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Abstract: Accuracy improvement is among the primary key research focuses in the area of
recommender systems. Traditionally, recommender systems work on two sets of entities, Users and
Items, to estimate a single rating that represents a user’s acceptance of an item. This technique was
later extended to multi-criteria recommender systems that use an overall rating from multi-criteria
ratings to estimate the degree of acceptance by users for items. The primary concern that is still open
to the recommender systems community is to find suitable optimization algorithms that can explore
the relationships between multiple ratings to compute an overall rating. One of the approaches for
doing this is to assume that the overall rating as an aggregation of multiple criteria ratings. Given this
assumption, this paper proposed using feed-forward neural networks to predict the overall rating.
Five powerful training algorithms have been tested, and the results of their performance are analyzed
and presented in this paper.

Keywords: recommender systems; artificial neural network; genetic algorithm; simulated annealing;
back-propagation; Adaline; Levenberg-Marquardt

1. Introduction

Recommender systems are fast becoming essential instruments for both industries and academic
institutions in addressing decision-making problems, such as choosing the most appropriate items
from a large group of items. They play important roles in helping users to find items that might
be relevant to what they want [1,2]. Nowadays, many definitions have been suggested for the term
recommender system, but the most common one is to define it as an intelligent system that predicts
and suggests items to the users that might match their choices. Another simple way to explain it is
to assume there are two sets (Users and Items) consisting of the users of the system and the items
that will be recommended to them respectively. A recommender system uses a utility function f to
measure the likeness of an item i by a user u, where i ∈ Items and u ∈ Users. This relationship can
be represented as: f (u, i) 7→ ro, where ro is a rating, which measures the degree to which the user
may accept the item. Recommender systems seek to estimate ro for each user× item relationship and
recommends items with higher rating values to the users [3].

Several forms of supervised learning algorithms have been applied to predict users’ preferences
of unseen items from a vast catalog of products using datasets of numerical preferences within
some closed interval (e.g., 1 to 10). The most commonly used algorithms are content-based filtering,
collaborative filtering, knowledge-based, and hybrid-based which combines two or more algorithms in
different ways [4]. However, these kinds of the systems have some fundamental issues such as sparsity,
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cold start, and scalability problems. These problems have significantly affected the performance of
the recommender systems. Artificial neural networks can be used to handle some of these problems
as proposed by Zhao et al. [5], where contextual information are incorporated into the systems and
modeled as a network of substitutable and complementary items. Another major drawback with these
kinds of recommender systems is the of a single rating ro to decide whether the user is interested in
the item or not. There is a considerable amount of research that establishes the limitations of single
rating traditional recommender systems [6]. This is because there are many attributes of items used by
users to decide on the usefulness of the items. Recent developments in the domain of recommender
systems have heightened the need for considering some of these major attributes of items to make
more accurate recommendations.

Multi-criteria recommender systems have invoked some of the most remarkable current
discussions for solving some of the difficult problems of traditional recommendation systems. This area
has been studied by many researchers [6,7], and it shows more reasonable recommendation accuracy
over the traditional techniques. However, the central question is how to model the criteria ratings
to estimate the overall rating that can be used in making the final recommendation. Consequently,
Gediminas et al. [6] challenge the recommender systems community to use some of the sophisticated
machine learning algorithms (especially artificial neural networks) to predict overall ratings based on
the ratings given to the criteria. Even though a lot of research has been carried out on multi-criteria
recommender systems, what is not yet clear is the impact of other sophisticated machine learning
algorithms such as artificial neural networks in improving recommendation accuracy for multi-criteria
recommendation problems. These challenges are currently quite open. This paper seeks to pursue
this challenge by proposing different learning algorithms to train artificial neural networks using
movie recommendation data sets. The aim of the study is to examine the emerging performance of
some learning algorithms such as backpropagation (gradient descent-based), Levemberg-Marquardt,
simulated annealing, Delta rule, and genetic algorithms in training artificial neural networks to
shed more light on which option to pursue when using neural networks to improve the accuracy
of multi-criteria recommender systems. This research will provide a significant opportunity to
advance our understanding of the better algorithms to use for training neural networks, especially
when modeling multi-criteria recommendation problems. The paper is composed of five themed
sections, including this introduction section. Section 2 begins by laying the theoretical background
of multi-criteria recommender systems, artificial neural networks, and the training algorithms used.
Section 3 contains the details of the experiments conducted, while results and discussion of the study
are provided in Section 4. Finally, the conclusion in Section 5 gives a summary of the work and
identifies potential areas for future research.

