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Abstract: We investigate four diatomic molecules containing transition metals using two variants
of hybrid functionals. We compare global hybrid functionals that only partially counteract
self-interaction to local hybrid functionals that are designed to be formally free from one-electron
self-interaction. As d-orbitals are prone to be particularly strongly influenced by self-interaction
errors, one may have expected that self-interaction-free local hybrid functionals lead to a qualitatively
different Kohn–Sham density of states than global hybrid functionals. Yet, we find that both types of
hybrids lead to a very similar density of states. For both global and local hybrids alike, the intrinsic
amount of exact exchange plays the dominant role in counteracting electronic self-interaction, whereas
being formally free from one-electron self-interaction seems to be of lesser importance.
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1. Introduction

Ground-state Kohn–Sham density-functional theory (DFT) [1–3] grants access to the electronic
structure of condensed matter in an efficient manner. While DFT is exact in principle, practical
calculations require an approximation for the exchange-correlation energy Exc[n] as a functional of
the electron ground-state density n(r). In the last decades, numerous such approximations were
developed [4], leading to a high accuracy of DFT methods for many physical applications, thus
contributing to make the story of DFT one of success.

Yet, certain systems pose severe difficulties for a satisfying description with DFT due to
their chemical composition. For instance, the characterization of systems containing transition
metals makes high demands on the density-functional approximation that is put to task [5].
The problems of describing systems with localized d- [6,7] or f -electrons [8] are often attributed
to electronic self-interaction (SI) [9,10]: Most practical density functionals, and in particular the
semilocal ones, include an erroneous interaction of an electron with itself. This leads to a significant
decrease in accuracy for the description of a wide range of physical processes and observables
(e.g., References [11,12] and references therein). The self-interaction in particular affects systems
in which some orbitals are localized and others are not [13,14], which typically is the case for systems
containing d-electrons [6].

Curing the SI problem is highly non-trivial for at least two conceptual reasons. The first is that
(semi)local exchange functionals—which are responsible for the largest part of the self-interaction
error—implicitly model part of what in wavefunction theory is called static correlation [11,15,16].
Straightforwardly eliminating SI can therefore have detrimental effects [17]. The second is that
it is straightforward to identify SI in a one-electron system—the sum of the Hartree- and the
exchange-correlation energy must vanish, and if it does not, then SI is present—yet, it is much
less clear what the corresponding condition is for a many-electron system.

Computation 2016, 4, 33; doi:10.3390/computation4030033 www.mdpi.com/journal/computation

http://www.mdpi.com/journal/computation
http://www.mdpi.com
http://www.mdpi.com/journal/computation


Computation 2016, 4, 33 2 of 15

The most often used definition [9,10] of electronic SI is based on the concept of identifying
electrons with spin-orbital densities niσ(r) = |ϕiσ(r)|2, where i counts the single-particle states and σ

the electron spin. In this definition, a specific density-functional approximation EDFA
xc [n] is regarded as

free from SI if the condition

∑
σ=↑,↓

Nσ

∑
i=1

{
EH[niσ] + Eapprox

xc [niσ, 0]
}
= 0 (1)

is fulfilled [9,10]. Here, EH[niσ] denotes the Hartree energy evaluated with the single spin-orbital
density niσ(r).

Equation (1) has been introduced by Perdew and Zunger [9,10] for the definition of a SI correction
(SIC). The basic idea of the Perdew–Zunger SIC is subtracting the SI error as quantified by Equation (1)
from an explicit expression for the xc energy [10]. However, SIC schemes can also be defined in
several other ways [12,18–28]. There is such a wide variety of SIC schemes because not only can
the expression for Exc be defined in other ways than done by Perdew and Zunger, but also within
the Perdew–Zunger definition, different variants of SIC can be defined. This is due to the fact that
Equation (1) explicitly uses the single particle orbitals and is not unitarily invariant. Thus, depending
on how the mapping between the density and the orbitals is defined—i.e., depending on how the
potential from which the orbitals are calculated is constructed—one and the same orbital-dependent
expression for Exc can correspond to different density functionals for Exc [11]. The Perdew–Zunger
SIC energy, can, for example, be used with orbital-specific potentials [10,29–32] or as a Kohn–Sham
functional using the optimized effective potential (OEP) [33,34] and approximations to it [35–42].
Additionally, with respect to how to cope with the unitary variance of Equation (1), different concepts
have been developed [29,41,43–49]. Recently, the use of complex-valued orbitals [48–55] and the use
of the Fermi orbital [56–58] have been introduced as new concepts for the definition of improved
SIC schemes.

