
computation

Article

Evaluation of External Memory Access Performance
on a High-End FPGA Hybrid Computer

Konstantinos Kalaitzis, Evripidis Sotiriadis, Ioannis Papaefstathiou and Apostolos Dollas *

School of Electrical and Computer Engineering, Technical University of Crete, Chania 731 00, Greece;
kkalaitzis@isc.tuc.gr (K.K.); esotiriadis@isc.tuc.gr (E.S.); ygp@ece.tuc.gr (I.P.)
* Correspondence: dollas@ece.tuc.gr; Tel.: +30-2821-037-228

Academic Editor: Harald Köstler
Received: 6 June 2016; Accepted: 11 October 2016; Published: 25 October 2016

Abstract: The motivation of this research was to evaluate the main memory performance of a hybrid
super computer such as the Convey HC-x, and ascertain how the controller performs in several access
scenarios, vis-à-vis hand-coded memory prefetches. Such memory patterns are very useful in stencil
computations. The theoretical bandwidth of the memory of the Convey is compared with the results
of our measurements. The accurate study of the memory subsystem is particularly useful for users
when they are developing their application-specific personality. Experiments were performed to
measure the bandwidth between the coprocessor and the memory subsystem. The experiments aimed
mainly at measuring the reading access speed of the memory from Application Engines (FPGAs).
Different ways of accessing data were used in order to find the most efficient way to access memory.
This way was proposed for future work in the Convey HC-x. When performing a series of accesses to
memory, non-uniform latencies occur. The Memory Controller of the Convey HC-x in the coprocessor
attempts to cover this latency. We measure memory efficiency as a ratio of the number of memory
accesses and the number of execution cycles. The result of this measurement converges to one in most
cases. In addition, we performed experiments with hand-coded memory accesses. The analysis of the
experimental results shows how the memory subsystem and Memory Controllers work. From this
work we conclude that the memory controllers do an excellent job, largely because (transparently
to the user) they seem to cache large amounts of data, and hence hand-coding is not needed in
most situations.

Keywords: High Performance Reconfigurable Computer (HPRC); Convey HC-2x; Convey HC-2x
bandwidth; memory management

1. Introduction

Stencil computations invariably need large volumes of data, which have to be fetched from
external memory, typically some form of external dynamic memory. In recent years, high-end
Field-Programmable Gate Array (FPGA)-based computers have been shown to offer excellent
performance and excellent energy efficiency as specialized co-processors. A typical usage of these
FPGA-based co-processors is for streaming computations, in which data arrives sequentially, typically
from a computer network. However, for stencil computations the external memory accesses, in addition
to the sequential component, have other patterns as well. These may range from accessing columns or
diagonals of matrices to accessing less regular patterns. Vector supercomputers of the 1970s–1990s,
such as the Cray-1, Cray-2, CDC-205, Fujitsu VP2600/10, NEC SX series, Convey C1, etc., supported
fast memory accesses with “strides”, i.e., fixed distances in the memory between accesses, as these are
needed for matrix column and matrix diagonal accesses; however, these machines had static memory
with fixed access time and non-dynamic memory. Such machines also supported “gather-scatter”
operations, i.e., operations in which sequential accesses were in locations found within a vector register.

Computation 2016, 4, 41; doi:10.3390/computation4040041 www.mdpi.com/journal/computation

http://www.mdpi.com/journal/computation
http://www.mdpi.com
http://www.mdpi.com/journal/computation

Computation 2016, 4, 41 2 of 12

Last but not least, such machines had a clock frequency around 100–200 MHz (approximately 80 MHz
for the Cray-1 and getting faster in every generation).

As the technology has advanced, and nowadays FPGA supercomputers are aimed at the solution
of some problems for which vector computers were used a few decades ago (e.g., computational
fluid dynamics), it is worth revisiting the issue of main memory access. Is this particular problem
solved, or, due to issues stemming from technology differences—and specifically from the different
memory access time disparity and the external memory being dynamic and not static—should one
hand-code memory accesses? In addition, memory access times are published by FPGA hybrid
computer vendors for access patterns which demonstrate maximum capabilities, which may or may
not apply to a user’s needs.

The contributions of this work are:

• An experimental evaluation of the main memory subsystem of a high-end FPGA-based hybrid
computer, namely the Convey HC-2ex under several access pattern scenarios, and

• A comparison of the vendor-supported memory access through the (sophisticated) memory
controller vs. hand-coded memory access sequencing and access aggregation for an application
which does not have simple strides, namely Zuker’s algorithm for bioinformatics.

The aim of this work is to provide quantitative results which will aid the designer in organizing
his/her memory data access code. The experimental measurements are both for single accesses in
which the latency dominates and burst accesses which are handled by the controller. The purpose
of this work is expressly to assess whether the vendor-provided memory access mechanisms are
advantageous vs. hand-coded memory accesses. For this reason, the gather-scatter mechanisms which
are very useful in dealing with very sparse matrices and other highly irregular data are not considered,
as it is evident that the complete lack of structure would not give any incentive to the programmer to
proceed with hand-coding, whereas the case studies that we have evaluated do have some structure
which a smart memory controller could unveil.

The remainder of this paper is as follows: Section 2 has a brief description of related work.
Section 3 briefly presents the Convey HC-x architecture, in order for the reader to understand the way
in which the vendor-supported memory controllers work, and what is needed for the user to organize
data in the memory. Section 4 is the main section with measurements of the Convey HC-2ex memory,
and Section 5 has a comparison of the Convey memory controller performance vs. hand-coding of
memory accesses for the Zuker bioinformatics algorithm, which does not have very straightforward
access patterns. Finally, Section 6 has conclusions from this work.

