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Abstract: In this study, we discuss critical issues in modelling the structure and function of lymph
nodes (LNs), with emphasis on how LN physiology is related to its multi-scale structural organization.
In addition to macroscopic domains such as B-cell follicles and the T cell zone, there are vascular
networks which play a key role in the delivery of information to the inner parts of the LN, i.e., the
conduit and blood microvascular networks. We propose object-oriented computational algorithms
to model the 3D geometry of the fibroblastic reticular cell (FRC) network and the microvasculature.
Assuming that a conduit cylinder is densely packed with collagen fibers, the computational flow
study predicted that the diffusion should be a dominating process in mass transport than convective
flow. The geometry models are used to analyze the lymph flow properties through the conduit
network in unperturbed- and damaged states of the LN. The analysis predicts that elimination of
up to 60%—-90% of edges is required to stop the lymph flux. This result suggests a high degree of
functional robustness of the network.

Keywords: computational model; lymph node; multiscale structure; vascular network; fibroblastic
reticular cells; conduit network; lymph flow; destruction of conduits

1. Introduction

The immune system functions to protect the host against various pathogens and tumours.
The mammalian immune system is a complex compartmentalized population of different types
of humoral factors and cells organized as a body-wide network of interacting lymphoid organs, e.g.,
bone marrow, thymus, spleen, lymph nodes, gut. Its elements are connected by two vascular systems,
i.e., the blood and the lymphatic systems, which enable the immune elements to migrate continuously
to or from the compartments during their lifetime. Lymph nodes (LNs) represent the most numerous
compartments of the immune system, in which soluble signals and cells are concentrated to enable
efficient interaction between them. The structure of a LN is crucial to its function [1]. The development
of anatomically correct mathematical models that accurately reproduce the physiological, cellular and
molecular processes in LNs remain one of the major challenges for mathematical immunology.

Modelling the lymphatic system and in particular, the lymph flow through LNs is in its infancy [2].
There exist very few computational studies in which the fluid flow through the internal domains of LN
was investigated [3,4]. The model is based on an idealized 3D geometry of the LN macro-structures
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and an approximation of the B-cell follicles, T cell paracortex and medulla as porous regions. The
multi-physics description of the lymph flow processes combines the conservation of mass and
momentum equations in subcapsular and medullary sinuses (fluidic region) with the conservation
of mass and Darcy’s law with Brinkman’s term for the flow in porous regions. This study can be
considered as a milestone for the application of computational fluid dynamics and the whole-organ
fluorescent imaging technologies to model the LN physiology.

Lymph nodes are characterized by a highly variable histological appearance. This implies that the
development of computational models of the LN structure and function requires (i) an idealization of
the structure; (ii) the implementation of a modular approach; and (iii) the analysis of the performance of
specific functional LN units in health and disease. The elements of the above framework can be found
in [3-7].

LNs are known to present high resistance to lymph flow [3], which results from the internal
structure of the LN body comprised of blood microvascular networks, the conduit networks and of
domains densely packed with immune cells, i.e., the B cell follicles and T cell zone. In the existing 3D
geometry LN models developed for studying the fluid flow, the conduit and blood vascular systems
are not structurally described. Meantime, these elements, in particular the conduit system network
ensheathed by fibroblastic reticular cell (reticular) network, represent a key system for the delivery of
soluble molecules in the paracortex area of the LN. It was estimated in [3] that under normal conditions
about 10% of lymph entering the LN through the afferent vessels takes a central path to reach the
efferent vessel and high endothelial venules (HEV) via the conduit system and the inner domain of the
LN. Under inflammatory conditions and during infections, the conductivity of the conduit system is
likely to change dramatically [8], which affects the information delivery (cytokines, hormones, etc.) to
the reactive parts of the LN. A fine and elaborate structure of the LN vascular systems requires the
development of multi-scale computational models to comprehensively examine the fluid transport
in LNs.

In this study we present an overview of the critical issues in modelling the structure and function
of LNs and propose some approaches to model the networks of fibroblastic reticular cells, the blood
microvasculature and analyze the flow properties of lymph through the conduit network in an
unperturbed state and a damaged state with the varying degrees of destruction. We review the major
structural elements of LNs in Section 2. The approaches to model the geometry of an a FRC network
and the blood microvascular network are presented in Section 3. A fine resolution analysis of the lymph
transport through a single conduit are presented in Section 4. The hydraulic conductivity properties of
normal and disrupted conduit systems, modelled as 1D topologically equivalent networks are studied
in Section 5. Numerical assessment of the percolation robustness of the fibroblastic reticular cell (FRC)
network is predicted in Section 6. Further perspectives for application of computational fluid dynamics
techniques are discussed in Section 7.

