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Abstract: Molecular dynamics (MD) simulations allow the investigation of the structural dynamics
of biomolecular systems with unrivaled time and space resolution. However, in order to compensate
for the inaccuracies of the utilized empirical force fields, it is becoming common to integrate MD
simulations with experimental data obtained from ensemble measurements. We review here the
approaches that can be used to combine MD and experiment under the guidance of the maximum
entropy principle. We mostly focus on methods based on Lagrangian multipliers, either implemented
as reweighting of existing simulations or through an on-the-fly optimization. We discuss how errors
in the experimental data can be modeled and accounted for. Finally, we use simple model systems to
illustrate the typical difficulties arising when applying these methods.
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1. Introduction

Molecular dynamics (MD) simulations are nowadays a fundamental tool used to complement
experimental investigations in biomolecular modeling [1]. Although the accessible processes are
usually limited to the microsecond timescale for classical MD with empirical force fields, with the
help of enhanced sampling methods [2–4] it is possible to effectively sample events that would require
a much longer time in order to spontaneously happen. However, the quality of the results is still
limited by the accuracy of the employed force fields, making experimental validations a necessary
step. The usual procedure consists in performing a simulation and computing some observable for
which an experimental value has been already measured. If the calculated and experimental values
are compatible, the simulation can be trusted and other observables can be estimated in order to make
genuine predictions. If the discrepancy between calculated and experimental values is significant,
one is forced to make a step back and perform a new simulation with a refined force field. For instance,
current force fields still exhibit visible limitations in the study of protein-protein interactions [5], in the
structural characterization of protein unfolded states [6], in the simulation of the conformational
dynamics of unstructured RNAs [7–9], and in the blind prediction of RNA structural motifs [9–11].
However, improving force fields is a far-from-trivial task because many correlated parameters should
be adjusted. Furthermore, the employed functional forms might have an intrinsically limited capability
to describe the real energy function of the system. Largely due to these reasons, it is becoming more
and more common to restrain the simulations in order to enforce agreement with experimental data.
Whereas this approach might appear not satisfactory, one should keep in mind that often experimental
knowledge is anyway implicitly encoded in the simulation of complex systems (e.g., if the initial
structure of a short simulation is taken from experiment, then the simulation will be biased toward it).
In addition, one should consider that validation can still be made against independent experiments
or against some of the data suitably removed from the set of restraints. From another point of view,
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the pragmatic approach of combining experiments with imperfect potential energy models allows
one to extract the maximum amount of information from sparse experimental data. Particular care
should be taken when interpreting bulk experiments that measure averages over a large number of
copies of the same molecule. These experiments are valuable in the characterization of dynamical
molecules, where heterogeneous structures might be mixed and contribute with different weights to
the experimental observation. If properly combined with MD simulations, these experiments can be
used to construct a high resolution picture of molecular structure and dynamics [12–15].

In this review we discuss some recent methodological developments related to the application
of the maximum entropy principle to combine MD simulations with ensemble averages obtained
from experiments (see, e.g., Refs. [16,17] for an introduction on this topic). We briefly review the
maximum entropy principle and show how it can be cast into a minimization problem. We then
discuss the equivalent formulation based on averaging between multiple simultaneous simulations.
Special explanations are dedicated to the incorporation of experimental errors in the maximum entropy
principle and to the protocols that can be used to enforce the experimental constraints. Simple model
systems are used to illustrate the typical difficulties encountered in real applications. Source code for
the model systems is available at https://github.com/bussilab/review-maxent.

2. The Maximum Entropy Principle

The maximum entropy principle dates back to 1957 when Jaynes [18,19] proposed it as a link
between thermodynamic entropy and information-theory entropy. Previously, the definition of entropy
was considered as an arrival point in the construction of new theories, and only used as a validation
against laws of thermodynamics [18]. In Jaynes formulation, maximum entropy was for the first
time seen as the starting point to be used in building new theories. In particular, distributions that
maximize the entropy subject to some physical constraints were postulated to be useful in order to
make inference on the system under study. In its original formulation, the maximum entropy principle
states that, given a system described by a number of states, the best probability distribution for these
states compatible with a set of observed data is the one maximizing the associated Shannon’s entropy.
This principle has been later extended to a maximum relative entropy principle [20] which has the
advantage of being invariant with respect to changes of coordinates and coarse-graining [21] and has
been shown to play an important role in multiscale problems [22]. The entropy is computed here
relative to a given prior distribution P0(q) and, for a system described by a set of continuous variables
q, is defined as

S[P||P0] = −
∫

dq P(q) ln
P(q)
P0(q)

. (1)

This quantity should be maximized subject to constraints in order to be compatible with observations:
PME(q) = arg max

P(q)
S[P||P0]∫

dq si(q)P(q) = 〈si (q)〉 = sexp
i ; i = 1, . . . , M∫

dq P(q) = 1

(2)

Here M experimental observations constrain the ensemble average of M observables si(q)
computed over the distribution P(q) to be equal to sexp

i , and an additional constraint ensures that
the distribution P(q) is normalized. P0(q) encodes the knowledge available before the experimental
measurement and is thus called prior probability distribution. PME(q) instead represents the best
estimate for the probability distribution after the experimental constraints have been enforced and is
thus called posterior probability distribution. Here, the subscript ME denotes the fact that this is the
distribution that maximizes the entropy.

Since the relative entropy S[P||P0] is the negative of the Kullback-Leibler divergence
DKL[P||P0] [23], the procedure described above can be interpreted as a search for the posterior
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distribution that is as close as possible to the prior knowledge and agrees with the given experimental
observations. In terms of information theory, the Kullback-Leibler divergence measures how much
information is gained when prior knowledge P0(q) is replaced with P(q).

The solution of the maximization problem in Equation (2) can be obtained using the method of
Lagrangian multipliers, namely searching for the stationary points of the Lagrange function

L = S[P||P0]−
M

∑
i=1

λi

(∫
dq si(q)P(q)− sexp

i

)
− µ

(∫
dq P(q)− 1

)
, (3)

where λi and µ are suitable Lagrangian multipliers. The functional derivative of L with respect to
P(q) is

δL
δP(q)

= − ln
P(q)
P0(q)

− 1−
M

∑
i=1

λisi(q)− µ . (4)

By setting δL
δP(q) = 0 and neglecting the normalization factor, the posterior reads

PME(q) ∝ e−∑M
i=1 λisi(q)P0(q) . (5)

Here the value of the Lagrangian multipliers λi should be found by enforcing the agreement with
the experimental data. In the following, in order to have a more compact notation, we will drop the
subscript from the Lagrangian multipliers and write them as a vector whenever possible. Equation (5)
could thus be equivalently written as

PME(q) ∝ e−λ·s(q)P0(q) . (6)

Notice that the vectors s and λ have dimensionality M, whereas the vector q has dimensionality
equal to the number of degrees of freedom of the analyzed system.

In short, the maximum relative entropy principle gives a recipe to obtain the posterior distribution
that is as close as possible to the prior distribution and agrees with some experimental observation.
In the following, we will drop the word “relative” and we will refer to this principle as the maximum
entropy principle.

2.1. Combining Maximum Entropy Principle and Molecular Dynamics

When combining the maximum entropy principle with MD simulations the prior knowledge is
represented by the probability distribution resulting from the employed potential energy, that is
typically an empirical force field in classical MD. In particular, given a potential energy V0(q),
the associated probability distribution P0(q) at thermal equilibrium is the Boltzmann distribution
P0(q) ∝ e−βV0(q), where β = 1

kBT , T is the system temperature, and kB is the Boltzmann constant.