2. Related Work

So far there exist studies which compare high-end FPGA-based computers such as the HC-x
architecture against Central Processing Unit (CPU) and Graphics Processing Unit (GPU) performance
and energy efficiency on different benchmarks. Bakos [1] was the first who focused on the comparison
of the Convey HC-x with CPU and GPU. In his investigation different benchmarks such as double
precision floating point operations or single precision multiplies were performed. The results showed
that the Convey HC-1 outperforms the Xeon 5520 only in benchmarks that need strides in memory.
In other benchmarks with floating point operations, Nvidia GPUs and even CPUs such as the Intel
Xeon outperform the Convey HC-1.

Jones et al. [2] and Luk et al. [3] also investigated the same comparison with similar results.
In their research, they used benchmarks that have different memory access patterns (different
locality). Their results indicate that HC-1 and GPU outperform CPU for all their benchmarks.
The main conclusion of their research is that GPUs perform faster than HC-1 in streaming applications.
On the other hand, HC-1 is faster and more energy efficient from GPUs for applications that need
non-sequential memory accesses [3].

Computation 2016, 4, 41 3 of 12

Nagar and Bakos [4] performed an implementation for a double precision floating point sparse
matrix-vector multiplier on the Convey HC-1. They also presented an improved FPGA architecture
for floating point accumulation and integrated this with the Convey HC-1. Their results showed that
the performance of the Convey is better than the performance of the Tesla S1070 GPU in most cases.
However, the Convey HC-1 has limits in memory interconnection with FPGAs and as a result the
implementation cannot be scaled arbitrarily. Weisz et al. [5], Maas et al. [6] and Jin [7] have also studied
the memory subsystem of the Convey HC-1 and HC-2(ex).

3. Convey HC-x Architecture

The Convey Computer Company (in their own words) introduces an innovative new way of
obtaining extreme performance for High Performance Computing (HPC) applications: hybrid-core
computing. Hybrid-core computing is based on an asymmetric architecture that combines the
economies and programmability of industry standard processors with the performance and efficiency
of a hardware-based, application-specific design. The Convey HC-x series includes a scalar instruction
set, a cache coherent connection to the host processor, and a high-bandwidth local memory system.
The coprocessor memory subsystem supports virtual-to-physical translation such that host memory
and coprocessor memory references can be mapped in a single process “address space”.

Convey’s hybrid-core technology is an example of a High Performance Reconfigurable Computer
(HPRC) system that achieves a compromise between application-specific hardware and architectural
integration. The Convey hybrid-core server, HC-2ex, has access to two pools of physical memory:
the host memory pool with up to 128 GB of physical memory, located on the x86 motherboard,
and the coprocessor memory pool with up to 128 GB of memory, located on the coprocessor board.
The coprocessor contains three main components: the Application Engine Hub (AEH), the Memory
Controllers (MCs), and the Application Engines (AEs).

Each Application Engine is connected to all eight memory controllers via a network of
point-to-point links to provide high sustained bandwidth without a cache hierarchy. Each Memory
Controller is physically connecting to one-eighth of the coprocessor memory through a 300 MHz DDR
memory link. Each Memory Controller is divided in two Dual In-line Memory Modules (DIMMs) and
these ports are clocked at 150 MHz. In fact, the available channels to the memory are 16 channels at
150 MHz each.

The interface of the crossbar, which is provided by the Convey HC-x, connects each AE with all
MCs, as shown in Figure 1. The crossbar decodes the address requests and allows the AEs to maintain
an abstract idea for the allocation of data in the memory.

Computation 2016, 4, 41 3 of 12

the performance of the Convey is better than the performance of the Tesla S1070 GPU in most cases.
However, the Convey HC-1 has limits in memory interconnection with FPGAs and as a result the
implementation cannot be scaled arbitrarily. Weisz et al. [5], Maas et al. [6] and Jin [7] have also
studied the memory subsystem of the Convey HC-1 and HC-2(ex).

3. Convey HC-x Architecture

The Convey Computer Company (in their own words) introduces an innovative new way of
obtaining extreme performance for High Performance Computing (HPC) applications: hybrid-core
computing. Hybrid-core computing is based on an asymmetric architecture that combines the
economies and programmability of industry standard processors with the performance and efficiency
of a hardware-based, application-specific design. The Convey HC-x series includes a scalar instruction
set, a cache coherent connection to the host processor, and a high-bandwidth local memory system.
The coprocessor memory subsystem supports virtual-to-physical translation such that host memory
and coprocessor memory references can be mapped in a single process “address space”.

Convey’s hybrid-core technology is an example of a High Performance Reconfigurable
Computer (HPRC) system that achieves a compromise between application-specific hardware and
architectural integration. The Convey hybrid-core server, HC-2ex, has access to two pools of physical
memory: the host memory pool with up to 128 GB of physical memory, located on the x86
motherboard, and the coprocessor memory pool with up to 128 GB of memory, located on the
coprocessor board. The coprocessor contains three main components: the Application Engine Hub
(AEH), the Memory Controllers (MCs), and the Application Engines (AEs).

Each Application Engine is connected to all eight memory controllers via a network of point-to-
point links to provide high sustained bandwidth without a cache hierarchy. Each Memory Controller
is physically connecting to one-eighth of the coprocessor memory through a 300 MHz DDR memory
link. Each Memory Controller is divided in two Dual In-line Memory Modules (DIMMs) and these
ports are clocked at 150 MHz. In fact, the available channels to the memory are 16 channels at
150 MHz each.