2. Major Structural Elements of a Paradigmatic Lymph Node

Lymph nodes (LNs) are specialized secondary lymphoid organs which are strategically situated
at sites where pathogen invasion is likely to occur and where immune responses are induced and
maintained [1]. The idealized LN structure can be divided in three major regions: the outer cortex
containing the lymph-draining subcapsular sinus (SCS) and B cell follicles, the inner paracortex which
constitutes the T cell zone and the medulla containing the efferent lymphatics. Each region contains
specialized cellular niches which are critical for the development of adaptive immune responses [9].
B cell follicles are located underneath the SCS where B-cell specific responses take place [10], whilst
the inner LN area constitutes the T cell zone where T cells are activated through interaction with
antigen-presenting cells, such as dendritic cells (DCs) [11]. Fibroblastic reticular cells (FRCs) form a
densely intertwined network that supports T-DC interactions, subsequently leading to generation of
immune responses [12-14]. Furthermore, FRCs support lymphocyte migration, retention and survival
through expression of chemokines CCL19 and CCL21 [15] and survival factor IL-7 [16,17]. FRCs
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secrete a basement membrane enwrapping the inner core of LN conduits which consist of collagen
fibers and extracellular matrix (ECM) components. The conduit system drains lymph from the SCS
through the entire LN T cell zone and the interstitial lymph flow accommodates small molecules and
antigen that are <80 kDa in size. Some DCs are capable of extending their cell protrusions into the
conduits, enabling them to sample the inner core for foreign antigens [18]. Apart from the lymphatic
system in LN, a specialized blood vascular system permeates through the LN T cell zone, forming
high endothelial venules (HEVs) [8,19] which serve as extravasation points for migrating T, B cells and
DCs into the LN [20]. Despite technical limitations in terms of rendering difficulties in the assessment
of structural information from whole LNs, recent advances in imaging and computational techniques
have enabled a comprehensive quantification of e.g., the LN blood vascular network [8,21].

The complexity of the immune system has been recognized in the recent decade as one of its
key hallmarks, but also a major challenge for integrative immunological research [22]. Nevertheless,
the development of high throughput “-omics” methods [23] and systems biology approaches [24]
has made it possible to dissect the spatiotemporal interactions between immune system constituents
and reveal functional implications in the context of various diseases. In order to fully utilize systems
approaches, it is necessary to integrate available data across multiple biological scales, from lower
level processes such as gene expression in different cell populations to higher level processes such as
maintenance and regulation of tissue and organ functionality [25]. Finally, the complex dynamics of
the immune system can be elaborated from the content-rich observations of these processes.

Increasing computer processing capabilities has made it feasible to design and generate a
paradigmatic LN model based on real organ geometry [5]. Such a systems biology approach has
allowed us to develop a generalized 3D solid model of the LN, which consists of the following
idealized structures: SCS, B cell follicles, trabecular and medullar lymphatic sinuses, blood vasculature
and HEVs, the T cell zone and FRC network. An integrated LN model across multiple scales will
allow detailed description of global spatiotemporal dynamics of the different cell type interactions
and enable us to identify biological parameters that are critical for generation and maintenance of
immune responses.

3. Computational Models of FRC- and Blood Vascular Networks of Lymph Nodes

3.1. Cellular Potts Modelling of the FRC Network

In this section we construct a geometrical model of a reticular network using the Cellular Potts
Model (CPM). This approach lets us explicitly control the target volume of reticular network, vary
properties of each FRC, and directly incorporate the network in further models of cellular immune
response. In addition, it is a starting point of modelling reticular network as soft tissue, which would
let us explore mechanical properties and behavior of the network in cases of inflammation, T cells
depletion or LN fibrosis.

In CPM (reviewed in [26-29]), the cells are defined on a cubic lattice as connected collections
of lattice cites (voxels) v = {i, j, k} with the same cell id o(v). Each cell can belong to a certain type
T(0(v)). The extracellular medium is defined as a generalized cell with o = 7 = 0.

The dynamics of the system are defined with a modified Metropolis algorithm, which models
the motion of cells by rearranging the states of the voxels in a stochastic energy minimization manner.
It samples random local voxel-copy attempts and accepts them in accordance with provided Boltzman
probability acception function p(o(vsource) —+ 0 (Vtarget))-

The energy of the system is usually defined as the sum of two terms:

E = Eugnesion + Evotume = Z ](T(U(Z’l))rT<U(UZ)>) + Z)‘@') (V(‘T) - Vtﬂfgft(a))2 (1)

neighbors v1,v;:

o(v1)#0(v2)
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Adhesion term represents the sum of binding energies J(7(c(v1)), T(0(v2))) of molecules located
at adjacent pairs of voxels v1, v, which correspond to membranes of different cells o(v; ), 0 (v3). The
second term describes the ability of the cell to constrain its volume V(o) near the resting volume
Viarget(0") due to the internal pressure. The parameter A(c) is a spring modulus, i.e., the rigidity
of the cell to changes of volume. It determines the relative weight of the second energetic term.
There are many other possible terms and modifications of the form of energy, E, which allow the
modelling of compressibility of cells membranes, chemotaxis, haptotaxis, cell elongation and other
properties [26,27,29,30].

The basic form of the probability acceptance function in CPM is given as,

P(0(source) = O (Dtarget)) = min{l, exp (—ATE> } o)

where T is a global parameter representing the amplitude of cells fluctuations, proportional to the
probability to accept energetically unfavourable voxel-copy attempts, AE = Egfrer — Epefore is the
change of energy of the system (1) as a result of sampled voxel-copy attempt. If T = 0, the simulation
is fully determinate and can freeze at local energy minima. As a possible extension of (2), each cell
type or each cell can have its own T ().

The other form of acceptance function, which provides a biologically relevant meaning of
parameter T(0)—the intrinsic motility of the cell (discussed in detail in [29]), was specified as follows,

p (0 (Vsource) = (T(Utarget)) = tanh(T},) ~min{1, exp (—?E) }, (3)

where

T, = {T(U(USOWCE))’ if 0 (Vsource) # 0
! T(‘T(Utarget)), if U(vsowce) =0

is the resultant motility of membrane between ¢ (vsource) 7 0 (Vtarget). Given the tanh-mapping of
membrane motility, Function (3) restricts the voxel-copy attempts involving so-called frozen cells (with
T(o) — 0), even if calculated AE is significantly negative. This allows us to specify the motility of cells,
i.e., their ability to react on external stimuli.