As an alternative way of thinking about SI, it has been advocated to focus less on one-electron
conditions as in Equation (1) and to instead think about SI directly for many-electron systems.
Consequently, as a conceptually different approach, “many-electron SI” has been introduced [59,60]
based on the straight-line criterion [61] of the total energy as a function of fractional electron
numbers. Enforcing the straight-line condition indeed leads to an improved description of the
electronic structure [62–68]. However, the condition cannot easily be formulated in “closed form”
for use in density-functional construction. Therefore, Equation (1) continues to be of considerable
importance in density-functional construction (we note that this is so, even though range-separated
functionals [69–73], and in particular tuned ones [64,74], can yield eigenvalues that closely correspond
to ionization potentials without making use of Equation (1). However, tuning comes at the price of
violating size-consistency [75]).

Equation (1) is relevant not only for SIC schemes, but also for other approaches that aim at
reducing SI (e.g., the use of exact (Fock) exchange). Whereas global hybrids [76–78] that use only a
fraction of Fock exchange only partially eliminate one-electron SI, local hybrid functionals [79–87] can
be constructed to obey Equation (1). Therefore, when one-electron SI is—as is usually done—defined
via Equation (1), then local hybrids can be fully one-electron SI free. In local hybrids, nonlocal and
semilocal functional components are mixed together in a spatially resolved and density-dependent
fashion. Detection functions are typically used to reveal spatial regions where the density is dominated
by single spin-orbital densities. This information is then used in the functional design in order to
reduce or eliminate SI. As a consequence, local hybrids offer the advantage of being nominally free
from electronic SI in the sense of Equation (1), while providing an xc energy expression that is invariant
under unitary orbital transformations [88].

Yet, it was recently demonstrated [67] that this formal attribute of local hybrids does not necessarily
result in a more accurate description of observables that are expected to be substantially influenced
by electronic SI. Reference [67] focuses on the description of photoemission spectra of organic
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molecules by interpreting the set of occupied Kohn–Sham eigenvalues as a physical density of states
(DOS) [13,14,89–91]. Somewhat surprisingly, it became clear that global hybrid functionals [76–78]
and local hybrids in this respect lead to rather similar results, despite the fact that local hybrids are
formally SI free and global hybrids are not.

The Kohn–Sham DOS can be used in order to characterize the structural, catalytic, and magnetic
properties of solid state systems. In recent years, it has particularly often been relied on in studies
of clusters [92–104]. Many of the potentially technologically relevant clusters contain elements with
d-electrons. The influence of SI on the DOS is therefore of particular interest [5] with respect to the
reliable representation of d-electrons. As the investigations in Reference [67] comprised only organic
molecules and no systems with d-electrons, we here close this gap and study the Kohn–Sham DOS
that results from local hybrids for molecules containing transition metals.

In order to allow for a calculation of the DOS within the Kohn–Sham scheme of DFT, we evaluate
local hybrids with the OEP formalism (see References [11,105,106] and references therein). Furthermore,
to refrain from uncertainties arising from, for example, basis sets and pseudopotentials [67],
we present results obtained on accurate numerical grids using the all-electron program package
DARSEC [86,107,108]. As a consequence, we are restricted to computations of molecules with two
atomic centers. We find that for the transition metal-containing molecules investigated in this work,
local and global hybrids exhibit great similarities for the description of the DOS. In particular, the
investigated local hybrid functionals do not show a greater sensitivity to localized d-states despite the
formal fulfillment of Equation (1). Thus, the main conclusion of Reference [67] is further confirmed in
this work. While transition metal atoms in diatomic molecules differ from atoms in the solid-state limit
of typical d-electron metals, we see the present study as an indicator for what one can qualitatively
expect from local hybrids for d-electron metals.