The interface of the crossbar, which is provided by the Convey HC-x, connects each AE with all
MCs, as shown in Figure 1. The crossbar decodes the address requests and allows the AEs to maintain
an abstract idea for the allocation of data in the memory.

CPU

AEH AE0 AE1 AE2 AE3

MC0 MC1 MC2 MC3 MC4 MC5 MC6 MC7

D
I

M
M

D
I

M
M

D
I

M
M

D
I

M
M

D
I

M
M

D
I

M
M

D
I

M
M

D
I

M
M

D
I

M
M

D
I

M
M

D
I

M
M

D
I

M
M

D
I

M
M

D
I

M
M

D
I

M
M

D
I

M
M

Figure 1. Convey HC-x architecture.
Figure 1. Convey HC-x architecture.

Computation 2016, 4, 41 4 of 12

From Figure 1 and the memory access bandwidth described above, it is obvious that streaming
applications have abundant bandwidth. However, stencil computations have more complex patterns,
which need to be evaluated, as described in Section 4.

4. Experimental Memory Subsystem Evaluation

The Convey architecture, as shown in Section 3, encompasses a sophisticated Memory Controller.
It is therefore useful to ascertain the memory subsystem performance in different usage scenarios.
The performance of any system of this nature is affected by several parameters. The most important
parameter is the way in which the memory subsystem communicates with the remaining system,
such as the x86 processor and the FPGA coprocessor. The communication part in the coprocessor end
is of great importance in our research.

The advantage of this hybrid super-computer, as it is presented by Convey Computers, is the
memory subsystem of the co-processor. The memory subsystem consists of two parts, the DDR2
memory and eight MCs with two ports to memory each.

Previous research in memory systems showed that there are two critical parameters affecting the
performance, the latency and the bandwidth of memory. We performed a series of experiments to verify
the communication between the memory and coprocessor (AEs) as shown in the Convey manuals.
The Convey manuals and, more specifically, the Personality Development Kit (PDK) Reference
manual [8] provide the theoretical values of bandwidth that the Convey could achieve according to
the capability of DDR2. However, the requirements to achieve those values are very constraining to
the designer. All AEs have to send requests to the memory from every MC’s ports on every clock cycle
without any MC stalls. One of the provided interleave schemes must be used to optimally distribute
memory requests among the MCs, DIMMs and banks. These requirements are almost impossible
to integrate in a common algorithm hardware design. Furthermore, the interface of the crossbar
overloads the system with additional delays.

Figure 2 shows the binary interleave scheme which is used by Convey, whereas Figure 3 shows
the hierarchy itself. From the combination of these two figures we can glean how the designer needs
to place the application data in the memory space in order for overlapping accesses to not conflict.
The least significant bits are for byte addressing of the 64-bit word. Subsequently there are three bits
for the “Sub bus”, three bits for the Memory Controller, one bit which chooses odd/even DIMM,
and three bits for the Memory Bank. The comparison of Figures 2 and 3 shows how the user’s address
space gets mapped to actual DIMM circuits of DDR2 memory.

The methodology of our experiments is governed by specific rules. All measurements are repeated
1000 times and the results presented are the average number. In our experiments we used only one of
the AEs but we can easily argue that our results extend proportionally in the whole system. The clock
in our designs is bounded from the clock of MC ports which runs at 150 MHz.

Our work focuses mainly on the performance between the coprocessor memory and the
coprocessor itself. The experimental testbed comprises three parts: the DDR2 memory, the eight
MCs and the four AEs. The two figures of merit which are of interest are the bandwidth and the latency
of the Convey HC-x memory subsystem.

Our experimental setup consists of a hardware design that takes measurements of the bandwidth
and latency of the memory subsystem on a coprocessor, and the way in which the measurements are
made is shown in Figure 4.

Computation 2016, 4, 41 4 of 12

From Figure 1 and the memory access bandwidth described above, it is obvious that streaming
applications have abundant bandwidth. However, stencil computations have more complex patterns,
which need to be evaluated, as described in Section 4.

4. Experimental Memory Subsystem Evaluation

The Convey architecture, as shown in Section 3, encompasses a sophisticated Memory
Controller. It is therefore useful to ascertain the memory subsystem performance in different usage
scenarios. The performance of any system of this nature is affected by several parameters. The most
important parameter is the way in which the memory subsystem communicates with the remaining
system, such as the x86 processor and the FPGA coprocessor. The communication part in the
coprocessor end is of great importance in our research.

The advantage of this hybrid super-computer, as it is presented by Convey Computers, is the
memory subsystem of the co-processor. The memory subsystem consists of two parts, the DDR2
memory and eight MCs with two ports to memory each.

Previous research in memory systems showed that there are two critical parameters affecting
the performance, the latency and the bandwidth of memory. We performed a series of experiments
to verify the communication between the memory and coprocessor (AEs) as shown in the Convey
manuals. The Convey manuals and, more specifically, the Personality Development Kit (PDK)
Reference manual [8] provide the theoretical values of bandwidth that the Convey could achieve
according to the capability of DDR2. However, the requirements to achieve those values are very
constraining to the designer. All AEs have to send requests to the memory from every MC’s ports on
every clock cycle without any MC stalls. One of the provided interleave schemes must be used to
optimally distribute memory requests among the MCs, DIMMs and banks. These requirements are
almost impossible to integrate in a common algorithm hardware design. Furthermore, the interface
of the crossbar overloads the system with additional delays.