According to Equation (5), the posterior will be PME(q) ∝ e−λ·s(q)e−βV0(q) . The posterior distribution
can thus be generated by a modified potential energy in the form

VME (q) = V0 (q) + kBTλ · s (q) . (7)

In other words, the effect of the constraint on the ensemble average is that of adding a term to the
energy that is linear in the function s(q) with prefactors chosen in order to enforce the correct averages.
Such a linear term should be compared with constrained MD simulations, where the value of some
function of the coordinates is fixed at every step (e.g., using the SHAKE algorithm [24]), or harmonic
restraints, where a quadratic function of the observable is added to the potential energy function.
Notice that the words constraint and restraint are usually employed when a quantity is exactly or
softly enforced, respectively. Strictly speaking, in the maximum entropy context, ensemble averages
〈s(q)〉 are constrained whereas the corresponding functions s(q) are (linearly) restrained.
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If one considers the free energy as a function of the experimental observables (also known as
potential of mean force), which is defined as

F0(s′) = −kBT ln
∫

dq δ(s(q)− s′)P0(q) , (8)

the effect of the corrective potential in Equation (7) is just to tilt the free-energy landscape

FME(s) = F0 (s) + kBTλ · s + C , (9)

where C is an arbitrary constant. A schematic representation of this tilting is reported in Figure 1.
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Figure 1. The effect of a linear correcting potential on a given reference potential. P0(s) is the marginal
probability distribution of some observable s(q) according to the reference potential V0(q) and F0(s) is
the corresponding free-energy profile (left panel). Energy scale is reported in the vertical axis and is
given in units of kBT. Probability scales are not reported. Vertical lines represent the average value
of the observable s in the prior (〈s〉0) and in the experiment (sexp). A correcting potential linear in
s (green line) shifts the relative depths of the two free-energy minima, leading to a new free energy
profile FME(s) = F0(s) + kBTλ∗s that corresponds to a probability distribution PME(s) (central panel).
Choosing λ∗ equal to the value that minimizes Γ(λ) (right panel) leads to an average 〈s〉 = sexp.

Any experimental data that is the result of an ensemble measurement can be used as a constraint.
Typical examples for biomolecular systems are nuclear-magnetic-resonance (NMR) experiments such
as measures of chemical shifts [25], scalar couplings [26], or residual dipolar couplings [27], and other
techniques such as small-angle X-ray scattering (SAXS) [28], double electron-electron resonance
(DEER) [29], and Förster resonance energy transfer [30]. The only requirement is the availability
of a so-called forward model for such experiments. The forward model is a function mapping the
atomic coordinates of the system to the measured quantity and thus allows the experimental data
to be back-calculated from the simulated structures. For instance, in the case of 3J scalar couplings,
the forward model is given by the so-called Karplus relations [26], that are trigonometric functions of
the dihedral angles. It must be noted that the formulas used in standard forward models are often
parameterized empirically, and one should take into account errors in these parameters on par with
experimental errors (see Section 3). Without entering in the complexity of the methods mentioned
above, we will only consider cases where experimental data can be trusted to be ensemble averages.

In short, the maximum entropy principle can be used to derive corrective potentials for MD
simulations that constrain the value of some ensemble average. The choice to generate an ensemble
that is as close as possible to the prior knowledge implies that the correcting potential has a specific
functional form, namely that it is linear in the observables that have been measured.

2.2. A Minimization Problem

In order to chose the values of λ that satisfy Equation (2), it is possible to recast the problem into
a minimization problem. In particular, consider the function [16,31]

Γ(λ) = ln
[∫

dq P0(q)e−λ·s(q)
]
+ λ · sexp . (10)
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Notice that the first term is the logarithm of the ratio between the two partition functions
associated to the potential energy functions V(q) and V0(q), that is proportional to the free-energy
difference between these two potentials. The gradient of Γ(λ) is

∂Γ
∂λi

= sexp
i −

∫
dq P0(q)e−λ·s(q)si(q)∫

dq P0(q)e−λ·s(q) = sexp
i − 〈si(q)〉 (11)

and is thus equal to zero when the average in the posterior distribution is identical to the enforced
experimental value. This means that the constraints in Equation (2) can be enforced by searching for a
stationary point λ∗ of Γ(λ) (see Figure 1). The Hessian of Γ(λ) is

∂Γ
∂λi∂λj

= 〈si(q)sj(q)〉 − 〈si(q)〉〈sj(q)〉 (12)

and is thus equal to the covariance matrix of the forward models in the posterior distribution.
Unless the enforced observables are dependent on each other, the Hessian will be positive definite [16].
The solution of Equation (2) will thus correspond to a minimum of Γ(λ) that can be searched for
instance by a steepest descent procedure. However there are cases where such minimum might not
exist. In particular, one should pay attention to the following cases:

• When data are incompatible with the prior distribution.
• When data are mutually incompatible. As an extreme case, one can imagine two different

experiments that measure the same observable and report different values.

In both cases Γ(λ) will have no stationary point. Clearly, there is a continuum of possible
intermediate situations where data are almost incompatible. In Section 4 we will see what happens
when the maximum entropy principle is applied to model systems designed in order to highlight these
difficult situations.

2.3. Connection with Maximum Likelihood Principle

The function Γ(λ) allows to easily highlight a connection between maximum entropy and
maximum likelihood principles. Given an arbitrary set of Ns molecular structures qt chosen such that
1

Ns
∑Ns

t=1 s(qt) = sexp, it is possible to rewrite e−NsΓ(λ) as

e−NsΓ(λ) = e−Nsλ·sexp

[
∫

dqP0(q)e−λ·s(q)]
Ns = e−λ·∑t s(qt)

[
∫

dqP0(q)e−λ·s(q)]
Ns = ∏Ns

t=1
e−λ·s(qt)∫

dqP0(q)e−λ·s(q) = ∏Ns
t=1

P(qt)
P0(qt)

(13)

The last term is the ratio between the probability of drawing the structures qt from the posterior
distribution and that of drawing the same structures from the prior distribution. Since the minimum
of Γ(λ) corresponds to the maximum of e−NsΓ(λ), the distribution that maximizes the entropy under
experimental constraints is identical to the one that, among an exponential family of distributions,
maximizes the likelihood of a set of structures with average value of the observables s equal to the
experimental value [32,33]. This equivalence can be considered as an added justification for the
maximum entropy principle [32]: if the notion of selecting a posterior P(q) that maximizes the entropy
is not compelling enough, one can consider that this same posterior is, among the distributions with
the exponential form of Equation (5), the one that maximizes the likelihood of being compatible with
the experimental sample.

Equation (13) can also be rearranged to Γ(λ) = − 1
Ns

∑Ns
t=1 ln P(qt) +

1
Ns

∑Ns
t=1 ln P0(qt) and,

after proper manipulation, it can be shown that

Γ(λ) = DKL[Pexp||P]− DKL[Pexp||P0] (14)

where Pexp is an arbitrary distribution with averages equal to the experimental ones. Thus, minimizing
Γ(λ) is equivalent to choosing the distribution with the exponential form of Equation (5) that is as close



Computation 2018, 6, 15 6 of 25

as possible to the experimental one. Since at its minimum, by construction, Γ(λ∗) ≤ Γ(0), it follows
that DKL[Pexp||PME] ≤ DKL[Pexp||P0]. In other words, the maximum entropy restraint is guaranteed
to make the posterior distribution closer to the experimental one than the prior distribution [34].

