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Abstract: Dissipative effects arise in an electronic system when it interacts with a time-dependent
environment. Here, the Schrödinger theory of electrons in an electromagnetic field including
dissipative effects is described from a new perspective. Dissipation is accounted for via the effective
Hamiltonian approach in which the electron mass is time-dependent. The perspective is that of
the individual electron: the corresponding equation of motion for the electron or time-dependent
differential virial theorem—the ‘Quantal Newtonian’ second law—is derived. According to the law,
each electron experiences an external field comprised of a binding electric field, the Lorentz field, and
the electromagnetic field. In addition, there is an internal field whose components are representative
of electron correlations due to the Pauli exclusion principle and Coulomb repulsion, kinetic effects,
and density. There is also an internal contribution due to the magnetic field. The response of the
electron is governed by the current density field in which a damping coefficient appears. The law
leads to further insights into Schrödinger theory, and in particular the intrinsic self-consistent nature
of the Schrödinger equation. It is proved that in the presence of dissipative effects, the basic variables
(gauge-invariant properties, knowledge of which determines the Hamiltonian) are the density and
physical current density. Finally, a local effective potential theory of dissipative systems—quantal
density functional theory (QDFT)—is developed. This constitutes the mapping from the interacting
dissipative electronic system to one of noninteracting fermions possessing the same dissipation and
basic variables. Attributes of QDFT are the separation of the electron correlations due to the Pauli
exclusion principle and Coulomb repulsion, and the determination of the correlation contributions to
the kinetic energy. Hence, Schrödinger theory in conjunction with QDFT leads to additional insights
into the dissipative system.

Keywords: dissipation effects in quantum mechanics; dissipation in Schrödinger theory; dissipation
in quantal density functional theory; density functional theory

1. Introduction

If a quantum electronic system interacts with an environment that is time-varying, then the
system is modified during the interaction, and dissipative effects within the system arise. The changing
environment could correspond to a change in temperature, pressure, or stress, such that there is an
input or removal of energy, thereby modifying the evolution of the quantum system. Dissipation is
described by two effects [1]. One corresponds to damping or friction effects due to the dissipation
of energy stored in the system. The second corresponds to the fluctuations of the systems’ degree of
freedom caused by fluctuations in the environment, which can manifest as Brownian motion. There are
two primary approaches to dealing with quantum dissipation. One approach is to put the system in
a bath of harmonic oscillators which interact with the system via a certain coupling. The second is
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to employ an effective Hamiltonian. In this latter approach, dissipative effects are simulated by the
assumption that the effective mass of the electron changes with time, i.e., m = m(t). There is vast
literature [2–19] based on this assumption, which is concerned primarily with the quantum damped
harmonic oscillator, the time-dependent harmonic oscillator, and other such oscillators in the presence
of various external time-varying electric and magnetic fields. Typical physical systems addressed by
such calculations are, for example, an electromagnetic field being pumped into a Fabry-Pérot cavity
with dissipation occurring at the walls of the cavity [20–22], or the trapping and focusing of charged
and neutral particles with electric or magnetic multipole fields [23,24].

In this paper we consider dissipative effects using the effective Hamiltonian approach but from a
different perspective. The perspective is that of the individual electron within a sea of electrons in the
presence of a binding field as well as a time-dependent electromagnetic field. Assuming dissipative
effects are accounted for by an electron mass that is a function of time: m = m(t), we derive the
equation of motion or time-dependent differential virial theorem—the ‘Quantal Newtonian’ second
law—for the electron. To explain further, in recent work [25–35], it has been possible to describe the
Schrödinger theory of electrons in an external static or time-dependent electromagnetic field from
this perspective of the corresponding ‘Quantal Newtonian’ second law for the individual electron.
The ‘Quantal Newtonian’ first law, a special case for time-independent phenomena, is a description
of stationary-state Schrödinger theory. The laws are a description of the electronic system in terms
of ‘classical’ fields experienced by each electron. The sources of these fields are quantal in that
they are quantum-mechanical expectations of Hermitian operators taken with respect to the wave
function. There is the external field comprised of the binding electric field, the Lorentz field, and the
electromagnetic field components. The internal field experienced by each electron is comprised of
components that are representative of properties of the system such as electron correlations due to
the Pauli exclusion principle and Coulomb repulsion, kinetic effects, electron density, and an internal
magnetic field component. In addition to the external and internal fields, there is the response of
the electron as exhibited by the current density field. The laws are general in that they are valid for
arbitrary state and arbitrary binding potential, and are gauge-invariant.

The terminology of ‘Quantal Newtonian’ second and first laws follows from the equivalence with
the corresponding classical equations of motion for a particle amongst N particles that obey Newton’s
third law of action and reaction, exert forces on each other that are equal and opposite, and lie along the
line joining them. Newton’s second law for the ith particle is then Fext

i + ∑j Fji = dpi/dt, where Fext
i is

the external force, and Fji the internal force on the ith particle due to the jth particle, with the response
of the particle given by the right hand side where pi is the particle momentum. The time-independent
Newton’s first law for the ith particle constitutes a special case. The ‘Quantal Newtonian’ second
law (see Equation (3)), and its time-independent version, the ‘Quantal Newtonian’ first law, written
in terms of the ‘classical’ fields instead of forces constitute the quantum-mechanical equivalent of
the classical equations of motion. These are fields experienced by each electron. The sources of these
fields are local and nonlocal quantal collective properties. Thus, for example, the electronic density
and physical current density are the local sources for the Hartree and current density fields. The pair
correlation function and the single-particle density matrix are the nonlocal sources for the electron
interaction and kinetic fields, respectively. Stationary-state properties such as the components of the
total energy can be written in integral virial form in terms of these fields. The new perspective of a
quantum-mechanical system in terms of these ‘classical’ fields which pervade all space then makes the
description tangible in the rigorous classical sense.