Figure 2 shows the binary interleave scheme which is used by Convey, whereas Figure 3 shows
the hierarchy itself. From the combination of these two figures we can glean how the designer needs
to place the application data in the memory space in order for overlapping accesses to not conflict.
The least significant bits are for byte addressing of the 64-bit word. Subsequently there are three bits
for the “Sub bus”, three bits for the Memory Controller, one bit which chooses odd/even DIMM, and
three bits for the Memory Bank. The comparison of Figures 2 and 3 shows how the user’s address
space gets mapped to actual DIMM circuits of DDR2 memory.

The methodology of our experiments is governed by specific rules. All measurements are
repeated 1000 times and the results presented are the average number. In our experiments we used
only one of the AEs but we can easily argue that our results extend proportionally in the whole
system. The clock in our designs is bounded from the clock of MC ports which runs at 150 MHz.

Our work focuses mainly on the performance between the coprocessor memory and the
coprocessor itself. The experimental testbed comprises three parts: the DDR2 memory, the eight MCs
and the four AEs. The two figures of merit which are of interest are the bandwidth and the latency of
the Convey HC-x memory subsystem.

Our experimental setup consists of a hardware design that takes measurements of the
bandwidth and latency of the memory subsystem on a coprocessor, and the way in which the
measurements are made is shown in Figure 4.

Figure 2. Binary interleave. Figure 2. Binary interleave.

Computation 2016, 4, 41 5 of 12
Computation 2016, 4, 41 5 of 12

AE

MC 0 MC 7

DIMM 1DIMM 0

MC 1

Bank 0-7

Sub Bus 0-7

Bank
address

MC n MC
n+1

Figure 3. Memory hierarchy.

Figure 4. Experimental setup.

Figure 3. Memory hierarchy.

Computation 2016, 4, 41 5 of 12

AE

MC 0 MC 7

DIMM 1DIMM 0

MC 1

Bank 0-7

Sub Bus 0-7

Bank
address

MC n MC
n+1

Figure 3. Memory hierarchy.

Figure 4. Experimental setup. Figure 4. Experimental setup.

Computation 2016, 4, 41 6 of 12

4.1. Latency Experiments

The initial experiments measure the latency of the memory subsystem. The latency is calculated
by the time that an AE takes to send a read request to the memory and the requested data reach the
AE. In the first experiment, latencies for random requests are measured. Our hardware design consists
of two parts. In the first part our design sends several writing requests to the memory, which writes
random numbers to different memory locations. The random number generator was also implemented
in the hardware on the AEs. Each write request in the memory is independent and differs in memory
location in order to test if locality affects the latency. In our experiments, four different sequences of
addresses of writing requests were used, namely eight to 64 bytes, 64–1024 bytes, 1024–8192 bytes and
>8192 bytes.

In the second part of this experiment, the design sends read requests to the memory, which are
the same addresses written in the first part of the design. The response time of the memory subsystem
for all read requests is measured by a counter that also checks if the data reads are the same with those
written in the first part of the experiment. This measurement is repeated 1000 times and the average
value is calculated by the software.

The average latency measured is 720 ns or 120 clock cycles. In order to present the results of
the experiments, two typical examples of the measurements of latency are shown in Figure 5a,b.
In the first example, one MC is used for each series of experiments and their data addresses differ
64–1024 bytes, as shown in Figure 5a. Figure 5b shows the second example in which four MCs are
used and their data addresses differ by 8–64 bytes. From the results it is deduced that the locality of
data is reflected both in latency and in the variance of latency.

Computation 2016, 4, 41 6 of 12

4.1. Latency Experiments

The initial experiments measure the latency of the memory subsystem. The latency is calculated
by the time that an AE takes to send a read request to the memory and the requested data reach the
AE. In the first experiment, latencies for random requests are measured. Our hardware design
consists of two parts. In the first part our design sends several writing requests to the memory, which
writes random numbers to different memory locations. The random number generator was also
implemented in the hardware on the AEs. Each write request in the memory is independent and
differs in memory location in order to test if locality affects the latency. In our experiments, four
different sequences of addresses of writing requests were used, namely eight to 64 bytes,
64–1024 bytes, 1024–8192 bytes and >8192 bytes.

In the second part of this experiment, the design sends read requests to the memory, which are
the same addresses written in the first part of the design. The response time of the memory subsystem
for all read requests is measured by a counter that also checks if the data reads are the same with
those written in the first part of the experiment. This measurement is repeated 1000 times and the
average value is calculated by the software.

The average latency measured is 720 ns or 120 clock cycles. In order to present the results of the
experiments, two typical examples of the measurements of latency are shown in Figure 5a,b. In the
first example, one MC is used for each series of experiments and their data addresses differ
64–1024 bytes, as shown in Figure 5a. Figure 5b shows the second example in which four MCs are
used and their data addresses differ by 8–64 bytes. From the results it is deduced that the locality of
data is reflected both in latency and in the variance of latency.

(a) (b)

Figure 5. Latency measurements. (a) Addresses differ by 64–1024 bytes; (b) Addresses differ by
8–64 bytes

The latency of the memory subsystem varies through the experiments. The variance of the
latency in our measurements is affected by the number of MCs used and the data location of the read
requests in the memory. From the results it is assumed that in each measure of the experiment, when
the addresses of the data read are between 8–64 bytes apart, the variance of the latency is quite low,
as shown in Figure 6a. On the contrary, when the requested data are in other DIMMs and served by
a different MC port, the latency and the variance of latency are increased, as shown in Figure 6b.
From Figure 6a it is deduced that the addresses of the data reads are in the same DIMM and the
latency is about 120 clock cycles, except for some peaks (of 160 clock cycles). Increased peaks appear
due to stalls of MCs and show a further increase as the used MCs are increased. Figure 6c shows that
the latency is increased to 130 clock cycles, while peaks show a higher density. It also shown that the
number of MCs affects the variance of latency; increased numbers of MCs results in an increase in
the variance of the latency.