This paper is structured as follows: In Section 2, we briefly discuss the differences in the
construction of global in contrast to local hybrid functionals, with a special focus on the treatment of
SI. Section 3 provides details on the computational aspects of this work, while we show and discuss
our results in Section 4. Finally, in Section 5, we summarize this work with concluding remarks.

2. Counteracting Electronic Self-Interaction with Hybrid Functionals

The exact-exchange (EXX) integral, which is defined by

Eex
x = −1

2

Nσ

∑
i,j=1

σ=↑,↓

∫∫ ϕ∗iσ(r)ϕjσ(r)ϕiσ(r′)ϕ∗jσ(r
′)

|r− r′| d3r d3r′, (2)

provides an auspicious component for the construction of functional approximations, since
EXX itself fulfills the requirement of Equation (1). In general, the xc energy can be expressed
(ambiguously [85,109,110]) as Exc =

∫
n(r)exc(r)d3r, with exc(r) denoting the xc energy density

per particle. Here, we highlight two related, yet fundamentally different concepts of incorporating the
EXX energy density per particle eex

x (r) into practical density-functional approximations.
Global hybrid functionals combine constant amounts of EXX with the corresponding parts of

semilocal exchange and correlation. In this work, we focus on the PBEh hybrid functional [111,112],
which employs an xc energy density per particle defined by

ePBEh
xc (a, r) = a eex

x (r) + (1− a) ePBE
x (r) + ePBE

c (r). (3)

Here, a ∈ [0, 1] denotes the constant fraction of EXX, and ePBE
x,c (r) represents the PBE exchange and

correlation energy densities per particle [113,114]. It becomes evident from Equation (3) that the PBEh
hybrid functional does not generally obey Equation (1), since PBE exchange and correlation are not free
from SI and EXX is only partially included. Instead, one expects that SI is only effectively counteracted
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for large values of a (i.e., for large amounts of EXX included). This assumption is systematically
confirmed by the results of Reference [63,67,115–117].

Local hybrid functionals, in contrast, substitute the constant hybrid parameter a by space- and
density-dependent functions, resulting in a more flexible mixing of nonlocal EXX with semilocal
functional components. In this work, we focus on the local hybrid functional presented in
Reference [86], which is termed “ISO” functional in the following. It approximates the xc energy
density by

eISO
xc (c, r) = (1− fx[n](r)) eex

x (r) + fx[n](r) eLSDA
x (r) + fc[n](r) eLSDA

c (r). (4)

Here, eLSDA
x (r) and eLSDA

c (r) denote the energy density of the local spin-density approximation
(LSDA) [118–120] for exchange and correlation, respectively. The mixing functions are defined by

fx[n](c, r) =
1− τW(r)

τ(r) ζ2(r)

1 + ct2(r)
(5)

and

fc[n](r) = 1− τW(r)
τ(r)

ζ2(r). (6)

The quantity τW(r) = |∇n(r)|2/(8n(r)) gives the von Weizsäcker and τ(r) = 1
2 ∑σ ∑Nσ

i= 1 |∇ϕiσ(r)|2
the Kohn–Sham kinetic energy density. The function t2(r) denotes the reduced density gradient [113]

t2(r) =
(π

3

)1/3 a0

16Φ2(ζ(r))
|∇n(r)|2
n7/3(r)

, (7)

with the Bohr radius a0, Φ(ζ(r)) = 1
2

(
(1 + ζ)2/3 + (1− ζ)2/3

)
, and the spin polarization

ζ(r) = (n↑(r)− n↓(r))/(n↑(r) + n↓(r)). The mixing function fx(c, r) includes an a priori undetermined
parameter c in the denominator, which regulates the intrinsic amount of EXX that is involved in the local
hybrid. Increasing values of c reduce the function fx(c, r), resulting in an increasing intrinsic amount
of EXX. For more details on the construction and performance of the ISO local hybrid functional, see
References [67,86,87,121].