The ‘Quantal Newtonian’ second and first laws also lead to further insights [34,35] into
Schrödinger theory. A key understanding achieved is that the Hamiltonian Ĥ is a functional of
the wave function ψ, i.e., Ĥ = Ĥ[ψ]. This is a new idea with many consequences, which we here
explain further. Consider a stationary-state system composed of N electrons in an arbitrary binding
field E(r) = −∇v(r)/e, with v(r) the binding potential. As the system is one of electrons, the kinetic
T̂ and electron interaction Û operators are assumed to be known. If the binding potential v(r) is
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known, the Hamiltonian Ĥ = T̂ + Û + V̂ is known, and the wave functions ψ of the system, ground
and excited, are obtained by solution of the Schrödinger equation Ĥψ = Eψ. We refer to this equation
as the non-self-consistent form of the Schrödinger equation. Now, from the ‘Quantal Newtonian’
first law for the system, it can be proved that the binding potential v(r) is a universal and exactly
known functional of the wave function, i.e. v(r) = v[ψ](r). In other words, the closed-form analytical
expression of the functional v[ψ](r) is known. Therefore, the Schrödinger equation can then be written
as Ĥ[ψ]ψ = E[ψ]ψ. The Schrödinger equation written in this form is also valid for arbitrary states,
ground or excited. Because the functional v[ψ](r) is known, if one knows the wave function ψ, then the
binding potential can be exactly determined. Now suppose there exists a system in which both the
binding potential v(r) and the wave function ψ are unknown. One could obtain both v(r) and ψ by
self-consistent solution of the Schrödinger equation written in functional form. One begins with an
approximate form of the wave function ψ and determines the corresponding approximate potential
v[ψ](r). The Schrödinger equation is then solved to obtain a new wave function ψ, and the new
potential v[ψ](r) obtained. This procedure is continued until the output and input wave functions
and potential are the same or equivalently until self-consistency is achieved. The self-consistent
form of the Schrödinger equation is entirely akin to that of the Hartree–Fock theory [36,37] equations
ĤHF[φi]φi = εiφi, where φi and εi are the eigenfunctions and eigenvalues of the equation. The only
difference between the self-consistent form of the Schrödinger equation and the Hartree–Fock theory
equations is that the latter is for single-particle orbitals leading to a Slater determinant wave function,
whereas the former leads to the fully interacting system wave function. As an example, due to the
recent advances in semiconductor technology, it has been possible to create ‘artificial atoms’ (quantum
dots) in two dimensions [38,39]. The question which then had to be addressed was what the binding
potential was for these electrons confined to a plane. As a result of a Hartree level calculation as
well as experiments [40,41], it is now accepted that in this case the binding potential is harmonic.
Had the functional form of the Schrödinger equation existed at that time, this conclusion could have
been arrived at self-consistently. For examples of the final iteration of the self-consistency procedure
for a quantum dot in a magnetic field in both a ground and excited state, see [34]. In the future,
there could be other systems created for which the potential v(r) and the wave function ψ are both
unknown. With the self-consistent form of the Schrödinger equation, the corresponding wave functions
and potential could then be determined. Yet another advantage of the self-consistent form of the
Schrödinger equation is the following. Suppose one knows a good approximation to a wave function
of a system. Then, through self-consistency, one can obtain the exact wave function as described above.
The various other insights, which too are general, will be described with reference to the dissipative
system of the present work.

A second component of the paper is the mapping via quantal density functional theory
(QDFT) [25,26] of the interacting dissipative system to one of noninteracting fermions with the
same dissipative effects, i.e., the same m(t). The idea of mapping the interacting system to one of
noninteracting fermions harks back to the stationary-state theories of Slater [42], Sharp and Horton [43],
Kohn and Sham [44], and Slater et al. [45]. These are thus local effective potential theories with the
many-body effects incorporated in the potential. The model system is also designed to possess the
same basic variables. The basic variables are fundamental properties of the interacting system, as
explained below. QDFT differs from Schrödinger theory in the following ways. Firstly, it is a local
effective potential theory [33,42–45] with the attendant advantage of easier numerical solution of the
corresponding differential equation for the constituent single-particle spin orbitals of the resulting
Slater determinant wave function. Secondly, it allows for the separation of the electron correlations due
to the Pauli exclusion principle and Coulomb repulsion, and thereby the determination of their separate
contributions to the properties of the system. In quantum chemistry, a separate Hartree–Fock theory
calculation must be performed. The separation of the correlations in this manner is different because
the properties derived via Hartree–Fock theory differ from those of the original fully interacting system.
Thirdly, it is possible to determine the contribution of these correlations to the kinetic energy—the
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correlation-kinetic contribution. QDFT is a description of the model system in terms of ‘classical’ fields
and quantal sources. There is a corresponding ‘Quantal Newtonian’ second law for each model fermion.
The component of the local effective potential in which all the many-body effects are incorporated is
explicitly defined in terms of a conservative effective field: it is the work done in this field. Hence, in
this second component of the paper, the ‘Quantal Newtonian’ second law for the model fermion with
time-dependent mass is derived, and the corresponding QDFT equations developed. It is evident that
QDFT in conjunction with Schrödinger theory leads to further insights into the physical system.

Finally, we address the issue of what properties constitute the basic variables for the interacting
electronic system with dissipation as described by Schrödinger theory. This is important because
in the QDFT mapping to the model fermionic system, it is important to know the properties that
the Slater determinant wave function must reproduce. The concept of a basic variable stems from
the stationary-state theorem of Hohenberg–Kohn [46]. Accordingly, for a system of electrons in an
external electrostatic field E(r) = −∇v(r)/e, knowledge of the nondegenerate ground state density
ρ(r) uniquely determines the scalar potential v(r) to within a constant. The proof is for fixed electron
number N. As a consequence, since for the electrons the kinetic and electron interaction operators are
assumed known, the Hamiltonian Ĥ is known. Solution of the resulting time-independent Schrödinger
equation then leads to the ground and excited state wave functions of the system. Thus, a basic variable
is a gauge-invariant property of an electronic system, knowledge of which determines its Hamiltonian
and thereby all the properties of the system. In recent work we have proved [25,47] that in the added
presence of a uniform magnetostatic field B(r) = ∇×A(r), the basic variables are the nondegenerate
ground state density ρ(r) and physical current density j(r). The constraints in this case are the fixed
electron number N, orbital L, and spin S angular momentum. Knowledge of {ρ(r), j(r)} uniquely
determines the potentials {v(r), A(r)} to within a constant and the gradient of a scalar function,
and thereby the Hamiltonian Ĥ. In a manner similar to the Hohenberg–Kohn theorem, it has been
proved by Runge–Gross [48] that for electrons in a time-dependent electric field E(y) = −∇v(y)/e,
y = rt ≡ (r, t), knowledge of the density ρ(y) uniquely determines the potential v(y) to within a
time-dependent function—hence the Hamiltonian Ĥ(t), and the wave function by solution of the
Schrödinger equation. For electrons in a time-dependent electromagnetic field, it has been proved by
Ghosh–Dhara [49] and Vignale [50] that the corresponding basic variables are {ρ(y), j(y)}. As the final
component of the paper, by employing the arguments of Vignale, we prove that the basic variables
for the electronic system in a time-dependent electromagnetic field with dissipation are {ρ(y), j(y)}
(the work of Vignale [50] is for constant electron mass). A consequence of the proof, as in the work
of Vignale, is the existence of a system of noninteracting fermions possessing the same {ρ(y), j(y)}.
Thus, in the QDFT mapping to the model system, the Slater determinant wave function of the model
fermions is constrained to reproduce the properties {ρ(y), j(y)}.