Figure 5. Latency measurements. (a) Addresses differ by 64–1024 bytes; (b) Addresses differ by
8–64 bytes.

The latency of the memory subsystem varies through the experiments. The variance of the latency
in our measurements is affected by the number of MCs used and the data location of the read requests
in the memory. From the results it is assumed that in each measure of the experiment, when the
addresses of the data read are between 8–64 bytes apart, the variance of the latency is quite low,
as shown in Figure 6a. On the contrary, when the requested data are in other DIMMs and served
by a different MC port, the latency and the variance of latency are increased, as shown in Figure 6b.
From Figure 6a it is deduced that the addresses of the data reads are in the same DIMM and the latency
is about 120 clock cycles, except for some peaks (of 160 clock cycles). Increased peaks appear due to
stalls of MCs and show a further increase as the used MCs are increased. Figure 6c shows that the
latency is increased to 130 clock cycles, while peaks show a higher density. It also shown that the
number of MCs affects the variance of latency; increased numbers of MCs results in an increase in the
variance of the latency.

Computation 2016, 4, 41 7 of 12
Computation 2016, 4, 41 7 of 12

(a)

(b)

(c)

Figure 6. Latency measurements. (a) Addresses of the data read are offset between 8–64 bytes; (b) The
requested data are in other DIMMs and served by a different MC port; (c) Addresses of the data read
are between 8–64 bytes and the number of MC ports changes 1 to 8.

This number is extremely big, considering that we need new piece of data in every clock cycle
in order to develop an efficient hardware design which could compare with designs in CPU or GPU
in performance. The memory subsystem of the Convey HC-x is built for a large amount of memory
requests and it has the ability to hide this latency. Knowing how the memory DDR2 integrated
circuits work, we can claim that the MCs do some kind of buffering. The most likely scenario of
buffering is that MCs hold in their buffers the whole block of each DIMM that is used each time. So
we could suppose that if an AE is continuously sending requests for data in the same block of
memory, the MC will respond quickly, thus hiding the latency. We tested this assumption in our
subsequent experiments, in order to measure the bandwidth of the memory subsystem.

4.2. Bandwidth Experiments

The second important feature of the memory being measured is the bandwidth. The following
experiments were conducted to measure the bandwidth for different data structures using different
numbers of memory ports.

Figure 6. Latency measurements. (a) Addresses of the data read are offset between 8–64 bytes;
(b) The requested data are in other DIMMs and served by a different MC port; (c) Addresses of the
data read are between 8–64 bytes and the number of MC ports changes 1 to 8.

This number is extremely big, considering that we need new piece of data in every clock cycle
in order to develop an efficient hardware design which could compare with designs in CPU or GPU
in performance. The memory subsystem of the Convey HC-x is built for a large amount of memory
requests and it has the ability to hide this latency. Knowing how the memory DDR2 integrated circuits
work, we can claim that the MCs do some kind of buffering. The most likely scenario of buffering
is that MCs hold in their buffers the whole block of each DIMM that is used each time. So we could
suppose that if an AE is continuously sending requests for data in the same block of memory, the MC
will respond quickly, thus hiding the latency. We tested this assumption in our subsequent experiments,
in order to measure the bandwidth of the memory subsystem.

4.2. Bandwidth Experiments

The second important feature of the memory being measured is the bandwidth. The following
experiments were conducted to measure the bandwidth for different data structures using different
numbers of memory ports.

Computation 2016, 4, 41 8 of 12

Two kinds of experiments were performed for reading burst data from the memory. The first sends
a different number of reading requests to the memory and calculates the response time using only
one memory port. The second one uses multiple ports to access the memory and calculates the response
time as well.

The experiments were repeated for datasets of 1, 5, 10 and 50 MB.

4.2.1. Burst Data

In the first type of experiment, the response time of the memory was measured for three different
numbers of reading requests, all using a single MC port to access memory. The requested data are in
burst mode, and the addresses of subsequent requests differ by eight bytes. So the AE sends reading
requests in all DIMMs. This happens because in our design we use the interface to the crossbar
which allows one MC port of the hardware design to access all of the memory’s DIMMs. The use
of the crossbar is possible to add some delay to our measurements, which could be increased when
more memory ports are in use. In each measurement the MC port feeds the AE with approximately
one requested datum in every clock cycle. Additionally, the AE sends many requests and the ratio of
the data requests and the MC port response time is converging to one, i.e., the theoretical upper bound
is actually reached for well-balanced burst-type accesses. Table 1 shows that the measured bandwidth
of the memory is 1.2 GB/s when only a single memory port is used. In contrast, the theoretical
bandwidth of DDR2 is 2.5 GB/s according to the Convey HC-x manual. Hence we conclude that
with a single port we can expect half of the maximum bandwidth, and this is what the experimental
evaluation demonstrates. We can expect that the bandwidth of 2.5 GB/s would be reached if the
AE sends requests from both ports of the MC. The reason why we measured a single port in this
experiment is that in a typical user’s code, the requests may not be sufficiently “convenient” to use
both ports in every cycle; however, it can be expected that one piece of data will be needed per cycle in
a deeply pipelined design, such as stencil computing. We also note that the maximum bandwidth is
achieved even in short bursts.

Table 1. Burst data bandwidth (one MC port).