We extend this approach by setting intrinsic motility for each voxel of the cell. By doing this,
we can easily model the reticular network, making the ends of protrusions frozen (forming FRC
junctional complexes [31]). As a result, there is no need for extra assumptions and extra CPM plugins
such as cell elongation or connectivity constraints (which are computationally expensive in 3D [30]),
utilized in other models of cellular networks (such as in the study of vasculogenesis [30]).

We initialize cells as thin (4 ~ 1.0 pm) cylinders along the graph of reticular network topology
(constructed in [5]), forming the conduit system (Figure 1a). Protrusions of different cells are connected
at the middles of the corresponding edges. For each FRC we define the center of its body v.(c) at the
coordinates of corresponding graph nodes. We define the motility of voxels occupied with cells (v(c))
according to the distribution localized around v.(¢):

T(0(0)) = Tuas - exp (— [Jo(0) —ve(0)[* /5*) @

By doing this, the voxels, which are far from the center of FRC body vc(0), have close to zero
motility T(v(c)) — 0. As a result, the ends of FRCs protrusions are linked with each other in
accordance with given topology and are not altered during the simulation, resulting in no connectivity
issues. The voxels which are closer to centers v, (c") have more intrinsic motility, thus it is more probable
for them to extend to the medium due to internal pressure until the FRCs would reach their target
volume Vigrget (7).
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Figure 1b illustrates the reticular network, reached it’s target volume (4% of the whole volume of
lattice [5]). It contains 3374 FRCs in a 177.0 pm x 197.4 pym x 201.0 um computational domain with
lpx = 0.3 um length of the voxel resolution. Parameters used in the simulation are listed in Table 1.
We set adhesion energies to zero because they are not relevant for the result as there are no other cells
in our model. The choice of FRC-FRC adhesion energy doesn’t affect the simulation because FRC
junctional complexes are modeled by freezing the ends of protrusions. A high value for lamda is
chosen (A(c) > 1) because of rigidity of the reticular networks. The deviation of volume from the
target volume for the whole network is less than 1% after 20 Monte-Carlo steps (MCSs) burn-in period.

# #
(a) (b)
Figure 1. (a) The initialized reticular network as the system of conduits of given topology. State of the

simulation at MCS = 0; (b) The reticular network reached its target volume. State of the simulation at
MCS = 20.

Table 1. Parameters of Cellular Potts Model used to generate the reticular network (a.u.e. stands for
arbitrary units of energy).

Parameter Description Value
Ipx length of the voxel 0.3 pm
Ly X Ly X Lz sizes of computational domain 590 px x 658 px x 670 px
A conduit diameter of the conduits 1.0 pm
Nrrcs number of FRCs in domain 3374
NrresViarget (FRC) / L3  volume fraction of reticular network 4%

Jij adhesion energies 0a.u.e.

AERC spring modulus of FRCs 10 a.u.e./px®
Tinax amplitude of intrinsic motility 2 a.u.e.
2s characteristic diameter of FRC body 12 px

The implementation of the model is based on the open-source CompuCell3D application (available
at http:/ /compucell3d.org/). We modified the source code of its core C++ library to accomplish
voxel-based motility and developed Python scripts to configure the simulation. The computation of
the FRC network shown in Figure 1 requires about 10 min real time on Intel Xeon 4-core 3 GHz CPU
with 4 Threads based parallelization.

3.2. Modelling Blood Vascular Network

The vascular network of a lymph node is a rather complex construct and is placed inside the
internal space of the LN with various items, such as B-cell follicles, FRC network, medullar and
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trabecular zones. The vascular network provides the delivery of oxygen, nutrients and signal molecules.
Lymphatic fluid can leave the LN through the blood vessels due to a pressure difference, hydrostatic
and osmotic, between the interstitial pressure in the node and the pressure in the blood vessels [2,3].
The vessels of the blood microvascular network have lots of close intersections with the FRC network,
pervading the whole space inside LN, so the vascular network influencesshma many processes in the
lymph node. In this way, construction of a 3D model of vascular network provides an insight into the
role of the vascular network in processes of tissue homeostasis and pathology.

While constructing the vascular network, we had to solve some problems with intersections of
the FRC network, vascular network and internal items of the an LN. The main challenge there was
to overcome the differences between the typical sizes of the networks. An FRC network consists of
conduits with a diameter range from 0.2 to 2 um, while the vascular network contains vessels with a
diameter range from 5 to 30 um. We modified the algorithm from [7] to meet these conditions.

3.2.1. Initial Data

We used data from [21] to set the length of the network vessels.

1200

1000 [~

800 |-

600 [~

Relative number

400 |-

200

0
0 20 40 60 80 100 120 140 160 180 200

Vessels length, um

Figure 2. Blood vessels length distribution summarized from [21].

The blood microvascular system is characterized by the length distribution of the vessels as shown
in Figure 2 and branch separation from the feeding vessel. The number of capillary vessels was taken
from [21] as 40 vessels. It could be approximated as 3 vessels with 5 bifurcations (32 vessels) and 1
vessel with 6 bifurcations (64 vessels), the diameter of input and output vessels was taken as 8 um.

3.3. Algorithm of Network Graph Generation

The algorithm of vessels network graph construction consists of three main steps:

Step 1. Graph topology organisation. In this step we generate the basis points and edges of
connections.