In Section 2 we derive the ‘Quantal Newtonian’ second law for the interacting dissipative system
of electrons in an electromagnetic field. New perspectives on Schrödinger theory that arise as a
consequence of the second law are described in Section 3. The proof that the basic variables for such
dissipative systems are {ρ(y), j(y)} is given in Section 4. In Section 5 we develop the corresponding
QDFT. The key facets of the paper are summarized in Section 6 together with remarks on current work.

2. Single Electron Perspective of Schrödinger Theory: The ‘Quantal Newtonian’ Second Law

Consider a dissipative system of N electrons of mass m = m(t) of charge −e (with e > 0) in a
time-dependent binding electric field E(y) = −∇v(y)/e, with y = rt ≡ (r, t). The time-dependence
of the field E(y) (or scalar potential v(y)) could correspond, for example, to the time-independent
binding potential and zero-point motion of the nuclei. In the added presence of a time-dependent
electromagnetic field: B(y) = ∇×A(y), E(y) = −∇Φ(y)− 1

c
∂A(y)

∂t , where Φ(y) and A(y) are scalar
and vector potentials, respectively, the Hamiltonian Ĥ(t) of the system is
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Ĥ(t) =
1

2m(t) ∑
k

(
p̂k +

e
c

A(yk)
)2

+ ∑
k

[
v(yk)− eΦ(yk)

]
+

1
2 ∑′

k,`

e2

|rk − r`|
, (1)

where the separate terms correspond to the physical kinetic T̂A, scalar potential V̂, and electron
interaction potential Û operators; p̂k = −ih̄∇rk (the canonical momentum operator), c is the velocity
of light, and yk = rkt. The corresponding time-dependent Schrödinger equation is

Ĥ(t)Ψ(Y) = ih̄
∂Ψ(Y)

∂t
, (2)

with Ψ(Y) the wave function; the coordinate Y = Xt; X = x1, . . . , xN ; and x = rσ with r and σ are the
spatial and spin coordinates of each electron. The scalar potentials v(y) and eΦ(y) could be combined,
but we keep them separate because of the difference in their origins. Fields arising from the zero-point
motion of the nuclei which could be included in ev(y) are small and will be ignored.

The above physical system can also be described from the perspective of the individual electron.
For a complete discussion of this perspective for a non-dissipative system, we refer the reader to
Chapter 2 of [25]. The single electron perspective is described by the ‘Quantal Newtonian’ second
law. This law is the equation of motion for each electron in terms of the fields experienced by it and a
corresponding field representing its response. In turn, the fields are obtained from quantal sources
that are expectations of Hermitian operators taken with respect to the wave function Ψ(Y).

The ‘Quantal Newtonian’ second law for dissipative systems is

F ext(y) +F int(y) = J (y), (3)

where the respective fields are: external F ext(y), internal F int(y), and current density response J (y).
The law is gauge-invariant, and is derived with the constraint of the equation of continuity:

∇ · j(y) + ∂ρ(y)
∂t

= 0. (4)

Here, j(y) is the physical current density which is the expectation

j(y) = 〈Ψ(Y)|ĵ(y)|Ψ(Y)〉, (5)

with ĵ(y) (the physical current density operator) being the sum of its paramagnetic ĵp(y) and
diamagnetic ĵd(y) components:

ĵ(y) = ĵp(y) + ĵd(y), (6)

ĵp(y) =
ih̄

2m(t) ∑
k

[
∇rk δ(rk − r) + δ(rk − r)∇rk

]
, (7)

ĵd(y) =
eρ̂(r)A(y)

m(t)c
, (8)

with the density ρ(y) being the expectation

ρ(y) = 〈Ψ(Y)|ρ̂(r)|Ψ(Y)〉 (9)

of the density operator
ρ̂(r) = ∑

k
δ(rk − r). (10)

The external field F ext(y) experienced by each electron is

F ext(y) = E(y)−L(y)− eE(y), (11)
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where the Lorentz field L(y) is defined in terms of the Lorentz ‘force’ `(r) as

L(y) =
`(y)
ρ(y)

, (12)

with
`(y) =

e
c

j(y)×B(y). (13)

The internal field F int(y) experienced by each electron is the sum of the electron interaction
E ee(y), kinetic Z(y), differential density D(y), and internal magnetic I(y) fields:

F int(y) = E ee(y)−Z(y)−D(y)− I(y). (14)

The fields are defined in terms of the corresponding ‘forces’ eee(y), z(y), d(y), and i(y) as

E ee(y) =
eee(y)
ρ(y)

; Z(y) =
z(y)
ρ(y)

; D(y) =
d(y)
ρ(y)

; I(y) = i(y)
ρ(y)

. (15)

The electron interaction ‘force’ eee(y) is representative of electron correlations due to the Pauli
exclusion principle and Coulomb repulsion, and is obtained from its quantal source—the pair
correlation function P(rr′t)—via Coulomb’s law:

eee(y) =
∫ P(rr′t)(r− r′)

|r− r′|3 dr′, (16)

with P(rr′t) the expectation
P(rr′t) = 〈Ψ(Y)|P̂(rr′)|Ψ(Y)〉, (17)

of the pair correlation operator

P̂(rr′) = ∑′

k,`
δ(rk − r)δ(r` − r). (18)

The kinetic ‘force’ z(r), representative of kinetic effects, is obtained from its quantal source,
the single-particle density matrix γ(rr′t) as

zα(y) = 2 ∑
β

∇βtαβ(y), (19)

where the kinetic energy tensor tαβ(y) is

tαβ(y) =
1
4

[
∂2

∂r′α∂r′′β
+

∂2

∂r′β∂r′′α

]
γ(r′r′′t)