Additionally, we investigate a modified form of the ISO local hybrid. Termed “ISOII”, it is also
based on Equation (4), but uses mixing functions defined by

f II
x (c
∗, r) =

1− τW(r)
τ(r)

1 + c∗t2
II(r)

(8)

and

f II
c (r) = 1− τW(r)

τ(r)
(9)

with t2
II(r) = t2(ζ(r) = 1, r) =

(
π
3
)1/3 a02

2
3

16
|∇n(r)|2
n7/3(r) . These mixing functions follow directly from

Equations (5) and (6) by setting ζ(r) = 1 ∀ r. Additionally, here an a priori undetermined parameter
c∗ appears. It regulates the amount of EXX in analogy to the ISO functional.

Importantly, both ISO and ISOII obey Equation (1) due to their construction: When the density
consists of only a single spin orbital one finds [88,122]

τW(r)
n(r)≈|ϕiσ(r)|2−−−−−−−−→τ(r). (10)

Consequently, the mixing functions f II
x (r) and f II

c (r) vanish regardless of the value of the respective
functional parameter. Since in the case of a single spin orbital the spin polarization reduces to
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ζ(r)
n(r)≈|ϕiσ(r)|2−−−−−−−−→1, fx(r) and fc(r) also vanish systematically. Thus, both ISO and ISOII can be regarded

as free from SI in the sense of Equation (1) (see Reference [67] for details).
In the following, we investigate how this formal property of the functionals ISO and ISOII

affects their resulting Kohn–Sham DOS for systems with d-electrons. For this, we explicitly calculate
four diatomic molecules containing transition metals with the local hybrids for various values of
their respective functional parameter and evaluate the resulting spectrum of occupied Kohn–Sham
eigenvalues. We contrast the results of the local hybrids to the outcome of calculations using purely
semilocal functionals, the PBEh global hybrid functional, and to pure EXX, which itself is 100% free
from electronic SI.

3. Computational Details

All results throughout this work were obtained with the program package DARSEC using a
highly accurate real-space grid. In DARSEC, the Kohn–Sham equations are solved self-consistently
with an explicit consideration of all electrons. A local, multiplicative potential for orbital-dependent
functionals (i.e., EXX and the global and local hybrid functionals) was obtained by using the
KLI approximation [123] to the OEP. All calculations were performed in a non-relativistic way.

We here investigate the four diatomic molecules ZnO, Cu2, CuCl, and Pd2. The former three
molecules were evaluated based on their experimental ground-state bond lengths RZnO = 3.2162 bohr,
RCuCl = 3.8762 bohr, and RCu2 = 4.1946 bohr (see Reference [124]). The bond length of Pd2 was
determined as RPd2 = 4.9063 bohr based on a geometry optimization using the LSDA, since no
experimental value is available.

All molecules were evaluated in the 1Σ state with no unpaired electrons, and consequently, a spin
polarization of ζ(r) = 0. In this context, a fundamental difference between ISO and ISOII becomes
evident: for such systems, the detection function τW(r)/τ(r) effectively only contributes to the mixing
functions in the case of the ISOII functional, since for ISO it is multiplied by zero. Yet, the argument that
formally both local hybrids are free from SI still holds (see Reference [67] for more detailed arguments).

When plotting the Kohn–Sham DOS, we broaden the Kohn–Sham eigenvalue spectrum by
convolution with Gaussians using a standard deviation of 0.08 eV. Furthermore, in order to allow for a
better comparison of the different spectra, the eigenvalue spectra were aligned to match εho = 0, where
εho denotes the highest occupied (ho) Kohn–Sham eigenvalue. We present and discuss the Kohn–Sham
DOS of the four diatomic molecules obtained with PBEh, ISO, ISOII, and EXX in the next section.

4. Results and Discussion

We begin our discussion by examining the Kohn–Sham DOS of ZnO as presented in Figure 1a.
For this system, the group of eigenvalues that can be found around ≈ 7 eV below εho if evaluated with
pure PBE can be identified as d-electrons originating from the Zn atom. When comparing the DOS of
PBE to the one of pure EXX, it becomes evident that the position of these eigenvalues is significantly
influenced by SI, as their positions are moved by ≈ 1 eV towards lower energies. In contrast, the
eigenstate directly below the ho Kohn–Sham state remains nearly constant in its position relative to
the ho state when going from PBE to EXX.