Burst Data

Data (MBytes) 1 5 10 50
Bandwidth (GBytes/s) 1.2 1.2 1.2 1.2

In the second burst experiment, a different number of memory ports are used to read in burst
mode. In this group of measurements, the AE uses the interface of the crossbar and therefore all
memory ports have access to all memory DIMMs. The bandwidth was expected (or at least it would
be desirable) to increase linearly as the number of the MC ports was increasing. A linear increase
of bandwidth will be close to the theoretical bandwidth of the DDR2 memory. In the results of this
experiment, shown in Table 2 and Figure 7, we note that the memory bandwidth indeed increases
as the number of MC ports used increases. However, the increase was not expected, no matter what
dataset is used, as shown in Figure 8.

Table 2. Burst data bandwidth (different number of MC ports—dataset 1 MB).

Burst Data Bandwidth

MC Ports 1 4 8 16
Data (MB) 1 1 1 1

Bandwidth (GB/s) 1.2 3.9 7.4 9.6
Percentage of Usable Memory Bandwidth 96% 78% 74% 48%

Computation 2016, 4, 41 9 of 12
Computation 2016, 4, 41 9 of 12

Figure 7. Bandwidth measurement. Different number of MC ports is used for different datasets.

Figure 8. Bandwidth measurement. Comparison of bandwidth using different numbers MC ports

The percentage reduction of usable memory bandwidth is caused by two reasons:

• The requested data from each port are in consecutive addresses in the memory and as a result
every MC port requests data from all DIMMs. Many stalls and collisions appear from this fact.

• Our hardware design uses one Finite-State Machine (FSM) to control all MC ports. As a result,
when a MC port is stalled, the other ports must wait for the stalled ones to be activated again.

When the design uses four MC ports, the result output for bandwidth is 3.9 GB/s instead of the
expected theoretical bandwidth of 5 GB/s. When using eight MC ports, the result output is 7.4 GB/s
instead of the theoretical bandwidth of 10 GB/s. The peak bandwidth being measured for using
16 MC ports is 9.6 GB/s instead of the expected 20 GB/s. The theoretical bandwidth could be achieved
if the hardware design uses one FSM for each MC port which would send reading requests
independently from stalls and collisions of other MC ports. Each MC port must send read requests
to a different DIMM even though the design uses the interface of the crossbar.

The above experiment reveals that the memory bandwidth, which can be achieved for a realistic
user code without too many considerations, is a good fraction of the maximum theoretical
bandwidth; however, in order to cover the performance gap from the “quite good with no worries”
performance to the “squeeze every byte out of the bandwidth” performance, the designer’s task is

Figure 7. Bandwidth measurement. Different number of MC ports is used for different datasets.

Computation 2016, 4, 41 9 of 12

Figure 7. Bandwidth measurement. Different number of MC ports is used for different datasets.

Figure 8. Bandwidth measurement. Comparison of bandwidth using different numbers MC ports

The percentage reduction of usable memory bandwidth is caused by two reasons:

• The requested data from each port are in consecutive addresses in the memory and as a result
every MC port requests data from all DIMMs. Many stalls and collisions appear from this fact.

• Our hardware design uses one Finite-State Machine (FSM) to control all MC ports. As a result,
when a MC port is stalled, the other ports must wait for the stalled ones to be activated again.

When the design uses four MC ports, the result output for bandwidth is 3.9 GB/s instead of the
expected theoretical bandwidth of 5 GB/s. When using eight MC ports, the result output is 7.4 GB/s
instead of the theoretical bandwidth of 10 GB/s. The peak bandwidth being measured for using
16 MC ports is 9.6 GB/s instead of the expected 20 GB/s. The theoretical bandwidth could be achieved
if the hardware design uses one FSM for each MC port which would send reading requests
independently from stalls and collisions of other MC ports. Each MC port must send read requests
to a different DIMM even though the design uses the interface of the crossbar.

The above experiment reveals that the memory bandwidth, which can be achieved for a realistic
user code without too many considerations, is a good fraction of the maximum theoretical
bandwidth; however, in order to cover the performance gap from the “quite good with no worries”
performance to the “squeeze every byte out of the bandwidth” performance, the designer’s task is

Figure 8. Bandwidth measurement. Comparison of bandwidth using different numbers MC ports.

The percentage reduction of usable memory bandwidth is caused by two reasons:

• The requested data from each port are in consecutive addresses in the memory and as a result
every MC port requests data from all DIMMs. Many stalls and collisions appear from this fact.

• Our hardware design uses one Finite-State Machine (FSM) to control all MC ports. As a result,
when a MC port is stalled, the other ports must wait for the stalled ones to be activated again.

When the design uses four MC ports, the result output for bandwidth is 3.9 GB/s instead of the
expected theoretical bandwidth of 5 GB/s. When using eight MC ports, the result output is 7.4 GB/s
instead of the theoretical bandwidth of 10 GB/s. The peak bandwidth being measured for using 16 MC
ports is 9.6 GB/s instead of the expected 20 GB/s. The theoretical bandwidth could be achieved if the
hardware design uses one FSM for each MC port which would send reading requests independently
from stalls and collisions of other MC ports. Each MC port must send read requests to a different
DIMM even though the design uses the interface of the crossbar.

The above experiment reveals that the memory bandwidth, which can be achieved for a realistic
user code without too many considerations, is a good fraction of the maximum theoretical bandwidth;
however, in order to cover the performance gap from the “quite good with no worries” performance

Computation 2016, 4, 41 10 of 12

to the “squeeze every byte out of the bandwidth” performance, the designer’s task is not trivial,
as he/she cannot always know what conflicts are generated inside the Memory Controller vis-à-vis
other requests which arrive from different AEs.