∣∣∣∣
r′=r′′=r

, (20)

with γ(rr′t) the expectation
γ(rr′t) = 〈Ψ(Y)|γ̂(rr′)|Ψ(Y)〉 (21)

of the density matrix operator
γ̂(rr′) = Â + iB̂, (22)

Â =
1
2 ∑

k

[
δ(rk − r)Tk(a) + δ(rk − r′)Tk(−a)

]
,

B̂ =
i
2 ∑

k

[
δ(rk − r)Tk(a)− δ(rk − r′)Tk(−a)

]
, (23)
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with Tk(a) being a translation operator such that Tk(a)ψ(. . . rk . . .) = ψ(. . . rk + a . . .), and a = r′ − r.
The differential density ‘force’, representative of the density, is

d(y) = −1
4
∇∇2ρ(y), (24)

with the quantal source being the density ρ(y). Finally, the magnetic field contribution to the internal
‘force’ i(y) whose quantal source is the current density j(y) is

iα(y) =
e
c ∑

β

∇β Iαβ(y), (25)

where the tensor

Iαβ(y) =
[
jα(y)Aβ(y) + jβ(y)Aα(y)

]
− e

m(t)c
ρ(y)Aα(y)Aβ(y). (26)

The response of the electron to the external F ext(y) and internal F int(y) fields is described by
the current density field J (y), defined as

J (y) =
1

ρ(y)
∂[m(t)j(y)]

∂t
. (27)

The field J (y) can be written as the sum of a zeroth-order term J 0(y) and a dissipative term
J diss(y) involving a damping coefficient ζ(t). Thus,

J (y) = J 0(y) +J diss(y), (28)

where

J 0(y) =
m(t)
ρ(y)

∂j(y)
∂t

, (29)

J diss(y) = ζ(t)
(

m(t)j(y)
ρ(y)

)
(30)

with
ζ(t) =

d
dt

ln m(t). (31)

The ‘Quantal Newtonian’ second law of Equation (3), the proof of which is given in Appendix A,
is an equivalent description of the physical system of Hamiltonian Ĥ(t) of Equation (1) but from the
perspective of the individual electron. In addition to the external binding E(y), Lorentz L(y), and
electromagnetic {eE(y),B(y)} fields, each electron experiences an internal field F int(y) representative
of the properties of the system. These properties, described via component fields, are those of electron
correlations due to the Pauli exclusion principle and Coulomb repulsion E ee(y), kinetic effects Z(y),
density D(y), and an internal contribution I(y) due to the presence of the magnetic field B(y).
The electron interaction field E ee(y) can be further decomposed into a sum of its Hartree EH(y) and
Pauli-Coulomb E xc(y) components:

E ee(y) = EH(y) + E xc(y). (32)

This follows from the fact that the pair correlation density g(rr′t) at r′ for an electron at r which
is g(rr′t) = P(rr′t)/ρ(y) may be expressed as g(rr′t) = ρ(r′t) + ρxc(rr′t), where ρxc(rr′t) is the
Fermi–Coulomb hole charge, the quantal source of the field E xc(y). The quantal source for the Hartree
field EH(y) is the density ρ(y). The response of the electron in turn is described by the current density
component fields J 0(y) and J diss(y). The ‘Quantal Newtonian’ second law for constant electron
mass for which the term J diss(y) vanishes then constitutes a special case [33].
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The ‘Quantal Newtonian’ second law of Equation (3) constitutes the basis for the remaining
sections of the paper.

3. New Perspectives on the Schrödinger Equation

The Schrödinger equation of Equation (2) is written in traditional form. The Hamiltonian Ĥ(t)
is assumed as known: it is a first-order differential equation in time which can be solved for the
evolution of the wave function Ψ(Y) given an initial condition at t = 0. We refer to Equation (2) as the
non-self-consistent form of the Schrödinger equation. In this section we describe new perspectives on
the Schrödinger equation as arrived at via the ‘Quantal Newtonian’ second law. In particular, the law
helps to exhibit the intrinsic self-consistent nature of the equation.

To explain further, consider the Hamiltonian Ĥ(t) of Equation (1). In it, the binding scalar
potential v(y) represents a potential energy viz. that of an electron (at time t). Furthermore, as it is a
potential energy, it is path-independent. The potential is also thought of as being extrinsic to the system
of electrons. The ‘Quantal Newtonian’ second law proves v(y) to be a potential in the rigorous classical
sense. From Equation (3) it follows that v(y) is the work done (at time t) to move an electron from
some reference point at infinity to its position at r in a conservative field F (y):

v(y) =
∫ r

∞
F (y′) · d`′ ; (y′ = r′t) (33)

where F (y) = F int(y) − L(y) − eE(y) − J (y) = E ee(y) − Z(y) − D(y) − I(y) − L(y) −
eE(y) − J (y). As ∇ × F (y) = 0, the function v(y) is path-independent. The expression for the
potential v(y) of Equation (33) shows that it is inherently related to the properties of the system via the
conservative field F (y). Thus, for example, it depends on the Pauli and Coulomb correlations via the
electron interaction field E ee(y), kinetic effects via the kinetic field Z(y), and so on. Therefore, the
potential v(y) is a sum of functions each representative of a property of the system. The relationship
between the properties of the system and the potential v(y) then shows the latter to be an intrinsic
constituent of the system. This statement is further substantiated in the following paragraphs.

Finally, what the expression for v(y) shows is that it is an exactly known functional of the wave
function: v(y) = v[Ψ(Y)](y). This is the case because the components of the field F (y) are obtained
from quantal sources that are expectations of Hermitian operators taken with respect to the wave
function Ψ(Y). As a consequence, the Hamiltonian Ĥ(t) is then an exactly known functional of Ψ(Y),
i.e., Ĥ(t) = Ĥ[Ψ(Y)](t). This then demonstrates the intrinsic self-consistent nature of the Schrödinger
equation which can now be written as

Ĥ[Ψ(Y)]Ψ(Y) = ih̄
∂Ψ(Y)

∂t
, (34)

where the Hamiltonian functional Ĥ[Ψ(Y)] is

Ĥ[Ψ(Y)] =
1

2m(t) ∑
k

(
p̂k +

e
c

A(yk)
)2

+ ∑
k

v[Ψ(Y)](yk)

− e ∑
k

Φ(yk) +
1
2 ∑′

k,`

e2

|rk − r`|
, (35)

or equivalently

Ĥ[Ψ(Y)] =
1

2m(t) ∑
k

(
p̂k +

e
c

A(yk)
)2

+ ∑
k

∫ rk

∞
F [Ψ](y) · d`

− e ∑
k

Φ(yk) +
1
2 ∑′

k,`

e2

|rk − r`|
. (36)
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Recall that the meaning of the functional v[Ψ(Y)](y) is that for each new Ψ(Y) a new v(y)
is obtained.