Step 2. Local edge length optimization. In this step we use the algorithm from [7] just for a local (i.e.,
for neighbouring nodes) adjustment of the mismatch of the model and target graph edges
lengths. In this and the next steps, the following parameter from Step 1 is used: blos (length

of segmentation of the vessels). It’s the canonical length of segments of the vessels graph.

Step 3. Global network structure optimization. In this step we use a modified algorithm from [7]
for (i) minimization of the edge length deviation from the real data for all neighbouring
nodes; (ii) pushing apart disconnected nodes from each other to prevent merger of the vessels;
and (iii) shifting the nodes away from the prohibited domains associated with other LN
structures.
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Pseudocode of Step 1 (graph topology organisation):

// Initialise the data arrays
1 set “length distribution” as real array 1d;
2 set {555 6} as integer array bf;
// Specify the segmentation accuracy, vessels radius and decreasing, processing zone size
3 set "initial input /output vessels diameter” as real vd;
4 set 4.0 as real blos; // length of segmentation of the vessels, um
5set 27 as real tf; // coefficient of vessels radius decreasing
6 set "work sphere radius” as R; // simplify the constructing
7 set graph structure t;
// Attach the input and output vessels
8 insert line "input vessel” and line "output vessel” to t; // simple lines, splitted into 100 segments
9 for (integer j = 1 to NC) begin
// In this loop, we create new vessels, growing from input and output vessels
10  setreal vdl = vd;
11  setreal sl = random from 1d;
12 sl = sl / blos;
13 set integer sc = sl;
14 sl = sl — sc;
15 ifsl > 0.5thensc = sc + 1;
// sc defines the number of segments for current generating line
16  set point pin = random point from input vessel;
17  set point pout = random point from output vessel;
18 set point pm11 = random point from sphere with radius R;
19  set point pm12 = random point from sphere with radius R;
20 set point pm21 = random point from sphere with radius R;
21  set point pm22 = random point from sphere with radius R;
// we used points pmXX to avoid helical structures while the second and
// third parts of graph construction.
22 init line Ix1 that goes from pin to pm12 through pm11 splitted into sc segments;
23 assign vdl as Ix1 diameter;
24 insert line Ix1 to t;
25 init line Ix2 that goes from pout to pm22 through pm21 splitted into sc segments;
26 assign vdl as 1x2 diameter;
27 insert lineIx2 to t;
28  execute code lines from 18 to 27;
29 integer nbf = random from bf;
30 for (integer i =1 to nbf) begin
// In this cycle in each loop we create two sub-vessels for each
// couple [Ix1, 1x2], created while previous loop
31 set real vdl = :T"i’;
32 set pm12 from 1x1 as point pin;
33 set pm22 from 1x2 as point pout;
34 if(i < nbf) then execute code lines from 11 to 15, from 18 to 26;
35 if (i = nbf) then begin
// here we connect the inner and outer parts of vessel

36 execute code lines from 11 to 15;
37 set point pm1 = random point from sphere with radius R;
38 set point pm2 = random point from sphere with radius R;

39 set point pm3 = random point from sphere with radius R;



Computation 2017, 5,3 8 of 21

40 init line 1x1 that goes from pin to pout through pm1l, pm2, pm3 splitted into sc segments;
41 assign vdl as Ix1 diameter;

42 insert line Ix1 to t;

43 end

44 execute code lines from 34 to 43;

// Note : inside cycle for all i > 1 pm12, pm22 should be used from previous loop of cycle.
45 end
46 end

To avoid the occurence of intersections with internal items of the LN , we attached a set of static
points, created via the voxel approximation of the internal items of the LN. Unfortunately, it works
only for convex structures, such as B-cell follicles.

The blood microvascular network generated using the developed algorithm is shown in Figure 3.

Absolute number

0 50 100 150 200 250
Vessels length, pm

Figure 3. (left) An artificially generated 3D blood vessel network (for a sphere with a diameter
of about 200 pm); (right) Vessels length distribution of the computationally constructed blood
microvascular model.

3.4. Integrative Geometric Model of Vascular Networks

To assemble the two networks [FRC + vascular networks] into one 3D geometric model, we used
the FRC network constructed with the algorithm from [7] for a sphere with a diameter of about 200
pum as shown in Figure 4.

Figure 4. FRC network 3D model (for sphere with a diameter of about 200 pum).

The graph of the network topology and its node-level characteristics are shown in Figure 5.
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Figure 5. FRC network. (left) Network graph; (center) Node degree distribution; (right) Edges
lengths distribution.

The method developed in [7] was further utilized to place two or more network graphs in
same domain.

To this end, we placed both graph structures in one structure, unified the length of all edges
(we converted them into sets of edges with length about 4 um) and executed the minimisation of length
inconsistencies using a modified version of the algorithm from [7]. Some remaining intersections were
removed at the stage of voxel-based approximation of the graphs. The integrated blood microvascular
network and the FRC networks are shown in Figure 6.

Figure 6. Integrated model of vascular vessels and FRC network (for a sphere of about 200 um).

The key characteristics of the constructed 3D blood microvascular and FRC network geometric
model are listed in Table 2.

Table 2. Constructed 3D models characteristics.