2. Background

This study covers many independent research domains within the area of computational science.
Therefore, at this point, it is considered necessary to give a brief panorama of the topics concerned.
The most important areas to understand are the multi-criteria recommender systems and artificial
neural networks, followed by the training algorithms.

2.1. Multi-Criteria Recommender Systems (MCRSs)

MCRSs were proposed principally to overcome some of the shortcomings of traditional
recommendation techniques by taking into consideration the users’ preferences based on multiple
characteristics of items to possibly provide more accurate recommendations [8]. This technique has
been applied in many popular recommendation domains such as product recommendations [9],
tourism and travel domains[10], restaurant recommendation problems [11], research paper
recommendations [12], e-learning [13] and many others.
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The MCRSs technique extends traditional recommender systems by allowing the users to give
ratings to several items’ characteristics known as criteria. Each criteria rating ri for i = 1, 2, ..., k,
provides additional information about users’ opinions on the items; for instance, in a movie
recommendation problem, users may like a movie based on action, story, visuals, or the direction
of the movie. Therefore, users are expected to give ratings for those criteria and possibly with an
additional rating called the overall rating. Hence, the utility function of traditional recommender
systems introduced briefly in the introduction section needs to be extended to account for multiple
criteria ratings as presented in (1) below:

f : Users× Items→ r1 × r2 × r3 × ...× rk (1)

Because of the nature of the utility function (see (1)), it becomes necessary to introduce a new
technique that can use all the ratings for making more accurate predictions. There are two main
approaches used for calculating user preferences in MCRSs. One of them is the heuristic-based
approach that uses multidimensional similarity metrics to calculate similarity values on each criterion
together with the overall rating ro, and the second one is the model-based approach in which a model
is built to estimate the ro. An aggregation function model is a perfect example of the model-based
approach that computes ro as a function of other criteria (see (2)).

ro = f (r1, r2, r3, ..., rk) (2)

2.2. Artificial Neural Networks (ANNs)

ANNs are coordinative intelligent systems consisting of neurons as the essential elements. They are
powerful algorithms initially inspired by the goal of implementing machines that can imitate the human
brain [14]. ANNs strive to simulate, in a great fashion, the network of neurons (nerve cells) of the
biological nervous system. The physical structure and information processing of the human brain
are partially imitated with collections of interconnected neurons to model nonlinear systems [15].
Neurons are cells in the brain that contain input wires to other neurons called dendrites and output
wires from a neuron to other neurons called axons.

Neurons are computational units that accept inputs via dendrites and sends the result to another
neuron after the computations through the axon. Neurons are organized in ANNs in the form of
layers. A layer that receives inputs from the external environment is called an input layer and the
one that presents the computational results is referred to as the output layer. Between the input and
output layers, there may be other layers called hidden layers. Every neuron in the network belongs
to exactly one layer, and there may be several neurons in one layer. ANNs architecture is referred
to as a feedforward network if the flow of signal is in a direction in which the input values are fed
directly into the input layer, then to the next layer after the computation. ANNs that contain at least
three layers (input, output, and one or more hidden layers) are called multi-layer ANNs (or MANNs
for short). The underlying architecture of MANNs is given in Figure 1, containing one hidden layer.
ANNs are fully connected, which means that each neuron at every layer is attached to all neurons in
the adjacent layer [16].

The output of ANNs is a computational result of an activation function fω(χ) where ω is a vector
of synaptic weights between neurons and χ is a vector of the input values. ω contains important
parameters that the ANNs need to learn for determining an accurate output value for any input
values in χ. The fω(χ) can be of different types such as a sigmoid (logistic) activation function(

fω(χ) =
1

1+e−ωT χ

)
, linear activation function

(
fω(χ) = ωTχ

)
, tangent hyperbolic activation function(

fω(χ) = 1−e−ωT χ

1+e−ωT χ

)
, etc. In working with the ANNs, an appropriate activation function must be

defined at each layer that receives signals from the previous layer to scale the data output from the
layer. The choice of the kind of activation function to use depends on the nature of the output the
neuron is expected to provide.



Computation 2017, 5, 40 4 of 18

Figure 1. Architecture of the basic multi-layered neural network.