The self-consistency procedure is then as follows (see also Figure 1). One begins with an initial
approximate input wave function Ψin(Y) and initial condition Ψin(Y; t = 0). With this choice of
Ψin(Y), one determines the various quantal sources, and from these sources the corresponding fields
to construct the field F (y). The work done in this field in turn leads to a potential v[Ψin(Y)](y) via
Equation (33). The Schrödinger equation Equation (34) is then solved to obtain a Ψout(Y). With this
Ψout(Y) a new v(y) is obtained in a similar way, and the procedure continued until Ψin(Y) = Ψout(Y).
In this manner, the wave function Ψ(Y) as well as the potential v(y) can be determined self-consistently.
As in the stationary-state case discussed in the Introduction, if the binding potential v(y) is known,
the wave function Ψ(Y) can be obtained via solution of the Schrödinger equation (Equation (2)).
Conversely, if the wave function Ψ(Y) is known, then the potential v(y) can be determined via
Equation (33). If both v(y) and Ψ(Y) are unknown, then they can be determined by solution of the
self-consistent form of the Schrödinger equation (Equation (34)). Or, if the wave function Ψ(Y) is
known approximately, then the exact wave function can be obtained via the self-consistent procedure.)

Figure 1. Procedure for the self-consistent solution of the Schrödinger equation at each instant of time.

The Schrödinger equation, as written in its non-self-consistent (Equation (2)) and self-consistent
(Equation (34)) versions, also differ in another fundamental way (see also [34,35]). Observe that due
to the correspondence principle, it is the vector potential A(y) that appears in the Hamiltonian of
Equation (1). The magnetic field B(y) appears in it only following the choice of gauge. However,
in the Hamiltonian functional of Equations (35) or (36), the magnetic field B(y) appears explicitly via
the Lorentz field L(y) contribution to the potential v(y) (see Equation (33)). That this must be the case
follows from the fact that in any self-consistent procedure, all the physical information must be present
in the corresponding differential equation.

The above remarks for the dissipative Schrödinger system are general in that they are equally
applicable to the case of constant electron mass, as well as to the stationary state case.

4. Basic Variables in Dissipative Systems

Within Schrödinger theory, there are properties that are termed basic variables. These
are gauge-invariant properties, knowledge of which determines the external scalar and vector
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potentials—the property of invertibility. With the canonical kinetic energy and electron interaction
potential energy operators assumed known, the system Hamiltonian is thus fully defined. The solution
of the corresponding Schrödinger equation then leads to the system wave function. In this manner, the
basic variables thereby determine the properties of the system. In this section we prove, by employing
the ‘Quantal Newtonian’ second law derived in Section 2, that the basic variables for dissipative
systems as defined by the Hamiltonian of Equation (1) are the density ρ(y) and the physical current
density j(y).

The knowledge of which properties constitute the basic variables is also of significance in local
effective potential theory [33,42–45]. Such theories constitute the mapping from the interacting
system of electrons to one of noninteracting fermions possessing the same basic variables. The proof
that {ρ(y), j(y)} constitute the basic variables is equivalent to the proof of existence of such model
systems [50–52]. In the section to follow, we develop the QDFT equations for noninteracting fermions
possessing the same {ρ(y), j(y)}.

The proof the {ρ(y), j(y)} are the basic variables is similar to that of Vignale [50] for
non-dissipative systems for which the electron mass is a constant. Hence, we provide here only
a brief outline of the proof.

One begins by considering the dissipative Hamiltonian Ĥ(t) of the form of Equation (1):

Ĥ(t) =
1

2m(t) ∑
k

(
p̂k +

e
c

A(yk)
)2

+ ∑
k

v(yk) + ∑′

k,`
Û(rk − r`), (37)

where {v(y), A(y)} are the external scalar and vector potentials, and Û(rk − r`) an arbitrary electron
interaction potential energy operator. The solution of the Schrödinger equation Ĥ(t)Ψ(Y) =

ih̄∂Ψ(Y)/∂t with initial state Ψ(Y; t = 0) leads to the densities {ρ(y), j(y)}. What is proved is that
there exist other many-particle dissipative systems with Hamiltonian Ĥ′(t), potentials {v′(y), A′(y)},
and U′(rk − r`), and Schrödinger equation Ĥ′Ψ′(Y) = ih̄∂Ψ′(Y)/∂t with initial state Ψ′(Y; t = 0)
which generate the same {ρ(y), j(y)} as that of Ĥ(t). The potentials {v′(y), A′(y)} are determined
by {v(y), A(y)}, Ψ(Y; t = 0) and Ψ′(Y; t = 0) to within a time-dependent scalar function ∂C(y)/∂t
and the gradient of C(y), respectively. It follows [50–52] that if one considers the primed system to be
that of noninteracting fermions but with the same dissipative mass m(t), then the theorem allows for the
existence of a local effective potential system which can then reproduce the {ρ(y), j(y)} of the interacting system.
The scalar potentials v(y) and v′(y) are eliminated from the Hamiltonians by a gauge transformation
of the form ∂C(y)/∂t = v(y) with C(y; t = 0) = 0 in each case. The potential Φ(y) may also be put
to zero. The corresponding ‘Quantal Newtonian’ second law of Equation (3) for the unprimed and
primed systems assuming the same dissipative {ρ(y), j(y)} and m(t) are

− E ee(y) +Z(y) +D(y) + I(y)− e
c

∂A(y)
∂t

+L(y) = J (y), (38)

and

− E ′ee(y) +Z ′(y) +D(y) + I ′(y)− e
c

∂A′(y)
∂t

+L′(y) = J (y). (39)

On subtracting Equation (38) from Equation (39) one obtains

e
c

∂∆A(y)
∂t

=
e
c

j(y)×
[
∇× ∆A(y)