FRCn Vascular Network
Surface area 1,131,209 um? 61,264 um?
Relative volume 7.98% 1.71%

All the algorithms were implemented using C++ language and Microsoft Visual Studio 2015 IDE.
Construction of the vascular graph takes about 10 min and 20 Mb of RAM (CPU - Intel Core i7-4700HQ
2.40 GHz), integration of the blood vascular vessels and FRC network takes 20 min, and additional
operations (voxel approximation, smoothing of the 3D surface) requires about 2 h CPU time.

4. Lymph Dynamics in Conduit Elements of FRC Network

In this section we examine generic conduit and the FRC network properties.
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4.1. Transport Through a Single Conduit

FRC network conduits consist of reticular fibres arranged in bundles encased by FRCs [31].
These conduits have been observed with radii between 200 nm and 3 pm [32], consisting of
10-100 reticular fibres [33] with radii of 2040 nm [34]. Microscopy of FRC conduits appear to show
that the fibres are densely packed [33]. Lagrange found the optimal packing of cylinders is hexagonal
with a maximum fibre density of ¢ = % There is some justification for the assumption that FRC
conduits consist of reticular fibres arranged in such a manner. As the FRCs hold the fibres together it
is likely that they exert a force on the fibres pushing them close to one another. The above numbers
would suggest that a 200 nm radius conduit would have between 7 and 29 fibres which would appear
to approximately agree with values found in literature [33]. A diagram showing the paths between

fibres available for flow and the arrangement of the fibres is shown below in Figure 7.

~—— FRC

Collagen
I u
.E &~ Flow

i< Channel

Flow
Channel

Figure 7. Diagram showing the packaged bed model of an FRC conduit. Reticular fibres are hexagonally
close packed and encased in FRCs. 7 is the radius of the fibres.

The cross section of the path available for flow between three fibres is bound by three 7 arcs
together forming the flow boundary, I'. The area of the section bound by the fibres is the flow domain,
Q). The area of this domain, A, can be found by subtracting the area of the circular sections from the
area of the triangle shown in Figure 7.

_ 2 i
Ap=14(v3-7) (5)

The Navier-Stokes equation for incompressible, steady-state, unidirectional flow of a Newtonian
fluid reduces to a Poisson equation and can be written as below.

v =Pz ©)
H
where u is the velocity, i the viscosity and p; is the z axis component of the pressure gradient. Using a
finite element solver with a no-slip boundary condition #(I') = 0. An area independent flow parameter,
X, is defined as follows,
A2
_rP=
Qm

A finite element solver was used the find ) for curvilinear triangular domains such as (). The area

X (7)

independence of x was verified and a convergence study performed, the results are tabulated below
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as presented in Figure 8, left. The computed velocity profile of flow through a curvilinear triangle with
area Aj is shown in Figure 8, right.

0.025 -

Degree of Freedom | x

16 49.4300 0.02 -
64 50.1578
256 49.8887 0015 -
1024 49.7000 oor
4096 49.7130

0.005 ~|

Figure 8. (left) Table of area independent parameter x against degrees of freedom in the FEA model;
(right) Numerically computed velocity profile of flow through a curvilinear triangle with area Aj.

A rearrangement of Equation (7) gives the flow in one of the () domains for a given pressure
gradient in the form QR = p, with R defined as,

R=4L 8
i ®)
Based on the values found for y it is observed that the resistance value found for flow through
a curvilinear triangular cross-section is twice that through a circular cross-section of the same area.
The total resistance, Ry, for a conduit containing multiple fibrils is the reciprocal of the sum of the
reciprocal individual resistances provided that r. >> rf. This leads to R;pt = R/n, where n is the
number of fibres.

4.2. Diffusive Transport in an FRC Conduit

At scales such as these diffusive mass transport can be considerably more significant than fluid
flow. The geometry of the channels seems that it will produce large viscous losses whilst still retaining
a large cross-sectional area available for transport. Assuming ideal mixtures a relationship (Fick’s law)
can be constructed for mass diffusion within the conduits in a similar manner,

I
~N gz =AC )

where AC is the difference in molar concentration, A is the molar flux and D is the diffusivity. Now
if we assume a 300 pm long pipe spanning a lymph node with a pressure difference of 6 cm H,O
and a viscosity of 1.5 cp [35] then the Péclet number in a conduit is 0.0388—for diphtheria toxin, see
below—suggesting its motion is diffusion dominated. Thus it is reasonable to assume the flow will
have an insignificant effect on the concentration of diphtheria toxin allowing these two transport
phenomena to be decoupled.

Instead of a 3D fluid solver operating on a void space of the network, a 0D solver can operate on the
connectivity and associated properties of the network with a considerable reduction in computational
expense. Such a solver was implemented in MATLAB® and a cuboid block of a generated FRC
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network consisting of 6927 edges and 3374 nodes was subjected to analysis. Contiguous nodes were
made co-planar to give a domain of known dimensions, 151 x 193 x 187 um. Pressure or concentration
gradients were placed across the block, a linear system formed and solved for the fluid permeability or
diffusive flux using a direct solver. One species often considered in lymphatics is diphtheria toxin with
a diffusivity D = 6.2 x 10~7 em/s [36] and a molecular weight of 58 kDa [37]. For the network under
consideration a 2 ng/g imposed gradient across the first axis of the network gave a diffusive flux of
2.68 ng/s. Whilst for an imposed pressure gradient of 6 cm H,O gives a fluid flux of 0.0214 um?3/s.
The fluid flux would have to be ~10 orders higher to have a similar contribution to mass transport
as diffusion.