The DOS obtained with PBEh for various values of the parameter a (as shown in Figure 1a)
reveals how the global hybrid functional copes with the electronic SI: the positions of the eigenvalues
that are affected by SI are systematically shifted towards lower energies with increasing values
of a. This behavior can be understood from the consideration that PBEh in general only partially
counteracts SI, and the deviation from fulfilling Equation (1) can be reduced by increasing the value of
a (see Reference [67] for a more detailed argument). Furthermore, the observed behavior is consistent
with the fact that PBE and EXX can be considered as limiting cases of PBEh with a = 0 and a = 1,
respectively (note that PBEh with a = 1 does not exactly correspond to pure EXX due to the semilocal
correlation term in Equation (3)).
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Figure 1. Kohn–Sham density of states (DOS) of ZnO obtained with (a) PBE (blue), exact-exchange (EXX,
black), and PBEh in dependence on a (green); (b) LDA (blue), EXX (black), and ISO in dependence on c
(red). In this and all following figures, each panel contains the value of −εho in eV in order to indicate
the absolute position of the DOS on the energy scale. Further, the relative shift of the d-states—which
were identified in DARSEC as the Kohn–Sham states with angular momentum quantum number m = ±2
(cf. Reference [107])—is highlighted by the dashed grey line.

In contrast, the local hybrid functional ISO formally obeys Equation (1) for any value of the
parameter c, as argued in Section 2. Yet, this feature does not directly translate into an improved DOS.
Instead, as shown in Figure 1b, the DOS of the ISO functional for various values of c behaves similar
to the one of PBEh: with increasing values of c, the group of eigenvalues that is most affected by SI
moves from the position given by the LSDA to the one of EXX. These functionals provide the limiting
cases for ISO in the case of spin-unpolarized systems with c = 0 and c → ∞, respectively, as can be
seen from Equations (4)–(6) [86]. In any case, the formal freedom from SI for ISO does not necessarily
result in a DOS that is comparable to EXX. In fact, the intrinsic amount of EXX that is involved in the
local hybrid plays the dominant role in determining the Kohn–Sham DOS.

This finding is further supported by the results for the Kohn–Sham DOS of CuCl and Cu2, as
shown in Figures 2 and 3. It becomes evident that both PBEh and ISO with varying values of their
parameters gradually change the energetic position of Kohn–Sham states that are affected by SI
between the limiting cases of the semilocal PBE/LSDA and nonlocal, SI-free EXX. Interestingly, for
some states—such as, for instance, the lowest state shown for Cu2—inclusion of small parts of EXX
results in an upshift on the energy scale, while larger amounts of EXX reverse the direction of the shift.
However, the local hybrid functional does not exhibit a special sensitivity to states affected by SI, as can
be seen be comparing the DOS obtained with PBEh(a = 0.25) and ISO(c = 0.5). These functionals can
be regarded as comparable in the sense that both use the parametrization that was determined as ideal
for the description of thermochemical properties such as binding energies [86,111]. Yet, despite the fact
that ISO in contrast to PBEh is formally free from SI, the spectra of PBEh(a = 0.25) and ISO(c = 0.5)
are rather similar for the systems investigated here.
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Figure 2. Kohn–Sham DOS of CuCl obtained with (a) PBE (blue), EXX (black), and PBEh in dependence
on a (green); (b) LDA (blue), EXX (black), and ISO in dependence on c (red).
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Figure 3. Kohn–Sham DOS of Cu2 obtained with (a) PBE (blue), EXX (black), and PBEh in dependence
on a (green); (b) LDA (blue), EXX (black), and ISO in dependence on c (red).