]
+ ∆Q(y), (40)

where ∆A(y) = A(y)− A′(y) and ∆Q(y) = Q(y)−Q′(y) with Q(y) = −E ee(y) +Z(y) + I(y).
The solution to Equation (40) for ∆A(y) then determines A′(y) which produces the same current
density j(y) of A(y). Equation (40) may also be derived via the equation of motion for the physical
current density j(y) as done by Vignale [50] for the non-dissipative system. We do not provide here the
details of that derivation. The equation is the dissipative system equivalent of Equation (11) of Vignale.
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As both A(y) and A′(y) are expandable in a Taylor series of time near t = 0, so is ∆A(y). Substitution
of this expansion of ∆A(y) into Equation (40) then leads to a recursion relationship for the coefficients
of the expansion, together with the initial value constraint of ∆A(y; t = 0) = A(y; t = 0)−A′(y; t = 0).
With the coefficients of the expansion determined, the vector potential A′(y) is known. There is the
added constraint that the Taylor series converges within a radius tc > 0 [50]. The potential A′(y) can
be determined up to tc, and then tc can be considered the new initial time, and the process repeated.
Implicit in all this is the assumption that the radius of convergence cannot be zero. Hence, the vector
potential A′(y) is determined to within the gradient of a scalar function. To put another way, if there
exist two vector potentials A(y) and A′(y) that generate the same current density j(y), then they differ
by a gauge transformation. The present proof for dissipative systems is a generalization of the proof
of Vignale [50] which in turn is a generalization of that due to van Leeuwen [51] for the case when
the time-dependent magnetic field B(y) is absent (we refer to our work as a generalization of that of
Vignale, because a new term involving a dissipation coefficient now appears). In a similar manner it
can be proved that if two external scalar potentials v(y) and v′(y) lead to the same dissipative density
ρ(y), then they can only differ by a time-dependent function ∂C(t)/∂t. Thus, the basic variables for
dissipative systems are {ρ(y), j(y)}.

5. Quantal Density Functional Theory of Dissipative Systems

In this section we develop the equations for the QDFT of dissipative systems. As noted in the
Introduction, a key purpose of developing a QDFT is to enable a separation of the electron correlations
due to the Pauli exclusion principle and Coulomb repulsion, and to determine the contribution of these
correlations to the kinetic energy. Such a separation is of particular significance for lower-dimensional
systems such as quantum dots [25,31,53] and in the high electron correlation Wigner regime [54,55].
In such systems, correlation-kinetic effects play a very significant role in comparison to those of the
exclusion principle and Coulomb repulsion. Additionally, QDFT is a local effective potential theory
with the attendant attributes of the latter.

QDFT is the mapping from the interacting dissipative system defined by the Hamiltonian of
Equation (1) to a model dissipative S system of noninteracting fermions possessing the same basic
variables {ρ(y), j(y)}. This implies that the model fermions also have the same time-dependent
mass m(t). Finally, the model fermions experience the same external electromagnetic fields. Hence,
the electron potentials {v(r), A(r)} are also the same. The principal advantage of requiring [33] the
model fermions to possess the same basic variables and experience the same potentials is that then
the only correlations that must be accounted for by the S system are those due to the Pauli exclusion
principle, Coulomb repulsion, and correlation-kinetic effects.

The dissipative S system Schrödinger equation for the single-particle orbitals φk(y) of the Slater
determinant wave function Ω{φk} is[

1
2m(t)

(
p̂ +

e
c

A(y)
)2

+ vs(y)
]

φk(y) = ih̄
∂φk(y)

∂t
; k = 1, . . . , N, (41)

where the local effective potential vs(y) is

vs(y) = v(y)− eΦ(y) + vee(y), (42)

and where all the many body effects are incorporated in the local electron interaction potential
vee(y). The resulting properties—the Dirac density matrix γs(rr′t), density ρs(y), physical current
density js(y), and pair correlation density gs(rr′t) = Ps(rr′t)/ρs(y) with Ps(rr′t) the pair correlation
function—are expectations of the corresponding operators γ̂(rr′), ρ̂(r), ĵ(r), P̂(rr′) taken with respect
to the Slater determinant Ω{φk(y)}.
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With the requirement that ρs(y) ≡ ρ(y) and js(y) ≡ j(y), the ‘Quantal Newtonian’ second law
for each dissipative S system fermion is as follows (see Appendix A)

F ext(y) +F int
s (y) = J (y), (43)

where the external field F ext(y) is given by Equation (11), and the response field J (y) by Equation (28).
The internal field experienced by each model fermion is

F int
s (y) = −∇vee(y)−Z s(y)−D(y)− I(y), (44)

where the kinetic field Z s(y) is defined in a manner similar to that for Z(y) of Equation (19) but in
terms of the Dirac density matrix γs(rr′t). The fields D(y) and I(y) too are the same as those for the
interacting system.

On subtracting the ‘Quantal Newtonian’ law Equation (43) from that for the interacting system
Equation (3), one obtains the electron interaction potential vee(y) as to be the work done (at each
instant of time t) to move the model fermion from some reference point at infinity to its position at r in
the conservative effective field F eff(y):

vee(y) = −
∫ r

∞
F eff(y′) · d`′, (45)

where
F eff(y) = E ee(y) +Z tc(y), (46)

with E ee(y) defined by Equations (15) and (16), and where Z tc(y) is the correlation-kinetic field
defined as

Z tc(y) = Z s(y)−Z(y). (47)

As ∇×F eff(y) = 0, the work done vee(y) is path-independent. With this vee(y), the solutions
φk(y) of Equation (41) for the model system reproduce the same dissipative {ρ(y), j(y)} as that of the
interacting system.