However, as the output of the network depends on the synaptic weights and bias, the central
question in using ANNs to solve any machine learning problem is to think about how the networks will
be trained in learning the appropriate connection weights to produce optimal outputs. The target is to
find a value ∆ω that can be used to update the weights based on some given criteria. Several algorithms
can be used to find ∆ω to train ANNs. In the subsequent sections, we briefly explain some of the
possible algorithms for training ANNs.

2.3. Delta Rule Algorithm (DRA)

The DRA is a popular and efficient algorithm for training ANNs that does not contain hidden
layers. It is based on a gradient descent algorithm that was developed to train two-layer networks
which deal with a nonlinearly separable data set. It uses a constant learning rate η, which is a parameter
that controls how much the updating steps can affect the current values of the weights. It also contains
the derivative of the activation functions fω(χ), the error between real and estimated outputs, and the
current features to compute ∆ω (see (3), yj is the actual value from the data set) so that the updated
weights that can be used in the n + 1 iteration will be computed using ∆ω (see (4)). Note that in this
experiment, the DRA algorithm may be referred to as ADAptive Linear Neuron (Adaline) algorithm.

∆ωi = η(yj − fω(χ)) f
′
ω(χi)xi (3)

ω(n + 1) = ω(n) + ∆ω (4)

2.4. Backpropagation Algorithm (BPA)

Section 2.2 explained the basic architecture of MANNs, and how features are forward propagated
from the input to the output layer. Although the algorithm described in Section 2.3 works quite well for
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ANNs having only two layers, this algorithm can not be applied to ANNs with more than two layers.
To solve this problem, BPA is one of the algorithms used to determine the optimal values of weights
in MANNs. There are two versions of back-propagation algorithms employed in this experiment:
the gradient descent-based, and Levenberg-Marquardt-based BPA. For simplicity, this study refers to
gradient descent-based algorithm simply as “BPA” (discussed here) and the Levenberg-Marquardt
algorithm-based as “LMA”. BPA works by training the networks to produce the estimated output
fω(χ). As each feature set is presented to the network, errors are calculated between the outputs of
the networks yj for j′s feature sets. The weights’ matrix is then modified to minimize the errors. In an
experiment with training data containing N features, the average error Eav is determined as follows:

Eav =
1

2N

N

∑
j=1

(yj − fω(χ))
2 (5)

The following steps explained how BPA works according to some of the recent implementations
of the algorithm [17].

1. Define the training sets and randomly generate the synaptic weights.
2. Advance the training data set from the input to the output layer via the hidden layers to obtain

the estimated output.
3. Calculate the error using (5).
4. Terminate the training if the error satisfies the given criteria or if the maximum number of iteration

is reached.
5. Update the synaptic weights of the networks according to the layers.
6. Go to step 2.

Calculating ∆ω using BPA is a bit lengthy compared to doing so with Adaline. It requires someone
to have a basic mathematical background, especially the rules of differential calculus. We therefore
skip the derivation, but the reader can find a detailed explanation of this derivation in [16].

2.5. Levenberg-Marquardt Algorithm (LMA)

LMA was proven to be among the most efficient optimization algorithms for solving various
minimization problems than conjugate gradient techniques like the dog-leg algorithm, the double
dog-leg algorithm, the truncated conjugate gradient, two-dimensional search methods, as well as the
gradient descent algorithm [18]. It is used to solve nonlinear least square optimization problems that
look exactly like the error function in (5).

To highlight how the LMA computes the error function and updates the weights, let
dj = (yj − fω(χ)); we can rewrite the error function over the feature set x as E(x) = 1

2N ∑N
j=1 d2

j (x)

where x contains the elements x1, x2, ..., xk. dj is a function Rk 7→ R which is an error for j′s feature
set where N > k. To put it in a simpler form, we can take the error function E as a vector of errors
d : Rk 7→ RN defined by d(x) = (d1(x), d2(x), d3(x), ..., dN(x)) so that the error E can be written as
E(x) = 1

2 ‖ d(x) ‖2. Let’s define a Jacobian matrix M(x) as a matrix of the derivatives of the error

function with respect to x as M(x) =
∂dj
∂xi

for j ∈ [1, N] and i ∈ [1, k]. The weight update ∆ω can be
obtained using (6), and for the new weights, we go back to (4).

∆ω = (MT M + η I)−1MTd (6)

2.6. Genetic Algorithm (GA)

GA is a very prominent non-traditional optimization technique which resembles the theory of
evolution. It is an adaptive search algorithm that works based on the methods of natural selection.
Unlike the previous algorithms, GA works based on logic, not derivatives of a function and it can
search for a population of solutions, not only one solution set. The logic it uses is based on the concept
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of ‘Survival of the fittest’ from Darwin’s theory [19] which means only the most competent individual
will survive and generate other individuals that might perform better than the current generation.