2.4. Enforcing Distributions

We so far considered the possibility of enforcing ensemble averages. However, one might be
interested in enforcing the full distribution of an observable. This can be done by noticing that the
marginal probability distribution ρ(s) of a quantity s can be computed as the expectation value of a
Dirac-delta function:

ρ(s′) = 〈δ(s(q)− s′)〉 . (15)

An example of experimental technique that can report distance distributions is the already
mentioned DEER [29]. If the form of ρ(s) has been measured experimentally, the maximum entropy
principle can be used to enforce it in a MD simulation. Notice that this corresponds to constraining
an infinite number of data points (that is, the occupation of each bin in the observable s). In this case,
λ will be a function of s and Equation (5) will take the following form

PME(q) ∝ e−λ(s(q))P0(q) . (16)

Thus, the correction to the potential should be a function of the observable s chosen in
order to enforce the experimental distribution ρexp(s). Different approaches can be used to
construct the function λ(s) with such property. For instance, one might take advantage of iterative
Boltzmann inversion procedures originally developed to derive coarse-grained models from atomistic
simulations [35]. As an alternative, one might use a time-dependent adaptive potential. In target
metadynamics [36,37] such potential is constructed as a sum of Gaussians centered on the previously
visited values of s. It can be shown that by properly choosing the prefactors of those Gaussians an
arbitrary target distribution can be enforced.

Alternatively, it is possible to directly minimize the function Γ(λ) as mentioned in Section 2.2.
In this context, Γ would be a functional of λ(s) with the form

Γ[λ] = ln
∫

dq e−λ(s(q))P0(q) +
∫

dsλ(s)ρexp(s) . (17)

Interestingly, this functional is identical to the one introduced in the variationally enhanced
sampling (VES) method of Ref. [38]. In its original formulation, VES was used to enforce a flat
distribution in order to sample rare events. However, the method can also be used to enforce an
arbitrary a priori chosen distribution [39,40]. The analogy with maximum entropy methods, together
with the relationship in Equation (14), was already noticed in Ref. [40] and is interesting for a twofold
reason: (a) It provides a maximum-entropy interpretation of VES, and (b) the numerical techniques
used for VES might be used to enforce experimental averages in a maximum-entropy context. We will
further comment about this second point in Section 5.4.

2.5. Equivalence to the Replica Approach

A well established method to enforce ensemble averages in molecular simulations is represented
by restrained ensembles [41–43]. The rationale behind this method is to mimic an ensemble of structures
by simulating in parallel Nrep multiple identical copies (replicas) of the system each of which having
its own atomic coordinates. The agreement with the M experimental data is then enforced by adding
a harmonic restraint for each observable, centered on the experimental reference and acting on the
average over all the simulated replicas. This results in a restraining potential with the following form:
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VRE

(
q1, q2, . . . , qNrep

)
=

Nrep

∑
i=1

V0 (qi) +
k
2

M

∑
j=1

(
1

Nrep

Nrep

∑
i=1

sj(qi)− sexp
j

)2

, (18)

where k is a suitably chosen force constant. It has been shown [16,44,45] that this method produces the
same ensemble as the maximum entropy approach in the limit of large number of replicas

(
Nrep → ∞

)
.

Indeed, the potential in Equation (18) results in the same force − k
Nrep

(
1

Nrep
∑

Nrep
i=1 sj(qi)− sexp

j

)
applied

to the observable sj(q) in each replica. As the number of replicas grows, the fluctuations of the
average decrease and the applied force becomes constant in time, so that the explored distribution
will have the same form as Equation (5) with λ = k

NrepkBT

(
1

Nrep
∑

Nrep
i=1 s(qi)− sexp

)
. If k is chosen large

enough, the average between the replicas will be forced to be equal to the experimental one. It is
possible to show that, in order to enforce the desired average, k should grow faster than Nrep [45].
In practical implementations, k should be finite in order to avoid infinite forces. A direct calculation of
the entropy-loss due to the choice of a finite Nrep has been proposed to be an useful tool in the search
for the correct number of replicas [46]. An approach based on a posteriori reweighting (Section 5.1) of
replica-based simulations and named Bayesian inference of ensembles has been also proposed in order
to eliminate the effect of choosing a finite number of replicas [47].

3. Modelling Experimental Errors

The maximum entropy method can be modified in order to account for uncertainties in
experimental data. This step is fundamental in order to reduce over-fitting. In this section we will
briefly consider how the error can be modeled according to Ref. [48]. Here errors are modeled
modifying the experimental constraints introduced in Equation (2) by introducing an auxiliary
variables εi for each data point representing the discrepancy or residual between the experimental and
the simulated value. The new constraints are hence defined as follows:

〈(s(q) + ε)〉 = sexp . (19)

The auxiliary variable ε is a vector with dimensionality equal to the number of constraints and
models all the possible sources of error, including inaccuracies of the forward models (Section 2.1) as
well as experimental uncertainties. Errors can be modeled by choosing a proper prior distribution
function for the variable ε. A common choice is represented by a Gaussian prior with a fixed standard
deviation σi for the ith observable

P0 (ε) ∝
M

∏
i=1

exp

(
−

ε2
i

2σ2
i

)
. (20)

The value of σi corresponds to the level of confidence in the ith data point, where σi = ∞ implies
to completely discard the data in the optimization process while σi = 0 means having complete
confidence in the data, that will be fitted as best as possible. Notice that, for additive errors, q and ε

are independent variables and Equation (19) can be written as:

〈s(q)〉 = sexp − 〈ε〉 (21)

where 〈ε〉 is computed in the posterior distribution P(ε) ∝ P0(ε)e−λ·ε. Incorporating the experimental
error in the maximum entropy approach is then as easy as enforcing a different experimental value,
corresponding to the one in Equation (21). Notice that the value of 〈ε〉 only depends on its prior
distribution P0(ε) and on λ. For a Gaussian prior with standard deviation σi Equation (20) we have:

〈εi〉 = −λiσ
2
i . (22)
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Thus, as λ grows in magnitude, a larger discrepancy between simulation and experiment will
be accepted. In addition, it can be seen that applying the same constraint twice is exactly equivalent
to applying a constraint with a σ2

i reduced by a factor two. This is consistent with the fact that the
confidence in the repeated data point is increased.

Other priors are also possible in order to better account for outliers and to deal with cases where
the standard deviation of the residual is not known a priori. One might consider the variance of the ith
residual σ2

0,i as a variable sampled from a given prior distribution P0(σ
2
0,i):

P0 (ε) =
M

∏
i=1

∫ ∞

0
dσ2

0,iP0(σ
2
0,i)

1√
2πσ2

0,i

exp

(
−

ε2
i

2σ2
0,i

)
. (23)

A flexible functional form for P0(σ
2
0,i) can be obtained using the following Gamma distribution

P0(σ
2
0,i) ∝ (σ2

0,i)
κ−1 exp

(
−

κσ2
0,i

σ2
i

)
. (24)

In the above equation σ2
i is the mean parameter of the Gamma function and must be interpreted

as the typical expected variance of the error on the ith data point. κ, which must satisfy κ > 0, is the
shape parameter of the Gamma distribution and expresses how much the distribution is peaked
around σ2

i . In practice, it controls how much the optimization is tolerant to large discrepancies
between the experimental data and the enforced average. Notice that in Ref. [48] a different convention
was used with a parameter α = 2κ − 1. By setting κ = ∞ a Gaussian prior on ε will be recovered.
Smaller values of κ will lead to a prior distribution on ε with “fatter” tails and thus able to accommodate
larger differences between experiment and simulation. For instance, the case κ = 1 leads to a Laplace prior

P0(ε) ∝ ∏i exp
(
−
√

2|ε|
σi

)
. After proper manipulation, the resulting expectation value 〈ε〉 can be shown to be

〈εi〉 = −
λiσ

2
i

1− λ2
i σ2

i
2κ

. (25)