Next, writing the S system pair correlation density as gs(rr′t) = ρ(y′) + ρx(rr′t), where the
Fermi hole charge ρx(rr′t) is ρx(rr′t) = −|γs(rr′t)|2/2ρ(y), one defines the Coulomb hole charge
as ρc(rr′t) = g(rr′t) − gs(rr′t) = ρxc(rr′t) − ρx(rr′t). Thus, the electron interaction field E ee(y)
subdivision of Equation (32) can be further decomposed as

E ee(y) = EH(y) + E x(y) + E c(y), (48)

where E x(y) and E c(y) are the Pauli and Coulomb fields, as obtained from the Fermi and Coulomb
hole charges, respectively. In this manner, the effective field F eff(y) can be written as a sum of its
Hartree, Pauli, Coulomb, and correlation-kinetic components:

F eff(y) = EH(y) + E x(y) + E c(y) +Z tc(y). (49)

Note that the fields E x(y), E c(y), Z tc(y) may not be separately conservative. Their sum always is.
Finally, we note that the model system Schrödinger equation for the orbitals φk(y) of Equation (41)

is also intrinsically self-consistent. The reason for this is that the electron interaction potential vee(y) of
Equation (45) is a known functional of the orbitals φk(y), because the effective field F eff(y) is such a
functional i.e., vee(y) = vee[φk](y). Hence, the differential equation may be written as[

1
2m(t)

(
p̂ +

e
c

A(y)
)2

+ {v(y)− eΦ(y)}+ vee[φk](y)
]

φk(y) = ih̄
∂φk(y)

∂t
, (50)
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or equivalently[
1

2m(t)
(
p̂ +

e
c

A(y)
)2

+ {v(y)− eΦ(y)} −
∫ r

∞
F [φk](y) · d`

]
φk(y) = ih̄

∂φk(y)
∂t

. (51)

Thus, we note, that the Schrödinger equation for the dissipative system of interacting electrons
and that of the model system of noninteracting fermions with the same densities {ρ(y), j(y)} can both
be written so as to exhibit their intrinsic self-consistent nature.

6. Summary and Conclusions

This paper develops a framework by which dissipative effects are incorporated within the
Schrödinger theory of electrons in electromagnetic fields. Dissipation is accounted for via the
effective Hamiltonian approach by the assumption that the mass of the electron is a function of time,
i.e., m = m(t). The perspective presented differs from that in the literature. The description is in terms
of the equation of motion of the individual electron or equivalently, the ‘Quantal Newtonian’ second law
for each electron. According to the law, the electron experiences both the external field F ext(y)—the
time-dependent binding electric field, the Lorentz field, and the electromagnetic field—and an internal
field F int(y) composed of components representative of the properties of the system. These component
fields represent electron correlations due to the Pauli exclusion principle and Coulomb repulsion,
kinetic effects, density, and a contribution to the internal field due to the external magnetic field.
The response of the electron to these fields is then a current density field J (y) which involves a
damping coefficient ζ(t) which accounts for the dissipative effects. The internal field components too
are reflective of the dissipation through their dependence on the mass of the electron. These fields are
‘classical’ in the sense that they are obtained from quantal sources which in turn are expectations of
Hermitian operators.

The ‘Quantal Newtonian’ second law leads to further insights into Schrödinger theory. It follows
from the law that the external scalar binding potential of the electron v(y) can be afforded a rigorous
physical interpretation in the classical sense: It is the work done to move an electron in a conservative
field F (y). The field is the sum of the internal, Lorentz, electric and current density response fields.
Hence, the components of v(y)—the contributions due to the individual properties of the system—are
explicitly known. As the field F (y) is conservative, the work done is path-independent. Furthermore,
as the components of the field F (y) are obtained from quantal sources that are expectations of
Hermitian operators taken with respect to the wave function Ψ, it is an exactly known functional of Ψ i.e.,
F (y) = F [Ψ](y). In turn, the potential v(y) is an exactly known functional of Ψ, i.e., v(y) = v[Ψ](y).
Substitution of this v[Ψ](y) into the Hamiltonian shows that the Hamiltonian is an exactly known
functional of Ψ, i.e., Ĥ(t) = Ĥ[Ψ](t). The Schrödinger equation can therefore be written in a more
general form as Ĥ[Ψ]Ψ = ih̄∂Ψ/∂t which then demonstrates its intrinsic self-consistent nature. Thereby,
the wave function Ψ can be determined self-consistently. This constitutes a generalization of the
Schrödinger theory to dissipative systems.

It is also proved that for this dissipative quantum-mechanical system, the basic variables are the
density ρ(y) and physical current density j(y). Hence, knowledge of the gauge-invariant properties
{ρ(y), j(y)} uniquely determines the external scalar v(y) and vector A(y) potentials to within a
time-dependent function and the gradient of this function, respectively. In other words, {ρ(y), j(y)}
determine the wave function Ψ of the system, and thereby all properties. The proof of the one-to-one
relationship {v(y), A(y)} ↔ {ρ(y), j(y)} also proves the existence of a system of noninteracting
fermions possessing the same {ρ(y), j(y)} provided the wave functions of the interacting and model
systems at the initial time t = 0 lead to the same initial state {ρ(y), j(y)}.

Finally, with the knowledge that the basic variables are the densities {ρ(y), j(y)}, we develop
the equations of QDFT that map the interacting dissipative system to one of noninteracting fermions
with the same dissipative response {ρ(y), j(y)}. Provided the model fermions are subject to the same
external potentials {v(y), A(y)}, the only correlations that need to be accounted for are those due to
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the Pauli exclusion principle, Coulomb repulsion, and correlation-kinetic effects. All the many-body
effects are then incorporated into a local electron interaction potential vee(y) which is the work done
in a conservative effective field F eff(y). The work done vee(y) is therefore path-independent. The field
F eff(y) is a known functional of the orbitals φk(y), so that the Hamiltonian Ĥs,k of the model fermion
is a functional of φk(y). Thus, the Schrödinger equation of each model fermion is of the self-consistent
form Ĥs,k[φk(y)]φk(y) = ih̄∂φk(y)/∂t, with the corresponding wave function Ω{φk(y)} being a Slater
determinant of the orbitals φk(y). This equation, with a local effective potential, is of course, far easier
to solve than the self-consistent Schrödinger equation.

Density functional theory (both time-independent [44,56] and time-dependent [48,52]), and QDFT
are equivalent in that both map the interacting system of electrons to one of noninteracting fermions
possessing the same basic variables. The former theories are mathematical in the sense that they are in
terms of energy and action functionals of the density, and of their functional derivatives. In contrast,
QDFT is a physical theory. It describes a quantum-mechanical system in terms of fields that arise from
quantal sources, the stationary-state description being a special case of the time-dependent theory.
It thus provides a rigorous physical interpretation [25,29,57,58] of the functionals and functional
derivatives of density functional theory. Additionally, QDFT allows for the separation of the electron
correlations due to the Pauli exclusion principle, Coulomb repulsion, and correlation-kinetic effects.
The contribution of these correlations to the local electron interaction potential in which the many-body
effects are incorporated, and to the total energy, is explicitly defined. For approximation methods and
applications of QDFT, we refer the reader to [26].