While a variety of explanations can be found about this algorithm in the literature, the most
common way to explain GA is to look at it as a replica of biological chromosomes and genes, where the
chromosome is a solution set or an individual containing the set of parameters to be optimized, and
a gene represents single components of those parameters. New generations of chromosomes can be
generated by manipulating the genes in the chromosomes. A collection of chromosomes is known as
a population, and the population size is the exact number of chromosomes in the experiment. Two
basic genetic operators ‘mutation’ and ‘crossover’ are used to manipulate genes in the chromosomes.

The crossover operation combines genes from two parents to form an offspring, while the mutation
operation is used to bring new genetic material into the population by interchanging the genes in the
chromosome [20]. The following steps summarize how GA works in solving optimization problems.

1. Generate n population of chromosomes at random.
2. Compute the fitness (E(x) in our case) of each chromosome.
3. Generate a new population using the selected GA operator.
4. Run the algorithm using the newly generated population.
5. Stop if a particular stopping condition is satisfied or
6. Go back to step 2.

Chromosomes are selected as parents for step (3) based on some selected rule (GA operator) to
produce new chromosomes for the next iteration. In this experiment, the stochastic universal sampling
technique was adopted. This method chooses potential chromosomes according to their calculated
fitness value in step (2) [15]. Both mutation and crossover were applied concurrently to reproduce the
fittest offspring.

2.7. Simulated Annealing Algorithm (SMA)

The SMA is a non-traditional optimization algorithm that uses some probabilistic laws to search
for an optimal solution. In science and engineering, the word ‘annealing’ is defined as a thermal
method of getting low energy states of a solid in a heat bath by initially changing the temperature of
the heat bath to the melting state of the solid and then lowering it down gently for the particles to
organize themselves as in the initial state of the solid [21]. The SMA mimics the adaptive metropolis
algorithm [22], which is a procedure used for sampling a specified distribution of a large data set.
In 1953, Metropolis et al. [23] introduced an algorithm based on Monte Carlo methods [24] to simulate
the change of states of a solid in a heat bath to thermal equilibrium in the following way. Let ei be the
energy of the solid at a state i, any subsequent energy ej of the same solid at state j can be generated by
transforming ei using a perturbation mechanism. If the difference ej − ei 6 0, then ej will be accepted

directly, otherwise, ei will be accepted with a certain probability exp
(ei−ej)

cT , where the parameter c is
called a Boltzmann constant and T is the temperature of the heat bath. Similarly, the SMA generates
sequence of solutions to optimization problems by replacing a state in the Metropolis algorithm to
serve as one solution, and the energy of the state as a result produced by the activation/error function E.
Therefore, if we have two solutions a1 and a2, then the values produced by functions can be written
as E(a1) and E(a2) respectively. Accepting a2 to replace a1 depends on the probability distribution
given in (7), where k is a real number called a control parameter (similar to the Boltzmann constant, c).
This result can be generalized to any two solutions (ai) and (aj) for i 6= j.

Pk(accepta2) =

1, if E(a2) 6 E(a1)

exp
(E(a1)−E(a2))

kT , otherwise
(7)
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Updating the weights in SMA-based networks requires a vector ~Vof step lengths of the weights
matrix W, with vi ∈ ~V and wi ∈W. The error E(W) produced by W is calculated in a manner similar
to (5), and the subsequent weights can be computed by changing the individual weight wi (see (8)).
r is a random number between −1 and 1.

w
′
i = wi + r ∗ vi (8)

Similarly, E(W ′) will be calculated and compared with E(W). Accepting W ′ instead of W depends
on the result of whether E(W ′) 6 E(W). This decision will be taken by applying the Metropolis
algorithm in (7). The T in (7) will be updated to T′ = TQ, where Q is another random number between
a given interval.