In this case, it can be seen that applying the same constraint twice is exactly equivalent to applying
a constraint with a σ2

i reduced by a factor two and a κ multiplied by a factor two.
In terms of the minimization problem of Section 2.2, modeling experimental errors as discussed

here is equivalent to adding a contribution Γerr to Equation (10):

Γ(λ) = ln
∫

dq P0(q)e−λ·s(q) + λ · sexp + Γerr(λ) . (26)

For a Gaussian noise with preassigned variance (Equation (20)) the additional term is

Γerr(λ) =
1
2

M

∑
i=1

λ2
i σ2

i . (27)

For a prior on the error in the form of Equations (23) and (24) one obtains

Γerr(λ) = −κ
M

∑
i=1

ln

(
1−

λ2
i σ2

i
2κ

)
. (28)

In the limit of large κ, Equation (28) is equivalent to Equation (27). If the data points are expected
to all have the same error σ0, unknown but with a typical value σ (see Ref. [48]), Equation (28) should

be modified to Γerr(λ) = −κ ln
(

1− |λ|
2σ2

2κ

)
.
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Equation (28) shows that by construction the Lagrangian multiplier λi will be limited in the
range

(
−
√

2κ
σi

, +
√

2κ
σi

)
. The effect of using a prior with κ < ∞ is thus that of restricting the range of

allowed λ in order to avoid too large modifications of the prior distribution. In practice, values of λ

chosen outside these boundaries would lead to a posterior distribution P(ε) ∝ P0(ε)e−λ·ε that cannot
be normalized.

Except for trivial cases (e.g., for Gaussian noise with σ = 0), the contribution originating from
error modeling has positive definite Hessian and as such it makes Γ(λ) a strongly convex function.
Thus, a suitable error treatment can make the minimization process numerically easier.

It is worth mentioning that a very similar formalism can be used to include not only errors but
more generally any quantity that influences the experimental measurement but cannot be directly
obtained from the simulated structures. For instance, in the case of residual dipolar couplings [27],
the orientation of the considered molecule with the respect to the external field is often unknown. The
orientation of the field can then be used as an additional vector variable to be sampled with a Monte
Carlo procedure, and suitable Lagrangian multipliers can be obtained in order to enforce the agreement
with experiments [49]. Notice that in this case the orientation contributes to the ensemble average in a
non-additive manner so that Equation (21) cannot be used. Interestingly, thanks to the equivalence
between multi-replica simulations and maximum entropy restraints (Section 2.5), equivalent results
can be obtained using the tensor-free method of Ref. [50].

Finally, we note that several works introduced error treatment using a Bayesian
framework [47,51–53]. Interestingly, Bayesian ensemble refinement [47] introduces an additional
parameter (θ) that takes into account the confidence in the prior distribution. In case of Gaussian error,
this parameter enters as a global scaling factor in the errors σi for each data point. Thus, the errors σi
discussed above can be used to modulate both our confidence in experimental data and our confidence
in the original force field. The equivalence between the error treatment of Ref. [47] and the one reported
here is further discussed in Ref. [48], in particular for what concerns non-Gaussian error priors.

4. Exact Results on Model Systems

In this section we illustrate the effects of adding restraints using the maximum entropy principle
on simple model systems. In order to do so we first derive some simple relationship valid when the
prior has a particular functional form, namely a sum of NG Gaussians with center sα and covariance
matrix Aα, where α = 1, . . . , NG:

P0(s) =
NG

∑
α=1

wα√
2π det Aα

e−
(s−sα)A−1

α (s−sα)
2 . (29)

The coefficients wα provide the weights of each Gaussian and are normalized (∑α wα = 1).
We assume here that the restraints are applied on the variable s. For a general system, one
should first perform a dimensional reduction in order to obtain the marginal prior probability
P0(s). By constraining the ensemble averages of the variable s to an experimental value sexp the
posterior becomes:

PME(s) =
e−λ·s

Z(λ) ∑
α

wα√
2π det Aα

e−
(s−sα)A−1

α (s−sα)
2 . (30)

With proper algebra it is possible to compute explicitly the normalization factor Z(λ) =

∑α wαe
λAαλ

2 −λ·sα . The function Γ(λ) to be minimized is thus equal to:

Γ(λ) = ln

(
∑
α

wαe
λAαλ

2 −λ·sα

)
+ λ · sexp + Γerr(λ) (31)

and the average value of s in the posterior is
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〈s〉 = ∑α wαe
λAαλ

2 −λ·sα (sα − Aαλ)

∑α wαe
λAαλ

2 −λ·sα

. (32)

We could not find a close formula for λ∗ given sexp and Γerr. However, the solution can be found
numerically with the gradient descent procedure discussed in Section 5 (see Equation (33)).

4.1. Consistency between Prior Distribution and Experimental Data

We consider a one dimensional model with a prior expressed as a sum of two Gaussians,
one centered in sA = 4 with standard deviation σA = 0.5 and one centered in sB = 8 with
standard deviation σB = 0.2. The weights of the two Gaussians are wA = 0.2 and wB = 0.8,
respectively. The prior distribution is thus P0(s) ∝ wA

σA
e−(s−sA)

2/2σ2
A + wB

σB
e−(s−sB)

2/2σ2
B , has an average

value 〈s〉0 = 7.2, and is represented in Figure 2, left column top panel.
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Figure 2. Effect of modeling error with a Gaussian probability distribution with different standard
deviations σ on the posterior distribution PME(s). The experimental value is here set to sexp = 5.7,
which is compatible with the prior distribution. Left and middle column: prior P0(s) and posterior
PME(s) with σ = 0, 2.5, 5.0. Right column: ensemble average 〈s〉 plotted as a function of σ and Γ(λ)
plotted for different values of σ. λ∗ denotes that value of λ that minimizes Γ(λ).

We first enforce a value sexp = 5.7, which is compatible with the prior probability. If we are
absolutely sure about our experimental value and set σ = 0, the λ∗ which minimizes Γ(λ) is λ∗ ≈ 0.4
(Figure 2 right column, bottom panel). In case values of σ 6= 0 are used, the Γ(λ) function becomes
more convex and the optimal value λ∗ is decreased. As a result, the average s in the posterior
distribution is approaching its value in the prior. The evolution of the ensemble average 〈s〉σ with σ

values between zero and ten, with respect to the initial 〈s〉0 and the experimental sexp, is shown in
Figure 2, right column top panel. In all these cases the posterior distributions remain bimodal and
the main effect of the restraint is to change the relative population of the two peaks (Figure 2, left and
middle columns).

We then enforce an average value sexp = 2, which is far outside the original probability distribution
(see Figure 3). If we are absolutely sure about our experimental value and set σ = 0, the λ∗ which
minimizes Γ(λ) is very large, λ∗ ≈ 8 (Figure 3 right column, bottom panel). Assuming zero error on
the experimental value is equivalent to having poor confidence in the probability distribution sampled
by the force field, and leads in fact to a PME(s) completely different from P0(s). The two peaks in P0(s)
are replaced by a single peak centered around the experimental value, which is exactly met by the
ensemble average (〈s〉σ=0 = sexp = 2; Figure 3 middle column top panel). Note that this is possible
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only because the experimental value is not entirely incompatible with the prior distribution, i.e., it has
a small, non-zero probability also in the prior. If the probability had been zero, Γ(λ) would have
had no minimum and no optimal λ∗ would have been found. If we have more confidence in the
distribution sampled by the force field, assume that there might be an error in our experimental value,
and set σ = 2.5, λ∗ is more than one order of magnitude lower (λ∗ ≈ 0.52). The two peaks in P0(s) are
only slightly shifted towards lower s, while their relative populations are shifted in favor of the peak
centered around 4 (Figure 3, left column bottom panel). According to our estimate of the probability
distribution of the error, the ensemble average 〈s〉σ=2.5 ≈ 5.2 is more probably the true value than the
experimentally measured one. In case we have very high confidence in the force field and very low
confidence in the experimental value and set σ = 5.0, the correction becomes very small (λ∗ ≈ 0.18)
and the new ensemble average 〈s〉σ=5.0 ≈ 6.6, very close to the initial 〈s〉0 = 7.2 (Figure 3, middle
column bottom panel). The evolution of the ensemble average 〈s〉σ with σ values between zero and ten,
with respect to the initial 〈s〉0 and the experimental sexp, is shown in Figure 3, right column top panel.
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Figure 3. Same as Figure 2, but the experimental value is here set to sexp = 2, which is almost
incompatible with the prior distribution.