5. Modelling Lymph Flow in Conduit System of FRC Network in Idealized LN

5.1. Normal FRC Network

In order to simulate a steady-state lymph flow in a conduit system of the FRC network model in an
idealized LN designed in [7], we applied Poiseuille law as well as mass conservation law. Let’s consider
the graph of conduit network shown in Figure 4 and denote set of vertices and edges G = (V,E).
For each edge ¢;; € E we apply the Poiseuille equation and for each vertex v; € V we apply the mass
conservation law (i, j = 1, 3694).

Qij = Ri (P —Py) Y Qi =0 (10)

l] k,’tikiGE

The variables are the lymph flow Q;; ((um)3/s), the hydraulic pressure P; (Pa) and hydraulic
resistance, R;;. According the Poiseuille equation, hydraulic resistance for non-elastic tubes is the
following: R = i—ﬁ The parameter p = 0.0015 Pa-s is the lymph dynamic viscosity [35]. The radii r;;
of all channels are assumed to have a constant value of 1 ym. Channel lengths [;; can be calculated
from graph data shown in Figure 4. If we take into consideration reticular fibres densely packed in
conduits and use hydraulic resistance defined in Equation (8), the flow through the system will be
about 7 orders lower.

Qribres _ Reube _ 8/ rr
Qtube Rfibres ]/l)(/(ﬁ _ %)21’;%

The system (10) needs to be closed by setting boundary conditions. The conduit network is
connected to the floor of the subcapsular sinus. In our model implementation, the nodes located
at the border of the FRC network graph are connected to the SCS by additional edges. The flow
through the system depends on pressures in these vessels. There is no experimental data on the
pressure distribution in the SCS. In this study we consider two variants of pressure distribution (see
Figure 9). If we set the x-axis in the direction of flow through the LN then boundary vertices with
smaller x-coordinate will have higher pressure values. The first variant of pressure distribution is
called «Gradient» with a linear decline from Py, = 500 Pa to P,,;;, = 0 Pa depending on x-coordinate.
The pressure estimates are based on values reported in [3,4,38]. The second variant is referred by term
«Constant». If we set a plane normal to the x-axis dividing the LN into two halves of equal length,
points in the upper half will have a value of P,y and points in the lower half will have P,,;,.

~133x1077 (11)
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Pmax

Pmin

Gradient Constant

Figure 9. Schematic view of the SCS pressure distribution for two types of pressure boundary conditions
(1) gradient and (2) constant. Branches emanating from the inner SCS circle represent the input and
output edges of the network.

Having specified the boundary conditions, we build a linear system, excluding the flow variables
from Equation (10), and solve it for pressure. The system matrix is sparse but nonsingular so we use
UMFPACK solver [39] which provides a direct method for linear sparse systems. The following results
have been calculated using the UMFPACK direct method. The inflow and outflow were tested to
be equal, the conservation of mass condition is satisfied. A network consisted of 3694 vertices and
7253 edges with the number of input and output vertices 169 to 151 in the gradient case, and 164 to 156
in the constant case.

Figure 10 demonstrates the change of pressure with growth of distance from the afferent lymphatic
vessel for all vertices with different boundary conditions. In case of the gradient boundary condition
(Figure 10, left) there is an evident linear gradient with a line of boundary points from which others
deviate slightly. In case of the constant boundary condition (Figure 10, right) the pressure gradient is
obviously higher, but still the pattern is close to linear.
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Figure 10. Pressure values depending on coordinate. (left) for gradient boundary conditions; (right)
for constant boundary conditions. Boundary points are highlighted in red.

5.2. Disrupted FRC Network

Viral infections suffered by the immune system can destroy parts of the FRC network and lead
to its disruption [8,14]. We applied the model of lymph flow in the conduit system to parameterize
the destruction process and study its effect on lymphatic system function. To simulate a disrupted
conduit system we delete edges from E randomly. If all edges connected to a node are deleted it
becomes isolated, with zero pressure. Deletion of edges also leads to broken chains and pendant (or
leaf) vertices. Mass conservation law implies that there is no flow into pendant vertex and no flow
through broken chains. Some edges which are not removed may have no flow and so disfunction, we
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call these edges non-functional («n-f edges»). For example, in Figure 11 illustrating the disruption
elements vertices 2 and 3 are pendant, edges (1-2) and (3-8) are non-functional, vertex 6—isolated.

\/

/ 5
\
\/

Figure 11. Scheme of network edges deletion from graph. (left) Normal network structure;
(right) Randomly removed (rm) edges are marked in pink and non-functional ones are indicated

as (nf).

Degradation of the FRC network through the edge removal is depicted in Table 3 (for constant
boundary conditions) and in Table 4 (for gradient boundary conditions). The damage percentage
in Tables 3 and 4 is equal to the ratio of removed edges to its original number. We calculated the
number of inputs and outputs with nonzero inflow and outflow (inputs and outputs are boundary
nodes through which lymph flows in and out of the LN). In the tables only non-isolated nodes are
counted, that’s why the number of vertices, inputs and outputs decreases. We also calculated the
summary flow out of the LN (equal to the flow into the LN) and total flow through all system channels.
In the tables we show a fraction of flow through the damaged system to the flow through initial
undamaged system.

The results depicted in Tables 3 and 4 reveal the following difference in the output of the flow
for two types of pressure boundary conditions. In case of constant boundary condition total flow and
outflow are higher, but the degradation rate is high as well. For gradient boundary conditions the
flow continues even if 90% of system is destroyed. Pressure gradient on two neighbour boundary
nodes allows a small flow between them, and it is not defined whether the boundary vertex is input
or output. When 60% of the edges are removed the upper and lower halves of system loose their
connectivity, but some small connected components remain. That’s why there are less non-functional
edges and more inputs and outputs in the «gradient» case than in «constant» case.