2.8. Randomized and Ensemble Methods

Another training approaches that even though have not been experimented in this study are the
randomized and ensemble approaches. We briefly mention them here to serve as additional guides to
someone who might be interested in improving the accuracy of the approaches we analyzed. Similar to
SMA and GA, both randomized and ensemble methods are optimization techniques that have been
studied extensively for improving the performance of ANNs. A Random Neural Networks (RNN) was
introduced in the inaugural RNN paper [25], which has found to be capable of providing excellent
performance in various areas of application [26] and has motivated many theoretical papers [27].
A recent survey of randomized algorithms for training neural networks conducted by [14] provides
an extensive review of the use of randomization in kernel machines and related fields. Furthermore,
Ye et al. [28] provide a systematic review and the state-of-the-art of the ensemble methods that can
serve as a guideline for beginners and practitioners. They discussed the main theories associated with
the ensemble classification and regression. The survey reviewed the traditional ensemble methods
together with the recent improvements made to the traditional methods. Additionally, the survey
outlined the applications of the ensemble methods and the potential areas for future research.

3. Experimental Section

The experiment was carried out by using object oriented programming techniques with Java [29]
to develop the ANNs [17] and to use five training algorithms to train the models. The skeleton of the
class diagram implemented for carrying out the study is shown in Figure 2. Note that the diagram
did not constitute all the classes used in the experiment; for instance, the genetic algorithm alone
contains additional classes such as the chromosomes class, individual class, and so on. Lee et al. [30]
gave a straightforward explanation of the classes required to implement genetic algorithms in Java.
Nevertheless, the figure just gives an abstract architecture of the model. Additionally, the simulation
of the five algorithms is undertaken using a Windows personal computer (NCC, Abuja, Nigeria) with
system configuration as Intel R© CoreTM i7-3612QM CPU @2.10 GHz 2.10 GHz and installed memory
(RAM) of 4.00 GB.

Furthermore, in all five experiments, the weights of the neural network were randomly generated
to form a matrix of weights as arrays of floating point numbers between some given interval (mostly
between 0 and 1. Sometimes the range is determined by values of other variables like the starting
temperature as in the case of simulated annealing). Two or more weights can have the same real value
since weights of neural networks are independent of one another. The progress of the five algorithms
was monitored based on the series of training cycles.
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Figure 2. Class diagram of the model.

Moreover, analogous to the case of the SMA, GA also requires some parameters for the algorithm
to work efficiently. The population of the candidate solution was first randomly generated to begin
the training. Individuals in the population known as chromosomes contain floating point numbers
called genes. The number of chromosomes to participate in the training needs to be specified. Also,
the experiment requires a parameter that determines the percentage of chromosomes to mate based
on the fitness values and reproduced offspring that will be used for future iterations. Mating in
this context means pairing of two chromosomes to exchange some of their genes to generate new
chromosomes that are expected to have higher fitness than the parents. The experiment requires
the percentage of the number of genes that two pairs of chromosomes can exchange randomly as
a parameter. Several values of those parameters were tested to choose an optimal solution.

On the other hand, the remaining three algorithms (Adeline, BPA, and LMA) share many things
in common. Their basic requirements are to define activation functions at each layer of the network
(except at the input layer), and also to set the learning rate to a real number to control the speeds of
which the networks produced optimal solutions. Different values have been tested to prevent the
networks from oscillating between solutions, or to prevent the networks from diverging completely, or
to prevent longer convergence time. In the same manner, as in the previous algorithms, the number of
training cycles and the target error value were also specified. The activation functions used are the
linear activation function for the output layers and the sigmoid logistic function for the hidden layers
in BPA and LMA. Each of the four MANNs consists of three layers: input, hidden and output layers
(see Figure 1), with five neurons in the input layer.

Moreover, a data set extracted from Yahoo!Movies [31] was used in the experiments. It consists
of multi-criteria ratings obtained from users who rate movies based on four different characteristics.
The criteria ratings ri′s are considered as to determine the preferences of users on movies. The criteria
ratings are for the action, the story, the direction and the visual effects of the movies, represented by r1,
r2, r3, and r4 respectively. The ratings were measured using a 13-fold quantifiable scale from A+ to
F representing the highest and the lowest references for each criterion ri, for 1 < i < 4 as in Table 1,
where ro is the overall rating.
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Table 1. Sample of the Yahoo!Movies data det for multi-criteria recommender systems.

User ID Acting Story Direction Visual Overall Movie ID(r1) (r2) (r3) (r4) (ro)

1
C C B− A B− 1
B A− B+ B B+ 2

A+ C C− B− C− 47

2
A+ A+ A+ A+ A+ 3
B− A A− B A+ 4
C− C A+ A+ A+ 5

3
A B+ A B+ B+ 6

B+ B B+ B+ B+ 4
B B+ B B+ B+ 3

To obtain numerical ratings that can be suitable for the experiments, the ratings in Table 1 were
transformed to numerical ratings (see Table 2). The most preferred rating (A+) is represented by an
integer number 13, and the least preferred rating (F) is replaced by 1. The same changes have been
made to all other ratings (A, A−, B+, ...).