In conclusion, when data that are not consistent with the prior distribution are enforced,
the posterior distribution could be severely distorted. Clearly, this could happen either because
the prior is completely wrong or because the experimental values are affected by errors. By including
a suitable error model in the maximum entropy procedure it is possible to easily interpolate between
the two extremes in which we completely trust the force field or the experimental data.

4.2. Consistency between Data Points

We then consider a two dimensional model with a prior expressed as a sum of two Gaussians
centered in sA = (0, 0) and sB = (3, 3) with identical standard deviations σA = σB = 0.2 and weights
wA = wB = 0.5. The prior distribution is represented in Figure 4.

This model is particularly instructive since, by construction, the two components of s are highly
correlated and is hence possible to see what happens when inconsistent data are enforced. To this aim
we study the two scenarios (i.e., consistent and inconsistent data) using different error models (no
error model, Gaussian prior with σ = 1, and Laplace prior with σ = 1), for a total of six combinations.
In the consistent case we enforce sexp = (1, 1), whereas in the inconsistent one we enforce sexp = (1, 0).
Figure 4 reports the posterior distributions obtained in all these cases.

When consistent data are enforced the posterior distribution is very similar to the prior
distribution, the only difference being a modulation in the weights of the two peaks. The optimal
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value λ∗, marked with a ? in Figure 4, does not depend significantly on the adopted error model. The
main difference between including or not including error models can be seen in the form of the Γ(λ)
function. When errors are not included, Γ(λ) is almost flat in a given direction, indicating that one
of the eigenvalues of its Hessian is very small. On the contrary, when error modeling is included,
the Γ(λ) function becomes clearly convex in all directions. In practical applications, the numerical
minimization of Γ(λ) would be more efficient.
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Figure 4. Effect of different prior distributions for the error model in a two-dimensional system. In the
first (last) two columns, compatible (incompatible) data are enforced. In the first and the third column,
prior distributions are represented as black contour lines and posterior distributions are shown in
color scale. A black dot and a ? are used to indicate the average values of s in the prior and posterior
distributions respectively, while an empty circle is used to indicate the target sexp. In the second and
the fourth column, the function Γ(λ) is shown, and its minimum λ∗ is indicated with a ?. The first
row reports results where errors are not modeled, whereas the second and the third row report results
obtained using Gaussian and Laplace prior for the error model respectively. Notice that a different
scale is used to represent Γ(λ) in the first row. For the Laplace prior, the region of λ where Γ(λ) is
undefined is marked as white.

When enforcing inconsistent data without taking into account experimental error, the behavior is
significantly different. Indeed, the only manner to enforce data where the value of the two components
of s are different is to significantly displace the two peaks. On the contrary, the distortion is significantly
alleviated when taking into account experimental errors. Obviously, in this case the experimental
value is not exactly enforced and, with both Gaussian and Laplace prior, we obtain 〈s〉 ≈ (0.7, 0.7).

By observing Γ(λ) it can be seen that the main effect of using a Laplace prior instead of a Gaussian
prior for the error is that the range of suitable values for λ is limited. This allows one to decrease the
effect of particularly wrong data points on the posterior distribution.

In conclusion, when data that are not consistent among themselves are enforced, the posterior
distribution could be severely distorted. Inconsistency between data could either be explicit (as in
the case where constraints with different reference values are enforced on the same observable) or
more subtle. In the reported example, the only way to know that the two components of s should
have similar values is to observe their distribution according to the original force field. In the case of
complex molecular systems and of observables that depend non-linearly on the atomic coordinates,
it is very difficult to detect inconsistencies between data points a priori. By properly modeling
experimental error it is possible to greatly alleviate the effect of these inconsistencies on the resulting



Computation 2018, 6, 15 13 of 25

posterior. Clearly, if the quality of the prior is very poor, correct data points might artificially appear
as inconsistent.

5. Strategies for the Optimization of Lagrangian Multipliers

In order to find the optimal values of the Lagrangian multipliers, one has to minimize the function
Γ (λ). The simplest possible strategy is gradient descent (GD), that is an iterative algorithm in which
function arguments are adjusted by following the opposite direction of the function gradient. By using
the gradient in Equation (11) the value of λ at the iteration k + 1 can be obtained from the value of λ at
the iteration k as:

λ
(k+1)
i = λ

(k)
i − ηi

∂Γ
∂λi

= λ
(k)
i − ηi

(
sexp

i − 〈si(q)〉λ(k) − 〈εi〉λ(k)

)
, (33)

where η represents the step size at each iteration and might be different for different observables.
Here we explicitly indicated that the average 〈si (q)〉 should be computed using the Lagrangian
multipliers at the kth iteration λ(k). In order to compute this average it is in principle necessary to sum
over all the possible values of q. This is possible for the simple model systems discussed in Section 4,
where integrals can be done analytically. However, for a real molecular system, summing over all the
conformations would be virtually impossible. Below we discuss some possible alternatives.

Notice that this whole review is centered on constraints in the form of Equation (2). The methods
discussed here can be applied to inequality restraints as well, as discussed in Ref. [48].

5.1. Ensemble Reweighting

If a trajectory has been already produced using the prior force field V0(q), samples from this
trajectory might be used to compute the function Γ(λ). In particular, the integral in Equation (10) can
be replaced by an average over Ns snapshots qt sampled from P0(q):

Γ̃(λ) = ln

(
1

Ns

Ns

∑
t=1

e−λ·s(qt)

)
+ λ · sexp + Γerr(λ) . (34)

A gradient descent on Γ̃ results in a procedure equivalent to Equation (33) where the ensemble
average 〈s(q)〉

λ(k) is computed as a weighted average on the available frames:

λ
(k+1)
i = λ

(k)
i − ηi

∂Γ̃
∂λi

= λ
(k)
i − ηi

(
sexp

i − ∑Ns
t=1 si(qt)e

−λ(k) ·s(qt)

∑Ns
t=1 e−λ(k) ·s(qt)

− 〈εi〉λ(k)

)
. (35)

It is also possible to use conjugated gradient or more advanced minimization methods. Once the
multipliers λ∗ have been found one can compute any other expectation value by just assigning a
normalized weight wt = e−λ∗ ·s(qt)/ ∑Ns

t′=1 e−λ∗ ·s(qt′ ) to the snapshot qt.
A reweighting procedure related to this one is at the core of the ensemble-reweighting-of-SAXS

method [54], that has been used to construct structural ensembles of proteins compatible with
SAXS data [54,55]. Similar reweighting procedures were used to enforce average data on a variety
of systems [47,51,53,56–60]. These procedures are very practical since they allow incorporating
experimental constraints a posteriori without the need to repeat the MD simulation. For instance,
in Ref. [59] it was possible to test different combinations of experimental restraints in order to evaluate
their consistency. However, reweighting approaches must be used with care since they are effective
only when the posterior and the prior distributions are similar enough [61]. In case this is not true,
the reweighted ensembles will be dominated by a few snapshots with very high weight, leading to a
large statistical error. The effective number of snapshots with a significant weight can be estimated
using the Kish’s effective sample size [62], defined as 1/

(
∑Ns

t=1 w2
t

)
where wt are the normalized
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weights, or similar measures [63], and is related to the increase of the statistical error of the averages
upon reweighting.