Table 3. System degradation for constant boundary conditions.

Damage (%) Nodes Edges n-fEdges Inputs Outputs Relative Outflow Relative Sum. Flow

0 3694 7253 0 164 156 1.0 1.0
10 3671 6528 29 156 147 0.82 0.84
20 3608 5802 108 143 132 0.615 0.653
30 3454 5077 1792 117 105 0.414 0.386
40 3135 4352 2138 94 78 0.16 0.149
50 2713 3626 2365 55 89 0.044 0.019

60 2202 2901 2443 16 85 0.0 0.0
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Table 4. System degradation for gradient boundary conditions.

15 of 21

Damage (%) Nodes Edges n-fEdges Inputs Outputs Relative Outflow Relative Sum. Flow

0 3694 7253 0 169 151 1.0 1.0

10 3671 6528 27 157 146 0.854 0.845
20 3608 5802 110 140 135 0.678 0.66
30 3454 5077 226 109 113 0.49 0.398
40 3135 4352 346 85 87 0.33 0.23
50 2713 3626 454 68 76 0.26 0.149
60 2202 2901 599 46 55 0.185 0.095
70 1623 2176 512 34 41 0.135 0.074
80 1062 1451 254 13 25 0.072 0.039
90 513 725 76 5 13 0.028 0.013

Figures 12 and 13 demonstrate the difference of pressure-coordinate dependance for graphs with
consequently removed edges (pressure in isolated nodes is zero).
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Figure 12. Pressure gradient for (a—f) 0%-50% edges removed (constant boundary conditions).

Boundary points are highlighted in red.
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Figure 13. Pressure gradient for (a-i) 0%-80% edges removed (gradient boundary conditions).
Boundary points are highlighted in red.

6. Percolation Robustness of the FRC Network

6.1. Graph Measures

From graph theory there are several observations and quantitative metrics that can be made
of an FRC network that imply aspects of its function. Firstly, hierarchy, which can be defined as
the imbalance between the number of nodes of a low degree and the number of nodes of a high
degree. A network can have more lower degree nodes than higher degree nodes by adopting “hub and
spoke” features where some higher degree “hub” nodes connect to many lower degree nodes. This
is indicative of a scale-free network where the degree distribution is approximately that of a power
law [40]. Currently, studies of FRC networks have found a Gaussian degree distribution indicating an
absence of “hubs”. A more formal definition can be used to explore this through two numbers; the
mean local clustering coefficient, C, as defined by Watts-Strogatz and the mean shortest path length
L. C; can be defined for each node, i, by the number of neighbours of i, N (i), which are also neighbours
of each other, [N (i) N N(N(i))| and the total number of neighbours, k(i) [41].

o _ NG NN
= ROED - 1)

We can now define C as the average of C for all i, i.e., the average occupancy of connections
between neighbours. If L(i, j) can be defined as the shortest possible path between two nodes 7,j. Then
L can be defined as,

(12)

- 1 SR
L= L) 13
i j#i

where 7 is the number of nodes in the network. In lattice type networks the mean shortest path length is
relatively long compared to random networks as is the clustering coefficient. Small-world networks are
defined by their small mean shortest path length whilst still maintaining the high clustering coefficient
of a lattice. In order to compare networks dimensionless forms of these numbers are defined.

C= ; and L=

CER

| =

(14)

—~
=l

E

where the Lrg and Cgg forms of L and C are the quantities calculated on an equivalent Erdos-Rényi
random networks. Erdos-Rényi equivalent random networks have the same number of edges on the
same vertices, as the network, but with edges having an equal probability of existance between all
vertices. From this the small-worldness quantity, o can be defined as the ratio of the two [41].

h" (@3

o= (15)

For the network under consideration the quantities are as follows: C = 67.87, L = 0.817 4 0.0605
and o = 83.1 £ 6.19. The values suggest that this network has a similar mean shortest path length
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to a random network but a much greater degree of clustering giving a large small-worldness value
indicative of a small-world type network. Analysis of actual FRC networks have shown average
small-worldness values of 6.128 across 6 mice [14]. This is of particular relevance to FRC networks
given their hypothesised role in maintaining chemokine gradients. A small-world network would be
more likely to reduce gradients by spatially homogenising at “hubs” which will connect to a large
number of “spokes”. Maintenance of gradients between these spokes will be impeded by the “hub”
compared to a lattice type network were in the absence of “hubs”, a regular structure would exist
between the “spokes”. More complex gradients can exist across this regular structure than across
a “hub”, anode with a singular value. A greater understanding of the FRC network and the spatial
variance of these quantities could allow more representative FRC networks to be generated.

6.2. Percolation Threshold

If each bond within a network has a probability, p, that it exists then the percolation threshold, p,
is the value for p below which a spanning tree cannot exist. That is the point at which the networks
connectivity is sufficiently damaged that it is not possible to move across the network. At this point
the largest spanning tree remaining is a fractal object which scales with the total size of the network
according to a power law [42].

The percolation threshold for this network was found to be 0.32 with a standard deviation of
0.0825 which is close to the p. of a face centred cubic, 0.119. The network under consideration was
subjected to a flow solver as described in Section 4.2 in order to study how fluxes change as p — p..
For each case the flux across the network was calculated, after which an edge was removed. This
process was repeated until the flux was zero. 100 cases were run and the range and standard deviation
for relative change in flux are shown below in Figure 14.