Table 2. Modified sample of the Yahoo!Movies data set for multi-criteria recommender systems.

User ID Acting Story Direction Visual Overall Movie ID(r1) (r2) (r3) (r4) (ro)

1
6 6 8 12 8 1
9 11 10 9 10 2
13 6 5 8 5 47

2
13 13 13 13 13 3
8 12 11 9 13 4
5 6 13 13 13 5

3
12 10 12 10 10 6
9 9 10 10 10 4
9 10 9 10 10 3

Data cleaning was performed after the transformation to remove cases that have missing ratings
either among the four criteria or the overall rating. Likewise, movies rated by few users were taken
out of the experimental data. The resulting data set used for the study contains approximately
62,000 ratings from 6078 users to about 1000 different movies.

Furthermore, when training ANNs, for various reasons such as the type of activation function
used, it is important to perform other preliminary treatments on the data set before the training [32].
For instance, when using a logistic sigmoid function as the activation function of the neurons, which
produces an output between 0 and 1, then the interval of the output values from the activation function
has to be respected. Although data normalization has been used by many researchers and shows
significant improvements in the results and reduction of the length of the training period, no particular
method is recommended for data normalization. However, the most important thing is to normalize
the data with respect to the range of values given by the candidate activation function [32,33]. For this
reason, we considered taking the ratio between each entry in the data set to the maximum number
of all the entries. Recall that all the entries in Table 2 are between 1 and 13, then dividing each ri by
13 gives the desired result in a normalized form 0 < ri/13 6 1 ∀i. For example, the first row of Table 2
will be in the form [0.461538462, 0.461538462, 0.615384615, 0.923076923, 0.615384615] for the action, the
story, the direction, the visuals, and the overall ratings respectively.
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We used statistical data analysis techniques to compute the linear relationships between the
criteria ratings and the overall rating, and also to find the statistical significance of each criteria rating
with respect to the overall rating. The Pearson correlation coefficient was used for computing the linear
relationships while the significance was obtained using P-Value by setting the significance level to 5%
(p = 0.05). Table 3 displays the results which indicate that all the correlations are statistically significant.

Table 3. Statistical analysis of the data.

Measure Acting Story Direction Visual

Correlation 0.904645 0.865350 0.910920 0.833844
Covariance 0.065629 0.058301 0.065686 0.055819

p-Value 0.00000 1.44 × 10−15 0.00000 3.73 × 10−29

Additionally, the experiment was conducted, and the results were analyzed using two types of
data sets: the training and testing set. The two sets are in the ratio of 3:1 (75% and 25% ) of the entire
data set for training and testing respectively.

3.1. Parameter Settings

The first step necessary to achieve an accurate performance of the algorithms was to select
appropriate parameter values required by each algorithm. Consequently, the experiment started by
choosing a constant positive number between 0 and 1 to serve as the learning rate. Several values
were tested to find the one that provided the minimum MSE and also allowed the networks to
converge. Therefore, we started with a relatively high value (0.4) and monitored the performance of
the algorithms. The same process was repeated many times by decreasing the value as the training
continued. Figure 3 shows the errors for different learning rates. We decided to choose 0.01 as
a good value for the experiments. The same procedure was followed to choose the population size,
the mutation rate, and the starting temperature for the genetic and simulated annealing algorithms
respectively. We considered relevant literature and used comparable methods of selecting the
experimental parameters [34] and taking various precautions to avoid premature convergence [35].
The target training error used in all the experiments was set to 0.001. In SMA, setting the T was done
carefully to ensure that the initial probability of accepting the solutions be close to 1. However, too high
T may result in bad performance and long training computation time. According to Bellio et al. [36]
choosing T in the interval [1, 40] and Q ∈ [0.99, 0.999] was confirmed to provide better performance of
the SMA. Therefore we initialized T = 30, and Q was generated randomly within the above interval.
Furthermore, to prevent accepting bad solutions, the minimum value that T can take was set to 1,
and the was epoch 500 iterations. The stopping condition depends on attaining the target error, T < 1,
or the number of iteration equals 500.

Similarly, in the GA experiment, the elitism number was set to 5, epoch to 100 iterations, and
population size to 100 chromosomes. Other relevant parameters are the mutation and crossover
probabilities. After conducting a sensitivity analysis, we select the crossover probability to be 85%,
and the mutation probability to 9%. The stopping condition depends on the epoch and the target error.
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Figure 3. MSE against different values of the learning rate.