4.2.2. Data Strides

Experiments were also performed for other data structures involving data strides. Different
strides were tested to measure the bandwidth of the memory. Our goal was to find the limits of the
MC port in reading request data with strides. Previous work showed an efficient performance of the
Convey HC-x for benchmarks with strides in memory. In our experimental study, different memory
strides were tested in order to measure the bandwidth. The 512-byte stride is the bound of the memory
port for an efficient hardware design as shown in Table 3. The first three measurements for strides,
namely 8, 64 and 512 bytes, showed that the MC port and the whole memory subsystem serve the
AE requests as fast as with sequential burst accesses. The use of one MC port for these strides feeds
the AE with different data in almost every clock cycle. The AE uses the interface of the crossbar and
as a result the MC port has access to all DIMMs. However, for bigger strides, which would make
sequential accesses all go to a single DIMM, namely for strides of 1024 and 8192 bytes, the bandwidth
is dramatically reduced, as expected. This is a very obvious issue, known for many decades, and there
are solutions dating back to the 1980s in order to address it (e.g., adding a “dummy” memory column
to a matrix). The important results from these measurements are that when strides get mapped to
different DIMMs, the performance is identical to sequential burst memory accesses, and the MCs do
a good job in this case.

Table 3. Data strides bandwidth (1 MC port).

1 MC Port—Data Strides

Data Stride (bytes) 8 64 512 1024 8192
Bandwidth (GB/s) 1.2 1.2 1.2 0.02 0.003

5. Triangular Data Structures

The last one of our experiments was a comparison between hand-coded memory accesses vs.
memory accesses from code produced by the vendor’s tools. For this experiment we used a well-known
algorithm from bioinformatics, Zuker’s algorithm. The prediction of the RNA secondary structure is
a challenging task in computational biology. The methodology of Zuker’s UNAFold algorithm has been
introduced to contribute to this task. The analysis of Zuker’s UNAFold algorithm was the motivation
for the study of memory response time for different data structures such as triangular tables [9,10].
Multiple accesses from large triangular matrices are required for the calculation of the algorithm.

Our experiments aim to measure the efficiency of MC ports in structures that need irregular
accesses in memory. In the present study, two techniques of reading data of a triangular matrix are
proposed. In both techniques the design uses one MC port to read the entire matrix.

• In the first technique, our design sends read requests only for the data of the lower triangular
table and measures the time response of the memory subsystem.

• Using the results of the measurements for data accesses, a technique is proposed where the design
sends read requests needed for the lower triangular table memory accesses in smaller address
increments, namely 512 bytes.

These two experiments are shown in Figure 9a,b, respectively. We note by observing these figures
that the access patterns in Figure 5a are not comprised of strides in the classical sense (e.g., when we
want to access the diagonal of a m × n matrix the stride is fixed to m + 1 words). Rather, we have
sequential accesses of different sizes each. In Figure 9b we have a data placement which is similar to
a stride, as we place some of the data in addresses differing by 512 bytes.

Computation 2016, 4, 41 11 of 12

Computation 2016, 4, 41 11 of 12

(a) (b)

Figure 9. (a) Reading only the lower triangular matrix; (b) Reading the lower triangular matrix with
512 bytes address increments.

In these experiments two different sizes of matrices were used, namely 0.1 and 0.7 GB. The
purpose of our measurements is to read only the data of the lower triangular matrix as fast as
possible. The bandwidth that the MC port succeeds is 1.2 GB/s in both techniques for both matrix
sizes. However, the first technique is a bit faster. This means that the MC port “feeds” the AE with
new data in every clock cycle. The results show that the memory subsystem responds efficiently in
these data structures and there is no need for additional intervention in the way of reading the data
from the designer.

In order to evaluate how hand-coded designs would fare vs. the vendor-supported MCs, we
conducted an additional series of experiments, in which FSMs in the AEs would schedule the
memory accesses. These designs actually performed worse than those with the vendors’ tools (after
several refinements the results were close to the ones reported above, but still they were worse). We
believe that there are two reasons: the controller seems to do some caching of fetched data, and this
was lost in the user’s code; also, the controller can schedule requests around conflicts and serialize
the requests in order to deliver data to the user. Both of these features were lost, whereas in fact the
user code may have inadvertently caused conflicts which reduced the performance.

6. Conclusions

In this work we performed an extensive experimental evaluation of the Convey HC-x
architecture memory subsystem, using a Convey HC-2ex hybrid FPGA supercomputer. The
experiments were for both random and burst accesses, and showed that the vendor-provided
memory controller takes good advantage of the memory subsystem capabilities, that the hierarchy
with odd/even banks of DIMMs works together with multiple ports, and the “sub-banks” concept
and the actual interleave banks deliver for many cases almost all of the memory bandwidth, even
when a single port is used. In addition, the memory controllers do a good job in sequencing and
caching requests, as shown by the experiment in which manually scheduling memory requests
performed no better than the vendor-produced code.

Acknowledgments: This work was partially funded by the following projects: EU H2020 project “COSSIM-
Novel, Comprehensible, Ultra-Fast, Security-Aware CPS Simulator”, Project Reference 644042, under the ICT-
01-2014 call if the RIA-Research and Innovation Action, and, by the General Secretariat of Research and
Technology of Greece (GSRT) under the project “AFORMI-Allowing for Reconfigurable Hardware to Efficiently
Implement Algorithms of Multidisciplinary Importance”, funded in the call “ARISTEIA” of the framework
“Education and Lifelong Learning”, with code 2427.

Figure 9. (a) Reading only the lower triangular matrix; (b) Reading the lower triangular matrix with
512 bytes address increments.

