG4 PBE PBEsol
SG4-VV10m

PBE-VV10
b = 8.5 b = 12

Hydrogen-bond complexes

NH3-NH3 1.9 −0.7 −0.4 0.2 0.0 −0.3 −0.1
H2O-H2O 2.8 −0.2 −0.1 0.7 0.4 0.1 0.2

Formic acid dimer 7.8 0.2 −0.9 2.3 2.3 1.4 0.2
Formamide dimer 5.6 −1.1 −1.5 0.8 0.9 0.1 −0.5

Uracil dimer 5.3 −1.9 −2.4 0.2 1.0 −0.1 −0.9
2-Pyroxine-Aminopyridine 5.7 −1.3 −1.8 0.8 1.9 0.7 −0.2

Adenine-thymine 5.1 −2.2 −2.5 0.0 1.4 0.1 −0.7
MAE 4.9 1.1 1.4 0.7 1.1 0.4 0.4

Dispersion complexes

CH4-CH4 0.3 −0.8 −0.4 −0.4 −0.2 −0.5 −0.2
C2H4-C2H4 0.9 −1.8 −1.2 −0.8 −0.5 −1.1 −0.6
C6H6-CH4 0.5 −1.9 −1.5 −1.0 −0.2 −0.9 −0.7

PD benzene dimer 0.0 −5.2 −4.5 −3.3 −0.7 −2.4 −2.1
Pyrazine dimer 0.2 −5.5 −4.9 −3.5 −0.9 −2.7 −2.5

Stacked uracil dimer 0.4 −7.9 −7.1 −5.1 −1.0 −3.6 −3.4
Stacked indole-benzene −0.3 −7.5 −6.8 −4.9 −1.2 −3.6 −3.4

Stacked adenine-thymine 0.2 −11.0 −10.3 −7.1 −1.6 −5.2 −5.1
MAE 0.4 5.2 4.6 3.3 0.8 2.5 2.2

Mixed character complexes

Ethene-ethyne 0.8 −0.6 −0.3 −0.1 0.1 −0.2 0.0
C6H6-H2O 1.1 −1.6 −1.3 −0.7 −0.1 −0.7 −0.6
C6H6-NH3 0.7 −1.8 −1.4 −0.9 −0.2 −0.9 −0.7
C6H6-HCN 1.2 −1.9 −1.8 −0.9 −0.1 −0.8 −0.9

T-shaped benzene dimer 0.3 −3.0 −2.6 −1.9 −0.3 −1.3 −1.2
T-shaped indole-benzene 0.6 −3.9 −3.6 −2.4 −0.2 −1.5 −1.7

phenol dimer 1.8 −3.6 −3.3 −1.9 −0.3 −1.5 −1.6
MAE 0.9 2.4 2.1 1.2 0.2 1.0 1.0

Overall statistics

MAE 2.0 3.0 2.8 1.8 0.7 1.3 1.2
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Figure 5. Plot of the non-covalent interaction(NCI) indicator [93] (density vs. reduced gradient) for
MoTe2 and WS2.

Thus, the reduced gradient analysis, together with the inspection of the XC enhancement factor,
provides a rationalization for the drawbacks observed for the SG4-rVV10m functional. Moreover,
it gives a hint on understanding why, when using the NOB4 training set, the resulting b value is
generally too small to assure a good description of dispersion in other materials. This depends on
the fact that, for bulk solids, made of noble-gas atoms the relevant reduced gradient values are quite
large, due to the very weak interaction in such solids. Therefore, the SG4 functional displays almost
no dispersion contributions and a rather strong correction is required by the non-local rVV10m term.
However, in the case of other more conventional solids, the values of the reduced gradient are not
so high and thus a smaller correction is required. For this reason, the parameterization based on the
ALK5 set gives a more balanced contribution, even though it is too underbinding for the noble-gas
bulk solids.

Finally, the shape of the SG4 enhancement factor also helps to understand the general slight
overestimation of cohesive energies by this functional, which causes the SG4-rVV10m to perform
not very accurately for these properties in covalent-solids. In fact, the origin of the problem traces
back to the underestimation of the atomic energies by SG4, which in turn originates on the discussed
deenhancement. This underestimation causes the overestimation of the computed cohesive energy.
For the case of dispersion solids, however, the problem is hidden by an even larger underestimation of
the energy of the solid (as it should be in any GGA to be corrected via dispersion corrections).

5. Conclusions

We constructed the SG4 + rVV10m functional by complementing the SG4 GGA, which is an
accurate GGA for iono-covalent solids [26,27], with a reparameterized rVV10 non-local correlation
functional. The assessment of the functional over a diversified palette of solid-state tests showed that
it performs very well in most cases, being competitive or better than similar state-of-the-art methods.
Specifically, we found that, overall, the SG4 + rVV10m functional is better than PBE + rVV10L and
rVV10 in more than 50% of the considered tests, showing a broader applicability and a good description
of various interactions in solids. Moreover, the SG4 + rVV10m functional displayed a reasonable
performance for molecular complexes (S22 test). Thus, the SG4 + rVV10m functional appears to be a
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promising tool for future applications in solid-state physics, even when involving molecular species
(e.g., in surface absorption).

Nevertheless, a few limitations of the functional have been identified in the calculation of cohesive
energies of bulk covalent solids and for some particular layered materials. These performances have
been rationalized in terms of gradient contributions of the involved systems and of the features of the
SG4 XC enhancement factor. This analysis suggests possible remedies for the observed deficiencies of
the SG4-rVV10m functional that can be possibly developed in future works. In particular, one strategy
can be to act on the SG4 functional form to limit the de-enhancement at small reduced gradients in
slowly-varying systems and to limit the underestimation of atomic energies. Another possibility may
be to consider a b parameter dependent on the maximum value of the reduced gradient such that the
non-local contribution is reduced for systems with small values of s and increased for systems having
large s values (e.g., atoms).
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The following abbreviations are used in this manuscript:

KS Kohn–Sham
DFT Density Functional Theory
XC Exchange-Correlation
GGA Generalized Gradient Approximation
LDA Local Density Approximation
PBE Perdew-Burke-Ernzerhof
ME Mean Error
MAE Mean Absolute Error
MARE Mean Absolute Relative Error
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