4. Results and Discussion

Mean square error (MSE) was proposed as the criteria for evaluating the performance of the
learning algorithms during training and testing phases of the study. It was used to measure how close
the outputs of the networks were to the real values from the data set. It was explained in Section 2.4
when discussing (5), which for every output, the MSE takes the vertical distance between the actual
output and the corresponding real value and squares the value. Then for each iteration, it adds up all
the values and divides by the number of the input sets from the data set. This metric was chosen due
to its non-negative characteristics and suitable statistical properties.

Furthermore, the result of the experiment for comparing the effectiveness of the algorithms is
shown in Table 4. It contains the total number of iterations required by the algorithms for training,
the training and test errors, the correlation between the estimated and actual outputs in the test data
set, as well as the p-value which is a function that measures how close the predicted outputs are
relative to the actual values. Moreover, the correlation coefficients between the actual outputs of the
five experiments and the real values are presented in Table 5.

Table 4. Statistical Analysis of the Experimental result.

Algorithms Number of Average Average p-ValueTraining Cycles Training MSE Test MSE

Adaline 10 0.0054 0.0053 8.7 × 10−59

SMA 460 0.0075 0.0069 2.3 × 10−57

GA 70 0.0145 0.0138 1.4 × 10−55

LMA 750 0.0514 0.0389 5.4 × 10−52

BPA 2197 0.0509 0.0437 8.6 × 10−49

The results in Tables 4 and 5 are supported by graphs in Figures 4–9 that show the relationships
between the actual values (see Figure 4) and those of the five algorithms in Figure 6, while Figures 5–9
contain pairs of curves of the actual values and the output of the individual training algorithm.
The findings show the advantages and disadvantages of the five algorithms used, in particular
between the ones used for training the MANNs. The rest of this section discusses the findings of the
study. Subsequently, some issues that determined the predictive performance of the five networks
were identified. The explanation begins by first considering the architectural differences between
the networks regarding the differences in accuracy of the four algorithms used to train the MANNs.
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To begin with, it is interesting to note that among the two architectures (single and MANNs) and
five algorithms employed in this study, the Adaline network performs better than the MANNs trained
with any of the other four algorithms. According to Table 4, the MSE of Adaline was observed
to be better than MANNs training algorithms, which also confirmed the efficiency of single layer
networks [37], and consequently, it is not necessary to implement MANNs trained with any of the
remaining algorithms for improving the prediction accuracy of MCRSs. This observation is consistent
with the result shown in Table 5 and Figures 5 and 6 that showed that the neural network trained using
Adeline has the strongest linear relationships with the actual values from the test data. Another strong
piece of evidence of the efficiency of the Adaline network is the computation speed and the number
of training cycles required for the algorithm to converge. This can be seen from the second column
in Table 4 where it was reported that Adaline requires significantly fewer iterations than the other
four algorithms.

Table 5. Correlations between Experimental results.

Actual Adeline LMA BPA SMA GA

Actual 1.00 0.97 0.82 0.80 0.96 0.94
Adaline 0.97 1.00 0.86 0.85 0.99 0.96

LMA 0.82 0.86 1.00 0.97 0.88 0.90
BPA 0.80 0.85 0.97 1.00 0.86 0.87
SMA 0.96 0.99 0.88 0.86 1.00 0.97
GA 0.94 0.96 0.90 0.87 0.97 1.00

Figure 4. Curve of actual rating from the data set.

However, the performances of the training algorithms for MANNs are not all that bad. Together,
these results provide significant insights into choosing the appropriate algorithm for training MANNs.
Although the LMA and BPA have high computation speeds compared to the GA and the SMA, the
study reveals that BPA and LMA have slow convergence rates. By comparing the five results, it can
be seen that the convergence of the BPA is extremely slow. Moreover, the training and test errors of
the two back-propagation algorithms are the highest. This became apparent after performing several
computations of the derivatives of the error functions that can make their outputs to be maximally
wrong since strong errors for adjusting the weights during the training can not be produced. In respect
to this, the graphs of their predicted values in Figures 7 and 8 did not show reasonable correlations with
the actual values from the data set. A comparison of the two results reports that the LMA outperforms
and achieves faster convergence than the BPA. Another problem of back-propagation algorithms that
may contribute to their poor performance is their inability to provide global solutions since they can
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get stuck in local minima. On the other hand, the GA and the SMA have the potential to produce
global search of neurons’ weights by avoiding local minima.