In these experiments two different sizes of matrices were used, namely 0.1 and 0.7 GB. The purpose
of our measurements is to read only the data of the lower triangular matrix as fast as possible.
The bandwidth that the MC port succeeds is 1.2 GB/s in both techniques for both matrix sizes.
However, the first technique is a bit faster. This means that the MC port “feeds” the AE with new
data in every clock cycle. The results show that the memory subsystem responds efficiently in these
data structures and there is no need for additional intervention in the way of reading the data from
the designer.

In order to evaluate how hand-coded designs would fare vs. the vendor-supported MCs,
we conducted an additional series of experiments, in which FSMs in the AEs would schedule
the memory accesses. These designs actually performed worse than those with the vendors’ tools
(after several refinements the results were close to the ones reported above, but still they were worse).
We believe that there are two reasons: the controller seems to do some caching of fetched data, and this
was lost in the user’s code; also, the controller can schedule requests around conflicts and serialize the
requests in order to deliver data to the user. Both of these features were lost, whereas in fact the user
code may have inadvertently caused conflicts which reduced the performance.

6. Conclusions

In this work we performed an extensive experimental evaluation of the Convey HC-x architecture
memory subsystem, using a Convey HC-2ex hybrid FPGA supercomputer. The experiments were
for both random and burst accesses, and showed that the vendor-provided memory controller takes
good advantage of the memory subsystem capabilities, that the hierarchy with odd/even banks of
DIMMs works together with multiple ports, and the “sub-banks” concept and the actual interleave
banks deliver for many cases almost all of the memory bandwidth, even when a single port is used.
In addition, the memory controllers do a good job in sequencing and caching requests, as shown
by the experiment in which manually scheduling memory requests performed no better than the
vendor-produced code.

Acknowledgments: This work was partially funded by the following projects: EU H2020 project “COSSIM-Novel,
Comprehensible, Ultra-Fast, Security-Aware CPS Simulator”, Project Reference 644042, under the ICT-01-2014 call
if the RIA-Research and Innovation Action, and, by the General Secretariat of Research and Technology of Greece
(GSRT) under the project “AFORMI-Allowing for Reconfigurable Hardware to Efficiently Implement Algorithms
of Multidisciplinary Importance”, funded in the call “ARISTEIA” of the framework “Education and Lifelong
Learning”, with code 2427.

Computation 2016, 4, 41 12 of 12

Author Contributions: Initial work on how data structures map to memory access patterns was performed by
A. Dollas and I. Papaefstathiou under the project AFORMI. This work was continued by the same authors under
project COSSIM, in which the study was done expressly towards speeding up simulators with high-end hybrid
reconfigurable processors. The codes to test the memory subsystem under various access pattern scenarios were
developed by the first author, K. Kalaitzis, who also conducted the experiments. The second author, E. Sotiriadis,
participated in the code development and provided expert help in solving technical problems on the Convey
HC-2ex. The entire project was supervised by A. Dollas and I. Papaefstathiou.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Bakos, J.D. High-performance heterogeneous computing with the Convey HC-1. Comput. Sci. Eng. 2010, 12,
80–87. [CrossRef]

2. Jones, D.H.; Powell, A.; Bouganis, C.-S.; Cheung, P.Y.K. GPU versus FPGA for high productivity computing.
In Proceedings of the 2010 International Conference on Field Programmable Logic and Applications (FPL),
Milano, Italy, 31 August–2 September 2010.

3. Betkaoui, B.; Thomas, D.B.; Luk, W. Comparing performance and energy efficiency of FPGAs and GPUs for
high productivity computing. In Proceedings of the 2010 International Conference on Field-Programmable
Technology (FPT), Beijing, China, 8–10 December 2010.

4. Nagar, K.K.; Bakos, J.D. A sparse matrix personality for the convey HC-1. In Proceedings of the 2011 IEEE
19th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM),
Salt Lake City, UT, USA, 1–3 May 2011.

5. Weisz, G.; Melber, J.; Wang, Y.; Fleming, K.; Nurvitadhi, E.; Hoe, J.C. A Study of Pointer-Chasing Performance
on Shared-Memory Processor-FPGA Systems. In Proceedings of the 2016 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, Monterey, CA, USA, 21–23 February 2016.

6. Maas, M.; Love, E.; Stefanov, E.; Tiwari, M.; Shi, E.; Asanovi, K.; Kubiatowicz, J.; Song, D. A high-performance
oblivious RAM controller on the convey HC-2ex heterogeneous computing platform. In Proceedings of
the Workshop on the Intersections of Computer Architecture and Reconfigurable Logic (CARL), Davis, CA,
USA, 7 December 2013.

7. Jin, Z. Memory Interface Synthesis for FPGA-Based Computing. Ph.D. Thesis, University of South Carolina,
Columbia, SC, USA, 8 September 2014.

8. Convey. Convey Personality Development Kit Reference Manual; Version 5.2; Convey Computer: Richardson,
TX, USA, 2012.

9. Zuker, M.; Patrick, S. Optimal computer folding of large RNA sequences using thermodynamics and auxiliary
information. Nucleic Acids Res. 1981, 9, 133–148. [CrossRef] [PubMed]

10. Markham, N.R.; Michael, Z. UNAFold. In Bioinformatics; Humana Press: Totowa, NJ, USA, 2008; pp. 3–31.

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/MCSE.2010.135
http://dx.doi.org/10.1093/nar/9.1.133
http://www.ncbi.nlm.nih.gov/pubmed/6163133
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Convey HC-x Architecture
	Experimental Memory Subsystem Evaluation
	Latency Experiments
	Bandwidth Experiments
	Burst Data
	Data Strides

	Triangular Data Structures
	Conclusions