5.2. Iterative Simulations

In order to decrease the statistical error, it is convenient to use the modified potential
V(q) = V0(q) + kBTλ · s(q) to run a new simulation, in an iterative manner. For instance, in the
iterative Boltzmann method, pairwise potentials are modified and new simulations are performed
until the radial distribution function of the simulated particles does match the desired one [35].

It is also possible to make a full optimization of Γ(λ) using a reweighting procedure like the one
illustrated in Section 5.1 at each iteration. One would first perform a simulation using the original force
field and, based on samples taken from that simulation, find the optimal λ with a gradient descent
procedure. Only at that point a new simulation would be required using a modified potential that
includes the extra kBTλ · s(q) contribution. This whole procedure should be then repeated until the
value of λ stops changing. This approach was used in Ref. [64] in order to adjust a force field to
reproduce ensembles of disordered proteins. The same scheme was later used in a maximum entropy
context to enforce average contact maps in the simulation of chromosomes [65,66]. A similar iterative
approach was used in Refs. [67,68].

In principle, iterative procedures are supposed to converge to the correct values of λ. However,
this happens only if the simulations used at each iteration are statistically converged. For systems
that exhibit multiple metastable states and are thus difficult to sample it might be difficult to tune the
length of each iteration so as to obtain good estimators of the Γ(λ) gradients.

5.3. On-the-Fly Optimization with Stochastic Gradient Descent

Instead of trying to converge the calculation of the gradient at each individual iteration and,
only at that point, modify the potential in order to run a new simulation, one might try to change the
potential on-the-fly so as to force the system to sample the posterior distribution:

V(q, t) = V0(q) + kBTλ(t) · s(q) . (36)

An earlier approach aimed at enforcing time-averaged constraints was reported in Ref. [69].
However, here we will focus on methods based on the maximum-entropy formalism.

The simplest choice in order to minimize the Γ(λ) function is to use a stochastic gradient descent
(SGD) procedure, where an unbiased estimator of the gradient is used to update λ. In particular,
the instantaneous value of the forward model computed at time t, that is s(q(t)), can be used to this
aim. The update rule for λ can thus be rewritten as a differential equation:

λ̇i(t) = −ηi (t)
(

sexp
i − si(q(t))− 〈εi〉λi(t)

)
(37)

with initial condition λ(0) = 0.
Notice that now η plays the role of a learning rate and depends on the simulation time t. This choice

is motivated by the fact that approximating the true gradient with its unbiased estimator introduces
a noise into its estimate. In order to decrease the effect of such noise, a common choice when using
SGD is to reduce the learning rate as the minimization (learning) process progresses with a typical
schedule η(t) ∝ 1/t for large times. In our previous work [48] we adopted a learning rate from the
class search then converge [70], which prescribes to choose ηi (t) = ki/

(
1 + t

τi

)
. Here ki represents

the initial learning rate and τi represents its damping time. In this manner, the learning rate is large
at the beginning of the simulation and decreases proportionally to 1/t for large simulation times.
The parameters ki and τi are application specific and must be tuned by a trial and error procedure.
In particular, a very small value of τ will cause the learning rate to decrease very fast, increasing the
probability to get stuck in a suboptimal minimum. On the other hand, a very large value of τ will
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prevent step-size shrinking and thus will hinder convergence. Analogous reasoning also applies to k
(see Section 6.1 for numerical examples). Also notice that the ki’s are measured in units of the inverse
of the observable squared multiplied by an inverse time and could thus in principle be assigned to
different values in case of heterogeneous observables. It appears reasonable to choose them inversely
proportional to the observable variance in the prior, in order to make the result invariant with respect
to a linear transformation of the observables. On the other hand, the τi parameter should probably be
independent of i in order to avoid different λi’s to converge on different timescales.

Once Lagrangian multipliers are converged or, at least, stably fluctuating around a given
value, the optimal value λ∗ can be estimated by taking a time average of λ over a suitable
time window. At that point, a new simulation could be performed using a static potential
V∗(q) = V0(q) + kBTλ∗ · s(q), either from a different molecular structure or starting from the structure
obtained at the end of the learning phase. Such a simulation done with a static potential can be
used to rigorously validate the obtained λ∗. Notice that, if errors have been included in the model,
such validation should be made by checking that 〈s〉 ≈ sexp − 〈ε〉. Even if the resulting λ∗ are
suboptimal, it is plausible that such a simulation could be further reweighted (Section 5.1) more
easily than the one performed with the original force field. When modeling errors, if an already
restrained trajectory is reweighted one should be aware that restraints will be overcounted resulting in
an effectively decreased experimental error (see Section 3).

As an alternative, one can directly analyze the learning simulation. Whereas strictly speaking this
simulation is performed out of equilibrium, this approach has the advantage that it allows the learning
phase to be prolonged until the agreement with experiment is satisfactory.

The optimization procedure discussed in this Section was used in order to enforce NMR
data on RNA nucleosides and dinucleotides in Ref. [48], where it was further extended in order
to simultaneously constrain multiple systems by keeping their force fields chemically consistent.
This framework represents a promising avenue for the improvement of force fields, although it is
intrinsically limited by the fact that the functional form of the correcting potential is by construction
related to the type of available experimental data. However, the method in its basic formulation
described here can be readily used in order to enforce system-specific experimental constraints.

Finally, notice that Equation (37) is closely related to the on-the-fly procedure proposed in the
appendix of Ref. [47], where a term called “generalized force” and proportional to λ is calculated from
an integral over the trajectory. Using the notation of this review, considering a Gaussian prior for the
error (Section 3), and setting the confidence in the force field θ = 1, the time-evolution of λ proposed
in Ref. [47] could be rewritten in differential form as Equation (37) with η(t) = 1/(σ2

i t), however with
a different initial condition λ(0) = s(q(0))/σ2

i .

5.4. Other On-the-Fly Optimization Strategies

Other optimization strategies have been proposed in the literature. The already mentioned target
metadynamics (Section 2.4) provides a framework to enforce experimental data, and was applied to
enforce reference distributions obtained from more accurate simulation methods [36], from DEER
experiments [37], or from conformations collected over structural databases [71]. It is however not
clear if it can be extended to enforce individual averages.

Also the VES method [38] (Section 2.4) is designed to enforce full distributions. However, in its
practical implementation, the correcting potential is expanded on a basis set and the average values of
the basis functions are actually constrained, resulting thus numerically equivalent to the other methods
discussed here. In VES, a function equivalent to Γ(λ) is optimized using the algorithm by Bach and
Moulines [72] that is optimally suitable for non-strongly-convex functions. This algorithm requires to
estimate not only the gradient but also the Hessian of the function Γ(λ). We recall that Γ(λ) can be
made strongly convex by suitable treatment of experimental errors (see Section 3). However, there
might be situations where the Bach-Moulines algorithm outperforms the SGD.