For Pd2, a different scenario occurs. Figure 4 demonstrates that the DOS changes insignificantly
when using EXX instead of semilocal functionals. This indicates that all states are affected by SI to the
same extent [13,115]. In this case, counteracting SI by using a global hybrid functional with increasing
amounts of EXX does not change the relative energetic positions of the Kohn–Sham states, as can be
seen from Figure 4a. Similarly, the results obtained with ISO in Figure 4b exhibit a DOS that is nearly
independent of the value of the functional parameter. Consequently, also for systems whose electronic
structure is less influenced by SI, the local and global hybrid perform very similarly.
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Figure 4. Kohn–Sham DOS of Pd2 obtained with (a) PBE (blue), EXX (black), and PBEh in dependence
on a (green); (b) LDA (blue), EXX (black), and ISO in dependence on c (red).

We note that both the DOS of the homonuclear dimer Cu2 and the DOS of the heteronuclear
dimer CuCl are greatly affected by SI. The relative position of the Kohn–Sham eigenvalues of the
homonuclear diatomic molecule Pd2, on the other hand, is hardly influenced by SI. We conclude from
this finding that it is difficult to predict trends in the DOS based on general arguments about formally
being free from SI. For this reason, the results for the Pd2 dimer also cannot be generalized to bulk Pd.

As discussed in Section 3, the detection function τW(r)/τ(r) is canceled in the mixing functions of
ISO if ζ = 0, as it is the case for the four molecules considered in this work. Thus, the detection function
effectively does not contribute in the mixing process. Since this function (according to Equation (10)) is
crucial for the local hybrid to be free from SI, one might argue that the similar performance of PBEh
and ISO is a consequence of the appearance of the spin polarization in Equations (5) and (6). In order
to contradict this conclusion, and to emphasize that the similarity between global and local hybrids is
a fundamental feature rather than a specific result observed for one particular functional, we evaluate
the Kohn–Sham DOS of the four molecules obtained with the modified local hybrid ISOII.

The corresponding results are shown in Figure 5 for ZnO and CuCl, and in Figure 6 for Cu2

and Pd2. These graphs demonstrate that ISOII, even though it explicitly uses the detection function
τW(r)/τ(r) also for spin-unpolarized systems, provides a Kohn–Sham DOS that is similar to the results
of PBEh and ISO. For ZnO, CuCl, and Cu2, the energetic positions of the states affected by SI change
gradually from the result of the LSDA to the one of pure EXX with increasing values of the functional
parameter c∗, and good agreement with SI-free calculations is only achieved for large values of c∗.
In the case of Pd2, again, changing the parametrization of ISOII has virtually no effect on the relative
Kohn–Sham eigenvalue spectrum. In general, also for ISOII, the intrinsic amount of EXX appears to
be the decisive factor for the outcome of the Kohn–Sham DOS.
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c∗ (orange) for (a) Cu2 and (b) Pd2.

5. Conclusions

In this article, we investigated diatomic molecules containing transition metals under the aspect
of electronic SI. Based on the Kohn–Sham eigenvalue spectrum as an indicator for the influence
of SI, we compared local hybrid functionals (which are designed to be free from SI in the sense of
Equation (1)) to global hybrids (which only partially counteract SI). We found that both types of hybrid
functionals show striking similarities in their Kohn–Sham DOS. More specifically, the intrinsic amount
of EXX included in the hybrid construction appears as the important criterion, independent of the
formal reduction of SI via an iso-orbital detection function. Good agreement with the result of EXX
calculations was only obtained for hybrid functionals with large EXX admixture. Thus, correcting SI
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via detection functions such as τW(r)/τ(r) does not generally result in a Kohn–Sham DOS comparable
to pure EXX.

The observed behavior of the DOS with variation of the functional parameter marks another
manifestation of the so-called parameter dilemma which, as discussed in the conclusion of
Reference [86], affects local hybrids, global hybrids, range-separated hybrids, and SIC schemes
alike: Properties determined by the total energy require a different parametrization of the functional
than properties determined by the potential; e.g., the KS eigenvalues. Our investigation regarding
transition metal dimers underlines the finding that an equally satisfying description of both domains
remains challenging. Our finding that a functional’s property of being formally one-electron SI free
is not necessarily important is in line with other recent reports [125] and extends the conclusions of
Reference [67] to systems containing transition elements.
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