Figure 5. Graph of actual ratings and the predicted ratings of the experimented algorithms.

Figure 6. Curves of actual ratings and predicted ratings of Adaline.

Figure 7. Curves of actual ratings and predicted ratings of SMA.
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Figure 8. Curves of actual ratings and predicted ratings of LMA.

Figure 9. Curves of actual ratings and predicted ratings of BPA.

Although the GA does not require many training cycles (see Table 4), its outstanding problem is
long computation time which is related to the population size and several operations like evaluating
fitness and sorting the population based on fitness. Turning also now to the experimental evidence,
the results in Tables 4 and 5, and that of Figures 6 and 9 indicate that the GA-based network has
outperformed the two back-propagation algorithms. In the final part of the discussion, the single most
striking observation to emerge from the data comparison was the ability of the SMA-based network to
provide better prediction than all the remaining three MANNs. The performance of the SMA is close to
that of Adaline except for the number of training cycles, which was higher compared to Adaline and
the GA. However, when using the SMA, it is important to bear in mind that the error performance
curve during training was not completely smooth unlike the case of the BPA and the LMA, which
means that the same error value could be repeated many times before convergence. This is illustrated
in Figure 11, which is the error versus the number of iterations (epoch) curve that shows the nature of
its performance during the training. Overall, it can be seen from Table 4 and Figures 5, 6 and 11 that
Adaline and SMA-based models have the lowest MSE values and provide more accurate estimations
of the target values. Their performance on training and test data indicates that the two models have
good predictive potentials.
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Figure 10. Curves of actual ratings and predicted ratings of GA.

Figure 11. Error Performance measure during training with the SMA.

Finally, as both BPA and Adaline used partial derivatives to update the weights (see (3)
for example), the results indicate that additional hidden layer increases the number of iterations
and the test errors, proving that the simple network is enough to estimate the overall rating in
multi-criteria recommendation problems, and hence more complex network that contains hidden
layers is not required.

5. Conclusions and Future Work

Recently, Adomavicius et al. [6,38] challenged the recommender systems research community
to use artificial neural networks in modeling MCRSs for improving the prediction accuracy while
predicting the overall rating. Based on our knowledge, up to the present, no one has attempted to
pursue this challenge. This paper presented a comprehensive comparison between the experimental
results of five different neural network models trained with five machine learning algorithms.

This study aimed at addressing the problems of choosing an optimal neural networks architecture
and efficient training algorithms to train the networks for modeling the criteria ratings to compute
an overall rating in MCRSs using an aggregation function approach. Two types of neural network
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models were designed and implemented, one of them consisting of only the input and output layers
and the other four models containing hidden layers. The study used five different powerful training
algorithms to train the networks. The advantages and disadvantages of each algorithm regarding
prediction accuracy, the length of training time, and the number of iterations required for the networks
to converge were investigated and analyzed. This experiment produced results which support the
findings of a large amount of some of the previous work in the field of computational intelligence.

The study makes significant contributions not only to the recommender system research
community but also to other industrial and academic research domains that are willing to use
neural networks in solving optimization problems. The results of the experiment can serve as
recommendations and guidelines to the reader when choosing a better architecture and suitable
training algorithms for building and training neural network models.

The research findings admit several future research topics that need to be taken to investigate
other possibilities of improving the prediction accuracy of MCRSs. For instance, the study shows that
some of the algorithms are more efficient than othersregarding prediction accuracy, speed, the number
of training iterations, and so on. Future research work needs to investigate the possibility of improving
the accuracy through hybridization of two or more algorithms. For instance, a hybrid between the BPA
and the LMA might improve the faster convergence ability, and with the SMA or the GA approach could
improve the searching capacity and avoidance of getting trapped at local optima. Köker and Çakar [39]
observed that hybrids with those algorithms could reduce the number of iterations, minimize the
error, ease the difficulty in choosing parameters, and might produce a better result. More information
on their performance using other evaluation metrics would help us to establish a greater degree of
accuracy on this matter.

As the research was conducted with only one data set, future studies on the current topic that
could use additional multi-criteria data sets to extend our understanding of the kind of architecture and
the training algorithm that are suitable for modeling the criteria ratings are therefore recommended.
Moreover, we suggest future studies on the current topic that would consider randomized algorithms
and ensemble methods.
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