Computation 2018, 6, 15 16 of 25

The experiment-directed simulation (EDS) approach [73] instead does not take advantage of the
function Γ(λ) but rather minimizes with a gradient-based method [74] the square deviation between
the experimental values and the time-average of the simulated ones. A later paper tested a number
of related minimization strategies [75]. In order to compute the gradient of the ensemble averages
〈si〉λ with respect to λ it is necessary to compute the variance of the observables si in addition to their
average. Average and variance are computed on short simulation segments. It is worth observing
that obtaining an unbiased estimator for the variance is not trivial if the simulation segment is too
short. Errors in the estimate of the variance would anyway only affect the effective learning rate of
the Lagrangian multipliers. In the applications performed so far, a few tens of MD time steps were
shown to be sufficient to this aim, but the estimates might be system dependent. A comparison of the
approaches used in Refs. [73,75] with the SGD proposed in Ref. [48] in practical applications would
be useful to better understand the pros and the cons of the two algorithms. EDS was used to enforce
the gyration radius of a 16-bead polymer to match the one of a reference system [73]. Interestingly,
the restrained polymer was reported to have not only the average gyration radius in agreement with
the reference one, but also its distribution. This is a clear case where a maximum entropy (linear)
restraint and a harmonic restraint give completely different results. The EDS algorithm was recently
applied to a variety of systems (see, e.g., Refs. [34,75,76]).

6. Convergence of Lagrangian Multipliers in Systems Displaying Metastability

Evaluating the Lagrangian multipliers on-the-fly might be nontrivial especially in systems that
present multiple metastable states. We here present some example using a model system and provide
some recommendation for the usage of enhanced sampling methods.

6.1. Results for a Langevin System

We first illustrate the effect of the choices in the learning schedule on the convergence
of the Lagrangian multipliers and on the sampled distribution when using a SGD
approach (Section 5.3). We consider a one dimensional system subject to a potential
V0(s) = −kBT ln

(
e−(s−sA)

2/2σ2
+ e−(s−sB)

2/2σ2
)

, with sA = 0, sB = 3, and σ = 0.4. The system is
evolved according to an overdamped Langevin equation with diffusion coefficient D = 1 using
a timestep ∆t = 0.01. The average value of s in the prior distribution is 〈s〉0 = (sA + sB)/2 = 1.5.
The potential has been chosen in order to exhibit a free-energy barrier and is thus representative of
complex systems where multiple metastable states are available.

We then run an on-the-fly SGD scheme [48] in order to enforce an experimental average sexp = 1.
For simplicity, experimental error is not modeled. By using the analytical results of Section 4, it can be
seen that the exact Lagrangian multipliers required to enforce this average is λ∗ = 0.214. In particular,
we test different choices for k and τ which represent respectively the initial value of the learning rate
and its damping factor (see Section 5.3 for more details on these parameters). The list of parameters and
the results are summarized in Table 1, whereas Figure 5 reports the actual trajectories, their histogram,
and the time evolution of the Lagrangian multipliers.

Panels a1 and a3 in Figure 5 report results obtained with a correct choice of the parameters.
Panel a1 shows that the Lagrangian multiplier has quite large fluctuations at the beginning of the
simulation (as expected from SGD), which are then damped as the simulations proceeds. The resulting
sampled posterior distribution (red bars in panel a3) is in close agreement with the analytical solution
(continuous blue line). The resulting average 〈λ〉 ≈ 0.207 reported in Table 1 is in very good agreement
with the analytical result (λ∗ = 0.214).
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Table 1. Summary of the results obtained with the Langevin model, including learning parameters
(k and τ) and average 〈λ〉 and 〈s〉 computed over the second half of the simulation. In addition, we
report the exact Lagrangian multiplier λ∗〈s〉 required to enforce an average equal to 〈s〉 and the exact
average 〈s〉〈λ〉 corresponding to a Lagrangian multiplier 〈λ〉. The last two columns are obtained by
using the analytical solutions described in Section 4. Panel labels match those in Figure 5.

Panel k τ 〈λ〉 〈s〉 λ∗〈s〉 〈s〉〈λ〉
a 2 10 0.207 1.008 0.210 1.015
b 2 0.001 0.080 1.308 0.080 1.307
c 0.001 10 0.077 1.324 0.073 1.316
d 2 10000 0.145 1.000 0.214 1.157
e 1000 10 0.158 1.001 0.214 1.125

Figure 5. Effect of choosing different values for k and τ when using stochastic gradient descent (SGD)
on-the-fly during molecular dynamics (MD) simulations. Panel labels (a–e) refer to different sets of k
and τ values matching those of Table 1. In particular, for each set of k and τ we show the convergence
of the Lagrangian multipliers (number 1 of each letter), the time series of the observable (number 2
of each letter), and the resulting sampled posterior distribution, red bars, together with the analytical
result, continuous line (number 3 of each letter).

Panels b1 and b3 in Figure 5 show the effect of choosing a very small value of τ. This choice
not only kills the noise but also hinders the convergence of λ by shrinking too much the step-size
during the minimization. The resulting distribution shown in panel b3 is clearly in disagreement with
the analytical one having wrong populations for the two peaks. This example shows that apparently
converged Lagrangian multipliers (panel b1) are not a sufficient condition for convergence to the
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correct result, and it is necessary to check that the correct value was actually enforced. Panels c1 and
c3 in Figure 5 show the effect of choosing a too small value of k. This scenario is very similar to the
previous one since both cases result in small values of the learning rate η. Thus, what said for b1 and b3
also applies to c1 and c3. As reported in Table 1, in both cases the final average is 〈s〉 ≈ 1.3 and is thus
visibly different from sexp = 1. Thus, in a real application, this type of pathological behavior would be
easy to detect. We recall that in case error is explicitly modeled (Section 3) one should compare 〈s〉
with sexp − 〈ε〉λ.

Panels d1 and d3 in Figure 5 show the effect of choosing a very large value of τ. The effect of
such choice is that the damping rate of the noise in Lagrangian multipliers is much slower than in
the ideal case. This is reflected in the larger fluctuations of Lagrangian multipliers (panel d1) but
also in an incorrect reconstruction of the posterior. The last example, panels e1 and e3 in Figure 5,
shows the effect of choosing a very large value of k. In this case, the fluctuations of the Lagrangian
multiplier (panel e1) are even higher than in the previous case. As reported in Table 1, in both cases
the final average is equal to sexp = 1. So, even though the sampled distribution has the correct average
it is not the distribution that maximizes the entropy. This is a suboptimal solution that might be at
least qualitatively satisfactory in some case. However, it is clear that there is no way to detect the
incorrectness in the resulting distribution by just monitoring the enforced average. The only practical
way to detect the problem indeed is to consider the resulting value of 〈λ〉 ≈ 0.15 and run a new
simulation with a static potential. An additional indication of the problematic behavior is the large
(several units) fluctuations in the Lagrangian multipliers. Indeed, the problem can be rationalized
noting that the timescale at which λ evolves is too fast when compared with the typical time required
to see a transition between one state and the other and the restraining force is overpushing the system
forcing it to spend too much time in the region between the two peaks. The problem can be solved
either slowing down the λ evolution (as in panel a) or by using enhanced sampling methods to increase
the number of transitions.

6.2. Comments about Using Enhanced Sampling Methods

The model potential discussed above displays a free-energy barrier separating two metastable
states. In order to properly sample both peaks in the distribution it is necessary to wait the time
required to cross the barrier. If the transition is forced by very large fluctuations of λ, one can see
that the resulting distribution is significantly distorted. For this reason, whenever a system displays
metastability, it is highly recommended to use enhanced sampling techniques [2–4]. It is particularly
important to employ methods that are capable to induce transitions between the states that contribute
to the measured experimental averages. NMR timescales of typically µs-ms, i.e., upper limits for the
lifetimes of interconverting conformations that are indistinguishable in the spectra, can be reached
better using enhanced sampling techniques, since they result in probability distributions that would
be effectively sampled by a much longer un-enhanced continuous simulation.