As noted in the Introduction, the self-consistent solution of the various local effective potential
theories [25,42–45] is for the single-particle spin-orbital with the resulting wave function being a
Slater determinant of these orbitals. On the other hand, the solution of the self-consistent Schrödinger
equation of Equation (34) is for the many-body wave function. Hence, from a numerical perspective,
the solution is more difficult. In recent work [34] we have demonstrated the self-consistency procedure
for the non-dissipative 2D two-electron ‘artificial atom’ or quantum dot in a magnetic field [31,53,59,60]
in a ground and excited singlet state. Work on the dissipative quantum-dot is in progress and
will be presented elsewhere. We believe that with present-day computing power, the solution
of the self-consistent Schrödinger equation for other systems is feasible, but that is for the future.
There exist many methods such as the variational and perturbative schemes for the determination of
the approximate wave function of a system. The understanding that the Schrödinger equation can
be solved self-consistently means that there is now a path for the determination of the exact wave
function to the degree of numerical accuracy desired.

In conclusion, we have developed the Schrödinger theory of electrons in a dissipative environment
from the perspective of the individual electron via the corresponding equation of motion. As a
consequence, new insights into Schrödinger theory are obtained. We have also derived the equations of
quantal density functional theory, the local effective potential equivalent of the interacting dissipative
system of electrons. The equations derived and conclusions arrived at for both theories are general.
The non-dissipative system constitutes a special case. Stationary state systems constitute yet another
special case.
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Appendix A. Derivation of the ‘Quantal Newtonian’ Second Law

To derive the ‘Quantal Newtonian’ second law, expand the Hamiltonian of Equation (1) so as to
rewrite it as
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Ĥ(t) = − h̄2

2m(t) ∑
k
∇2

rk
+

1
2 ∑′

k,`

e2

|rk − r`|
+ ∑

k

[
v(yk)− eΦ(yk)

]
+ ∑

k
ω̂
(
ykA(yk)

)
, (A1)

where the operator ω̂(ykA(yk)) is

ω̂
(
ykA(yk)

)
=

e2

2m(t)c2 A2(y)− i
h̄e

2m(t)c
[
∇ ·A(y) + 2A(y) ·∇

]
. (A2)

Next, write the wave function as Ψ(Y) = ΨR(Y) + iΨI(Y), where ΨR(Y) and ΨI(Y) are its real
and imaginary parts. Substitute this Ψ(Y) into the Schrödinger equation (Equation (2)) and perform
the various differentiations. After considerable algebra, one arrives at the ‘force’ equation

−eee(y) + z(y) + d(y) + k(yjpA) + ρ(y)∇
[

v(y)− eΦ(y) +
e2

2m(t)c2 A2(y)
]

+
∂

∂t
[
m(t)jp(y)

]
= 0, (A3)

where the ‘forces’ eee(y), z(y), d(y) and paramagnetic current density jp(y) are defined in the text,
and where k(yjpA) is

kα(yjpA) =
e
c ∑

β

{
jpβ(y)∇α Aβ(y) +∇β[Aβ(y)jpα(y)]

}
. (A4)

We next rewrite Equation (A3) in terms of the physical current density j(y) via Equation (6). Thus,
for Equation (A4) one obtains

kα(yjpA) = kα(yjA) − e2

m(t)c2 ∑β

{
ρ(y)Aβ(y)[∇α Aβ(y)]

+ ∇β[Aβ(y)ρ(y)Aα(y)]
} (A5)

= kα(yjA) − e2

2m(t)c2 ∑β ρ(y)∇α A2
β(y)

− e2

m(t)c2 ∑β

{
Aβ(y)∇β[ρ(y)Aα(y)]

+ ρ(y)Aα(y)∇β Aβ(y)
}

,

(A6)

or in vector form

k(yjpA) = k(yjA)− e2

2m(t)c2 ρ(y)∇A2(y)

− e2

m(t)c2

{
A(y) ·∇[ρ(y)A(y)] + ρ(y)A(y)∇ ·A(y)

}
.

(A7)

On employing Equation (6) together with the continuity Equation (4), we have

∂

∂t
[
m(t)jp(y)

]
=

∂

∂t
[
m(t)j(y)

]
+

e
c

A(y)∇ · j(y)− e
c

ρ(y)
∂A(y)

∂t
. (A8)

Substituting Equations (A7) and (A8) into Equation (A3), and using E(y) = −∇Φ(y)− 1
c

∂A(y)
∂t

leads to

−eee(y) + z(y) + d(y) + ρ(y)∇v(y) + ρ(y)eE(y)

+

(
k(yjA) − e2

m(t)c2

{
A(y) ·∇[ρ(y)A(y)] + ρ(y)A(y)∇ ·A(y)

}
+ e

c A(y)∇ · j(y)
)
+ ∂

∂t [m(t)j(y)] = 0.

(A9)
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With the Lorentz ‘ force’ `(y) defined as in Equation (13) and with B(y) = ∇×A(y), we have

`α(y) = ∑
β

[
jβ(y)∇α Aβ(y)− jβ(y)∇β Aα(y)

]
. (A10)

With the internal ‘force’ i(y) contribution due to the magnetic field defined as in Equation (25),
it is readily seen that `(y) + i(y) is equivalent to the terms in Equation (A9) in the large parentheses.
Thus, on dividing by ρ(y), Equation (A9) becomes

−E ee(y) +Z(y) +D(y) + I(y) −
[
E(y)− eE(y)

]
+L(y)

+ 1
ρ(y)

∂
∂t [m(t)j(y)] = 0.

(A11)

Finally,
1

ρ(y)
∂

∂t
[m(t)j(y)] = J 0(y) +J diss(y), (A12)

with J 0(y) and J diss(y) as defined by Equations (29) and (30). Equation (A11) is thus the ‘Quantal
Newtonian’ second law of Equation (3) which is the equation of motion for the individual electron.

For the dissipative S system in the same external field F ext(y), and with the same densities
{ρ(y), j(y)}, the ‘Quantal Newtonian’ second law of Equation (43) for the noninteracting fermions is
obtained in a similar manner by writing the orbital φk(y) as φk(y) = φR

k (y) + iφI
k(y), where φR

k (y) and
φI

k(y) are the real and imaginary components, and by substitution into the corresponding Schrödinger
equation (Equation (41)).
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