Relative Change in Flux with Edge Removal
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Standard Deviation
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o
©
T

Relative Change in Flux
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o

Figure 14. The change in flux as p — pe.

As both viscous and diffusive effects have the same dependance on length the relationship shown
in Figure 14 is true of both diffusion and fluid flux. The high p. suggests a high degree of topological
robustness within the network implying a large difference in the importance of edges to maintenance
of flow. The range indicates the minimum and maximum relative fluxes recorded at a given probability.
Note that fluxes far below the standard deviation exist for all p > 0, which suggests that some edges
are of considerable importance to flow. Verifying the existence of these properties in nature and
correctly replicating them in artificial networks will be challenging.
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7. Discussion

In this study, we developed computational algorithms for modelling the geometry of two transport
systems of the LN, i.e., the FRC network and the microvascular network. The first one provides the
structure for lymph flow through the internal parts of the LN as well as cell migration. The blood
vascular networks provide access for lymphocytes from the circulation to the LN parenchyma. As
the remodelling of the networks takes place during infections, it is important to map the dynamic
structure of the networks to their function in terms of cellular and information molecules (cytokines,
antigens, etc.) transport and distribution within the LN. The application of experimental imaging of
internal LN structures is limited in humans. Therefore, computational modeling provides the tools for
predicting the relationships between geometric and topological properties of the networks as well as
on their performance under homeostatic and pathological conditions.

Capturing the 3-dimensional organization of LNs presents a challenge for existing imaging and
analysis systems [21]. Recent studies provide basic information about geometrical and topological
properties of the LN vascular systems. We used the data on organ-wide 3D-imaging of the
microvascular network in murine LNs [21] to develop a voxel-based algorithm for 3D geometric
modelling of the LN blood vascular network consistently with the data on blood vessels length
distribution. A Cellular Potts Modelling framework was used to develop the FRC network model
meeting the constraints on the volume and properties of FRCs. The blood microvascular- and the FRC
network models were embedded into the SCS of the LN modeled as a sphere with the diameter about
200 um. Taking together these two transport modules can be used to build up structurally complete
computational models of the LNs as compared to those presented in [3,4,6]

To our knowledge, this is the first study in which the lymph flow through the conduit network
was studied under a range of physiological conditions. The FRC network can be severely destroyed
during viral infection leading to immune deficiency [8]. It has been shown recently that an FRC
network can tolerate a loss of approximately 50% of their FRCs without substantial impairment of
immune cell recruitment, intranodal T cell migration, and dendritic cell-mediated activation of antiviral
CD8* T cells [14]. To evaluate the robustness of the conduit system in terms of the lymph percolation
parameter, we have examined the lymph flow through the conduit network for an idealized geometry
and under specified boundary conditions. The model based on a steady state Poiseuille equation
predicts that the elimination of up to 60%-90% of edges is required to stop the lymph flux. This
result suggests a high degree of the functional robustness of the network. We consider an idealised
lymph node.

The conduits comprise of collagen fibers rather than being idealized empty cylinders [33].
We examined the impact of the presence of internal collagen fibers in the conduits on the resistance
to fluid flow. Calculations, based on values in the literature of fibre size, conduit size and the typical
number of fibres observed, seem to confirm that the collagen fibres inside the conduit are densely
packed. This would suggest that the FRCs wrap themselves tightly around the collagen fibers. For
a scenario of a conduit cylinder densely packed with collagen fibers, the computational flow study
suggests that the diffusion would be the dominating process in mass transport as opposed to convective
flow. These predictions warrant further experimental analysis. In addition, a more detailed analysis
of our artificially generated FRC network showed that this network has a similar mean shortest path
length to a random network but a much greater degree of clustering giving a large small-worldness
value indicative of a small-world type network, which is qualitatively but not quantitatively matching
to what was found experimentally [14].

In our study, we were interested in assessing the small-worldness property of the model network
graph embedded into metric space, i.e., having realistic edge lengths distribution according to the
real FRC network data. To this end we evaluated the shortest path length to be a real physical path
length. Earlier, in [41] it was shown that the small-world parameter scales linearly with network
size, for both model and real-world networks. The estimate of small-worldness parameter o = 6.128
for murine FRC network data is based on the observed FRC network in T cell zone with about 170
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nodes. In the model network for the entire lymph node the number of nodes is 3374, i.e., about
20-fold larger. The increase in the network size (the number of nodes) results in a proportional
increase in the value small-world parameter, i.e., up to 83.1, consistently with the demonstration of
the above cited study. These differences and their implications for flow and transport require further
investigation. Finally, in an earlier study [43] it has been shown that fluid flow in turn regulates the
reticular cell network, suggesting that models of the LN fluid homeostasis should consider elaborate
feedbacks. LNs are characterized by complex multi-scale structures which represent critical issues in
computational modelling of the LN physiology. Here we presented a consistent approach to integrating
the blood microvascular- and the conduit network models within a confined space of the LN that
will be used to study how the lymph-borne information is distributed to various parts of the lymph
node under normal conditions and during an immune response. Further analysis should focus on
studying the fluid-structure interactions for the vascular systems in conjunction with the cellular and
chemical reactions taking place in live LNs. Finally, as it was stressed by W.E. Paul [44] “...It is to the
quantitative prediction of the outcome of given perturbations in the immune system that we envisage
our mathematical /modeling colleagues will apply themselves”.
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