Replica exchange methods where one replica is unbiased are easy to apply since the learning
procedure can be based on the reference replica. Methods such as parallel tempering [77],
solute tempering [78], bias-exchange metadynamics with a neutral replica [79], or collective-variable
tempering [80] can thus be used straightforwardly. Notice that in this case the higher replicas might
feel either the same correcting potential as the reference replica (as it was done in Ref. [48]) or might
be independently subject to the experimental restraints, provided the differences in the potential
energy functions are properly taken into account in the acceptance rate calculation. Leaving the higher
replicas uncorrected (i.e., simulated with the original force field) is suboptimal since they would
explore a different portion of the space leading to fewer exchanges with the reference replica. It is also
important to consider that, thanks to the coordinate exchanges, the reference replica will be visited by
different conformations. These multiple conformations will all effectively contribute to the update of
the Lagrangian multipliers. For instance, if an SGD is used, in the limit of very frequent exchanges,
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the update will be done according to the average value of the observables over the conformations of
all replicas, properly weighted with their probability to visit the reference replica.

Methods based on biased sampling, such as umbrella sampling [81], metadynamics [82],
parallel-tempering metadynamics [83], bias-exchange (without a neutral replica) [79] or
parallel-bias [84] metadynamics, require instead the implementation of some on-the-fly reweighting
procedure in order to properly perform the update of the Lagrangian multipliers. The weighting
factors should be proportional to the exponential of the biasing potential and, as such, might lead to a
very large variability of the increment of λ (Equation (37) that could make the choice of the learning
parameters more difficult. For instance, this could result in very large λi’s in the initial transient leading
to large forces that make the simulation unstable. When reweighting (see Section 5.1) a trajectory
generated using one of these enhanced sampling methods it is sufficient to use the weighting factors
in the evaluation of Equation (34). Notice that similar arguments apply to replica-based methods
(see Section 2.5), where on-the-fly reweighting is required in order to correctly compute the replica
average [85]. If the resulting weights of different replicas are too different, the average value might be
dominated by a single or a few replicas. A low number of replicas contributing to the average might in
turn lead to large forces, unless the spring constant is suitable reduced [86], and to an entropy decrease.

Even in the absence of any enhanced sampling procedure, we notice that Lagrangian multipliers
could be updated in a parallel fashion by multiple equivalent replicas, in a way resembling that used
in multiple-walkers metadynamics to update the bias potential [87]. Since si(q) enters linearly in
Equation (37), this would be totally equivalent to using the arithmetic average between the walkers
to update the Lagrangian multipliers (to be compared with the weighted average discussed above
for replica-exchange simulations), showing an interesting analogy between Lagrangian multiplier
optimization and replica-based methods (see Section 2.5). Such a multiple-walkers approach was used
for instance in the well-tempered variant of VES [88], although in the context of enhanced sampling
rather than to enforce experimental data.

7. Discussion and Conclusions

In this work, we reviewed a number of recently introduced techniques that are based on the
maximum entropy principle and that allow experimental observations to be incorporated in MD
simulations preserving the heterogeneity of the ensemble. We discuss here some general features of
the reviewed methods.

First, one must keep in mind that, by design, the maximum entropy principle provides a
distribution that, among those satisfying the experimental constraints, is as close as possible to
the prior distribution. If the prior distribution is reasonable, a minimal correction is expected to be
a good choice. However, for systems where the performance of classical force fields is very poor,
the maximum entropy principle should be used with care and, if possible, should be based on a
large number of experimental data so as to diminish the impact of force-field deficiencies on the final
result. As a related issue, different priors are in principle expected to lead to different posteriors,
and thus different ensemble averages for non-restrained quantities. There are indications that current
force fields restrained by a sufficient number of experimental data points lead to equivalent posterior
distributions at least for trialanine [51] and for larger disordered peptides [86,89]. It would be valuable
to perform similar tests on other systems where force fields are known to be poorly predictive, such as
unstructured RNAs or difficult-to-predict RNA structural motifs.

We here discussed both the possibility of reweighting a posteriori a trajectory and that of
performing a simulation where the restraint is iteratively modified. Techniques where the elements of
a previously generated ensemble are reweighted have the disadvantage that if the initial ensemble
averages are far from the experimental values the weights will be distributed very inhomogeneously
(i.e., very large λi will be needed), which means that singular conformations with observables close to
the experimental values can be heavily overweighted to obtain the correct ensemble average. In the
extreme case, it might not even be possible to find weights that satisfy the desired ensemble average,
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since important conformations are simply missing in the ensemble. On the other hand, reweighting
techniques have the advantage that they can be readily applied to new or different experimental data,
without performing new simulations. Additionally, they can be used to reweight a non-converged
simulation performed with an on-the-fly optimization.

When simulating systems that exhibit multiple metastable states, it might be crucial to combine
the experimental constraints with enhanced sampling methods. This is particularly important if
multiple metastable states contribute to the experimental average. As usual in enhanced sampling
simulations, one should observe as many as possible transitions between the relevant metastable states.
When using replica-based methods (either to enhance sampling or to compute averages), transitions
should be observed in the continuous trajectories.

Several methods are based on the idea of simulating a number of replicas of the system with a
restraint on the instantaneous average among the replicas and have been extended to treat experimental
errors. These methods are expected to reproduce the maximum entropy distribution in the limit of
a large number of replicas. However, if the number of replicas is too low, the deviation from the
maximum entropy distribution might be significant. Indeed, the number of replicas should be large
enough for all the relevant states to be represented with the correct populations. The easiest way to
check if the number of replicas is sufficient is to compare simulations done using a different number of
replicas. Methods based on Lagrangian multipliers reproduce the experimental averages by means
of an average over time rather than an average over replicas. Thus, they can be affected by a similar
problem if the simulation is not long enough. This sort of effect is expected to decrease when the
simulation length increases and when using enhanced sampling techniques.

The on-the-fly refinement of Lagrangian multipliers typically requires ad hoc parameters for
the learning phase that should be chosen in a system-dependent manner. Properly choosing these
parameters is not trivial. Several different algorithms have been proposed in the last years and a
systematic comparison on realistic applications would be very useful. It might also be beneficial to
consider other stochastic optimization algorithms that have been proposed in the machine-learning
community. Interestingly, all the methods discussed in this review for on-the-fly optimization (target
metadynamics, maximum entropy with SGD, VES, and EDS) are available in the latest release of the
software PLUMED [90] (version 2.4), which also implements replica-based methods, forward models
to calculate experimental observables [91], and enhanced sampling methods.

Finally, we notice that there are cases where results might be easier to interpret if only a small
number of different conformations were contributing to the experimental average. In order to obtain
small sets of conformations that represent the ensemble and provide a clearer picture about the
different states, several maximum parsimony approaches have been developed. Naturally, the selection
of a suitable set of structures is done on an existing ensemble and not on-the-fly during a simulation.
While some approaches use genetic algorithms to select the structures of a fixed-size set [28,92,93],
others use matching pursuit [94] or Bayes-based reweighting techniques to obtain correct ensemble
averages [95–98] while minimizing the number of non-zero weights, i.e., structures, in the set.
These approaches are not central to this review and so were not discussed in detail.

In conclusion, the maximum (relative) entropy principle provides a consistent framework to
combine molecular dynamics simulations and experimental data. On one hand, it allows improving
not-satisfactory results sometime obtained when simulating complex systems with classical force
fields. On the other hand, it allows the maximum amount of structural information to be extracted
from experimental data, especially in cases where heterogeneous structures contribute to a given
experimental signal. Moreover, if experimental errors are properly modeled, this framework allows
to detect experimental data that are either mutually inconsistent or incompatible with the employed
force field. For all these reasons, we expect this class of methods to be increasingly applied for the
characterization of the structural dynamics of biomolecular systems in the coming future.
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DEER double electron-electron resonance
EDS experiment-directed simulation
GD gradient descent
MD molecular dynamics
NMR nuclear magnetic resonance
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