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Abstract: Effective algorithms of physical media numerical modeling problems’ solution are discussed.
The computation rate of such problems is limited by memory bandwidth if implemented with
traditional algorithms. The numerical solution of the wave equation is considered. A finite difference
scheme with a cross stencil and a high order of approximation is used. The DiamondTorre algorithm
is constructed, with regard to the specifics of the GPGPU’s (general purpose graphical processing
unit) memory hierarchy and parallelism. The advantages of these algorithms are a high level of data
localization, as well as the property of asynchrony, which allows one to effectively utilize all levels
of GPGPU parallelism. The computational intensity of the algorithm is greater than the one for the
best traditional algorithms with stepwise synchronization. As a consequence, it becomes possible
to overcome the above-mentioned limitation. The algorithm is implemented with CUDA. For the
scheme with the second order of approximation, the calculation performance of 50 billion cells per
second is achieved. This exceeds the result of the best traditional algorithm by a factor of five.
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1. Introduction

Among the issues of contemporary stencil computations, we find the following two to be the
most prominent.

The first issue is the inability to operate on all levels of parallelism with maximum efficiency.
It may be solved for some software (testing packages like LAPACK [1] being the evident example),
but remains an open question for the larger part of relevant problems. Furthermore, to achieve
this, it is necessary to use several programming instruments. As the supercomputer performance is
mostly increased by adding levels of parallelism, the modern top 500 computers [2] are essentially
heterogeneous, and the majority of them include the GPGPU. The peak performance is achieved by
using all levels of parallelism in some ideal way. The sad truth about the expensive supercomputers
is that they mostly run software that does not accomplish this requirement. To efficiently utilize the
supercomputing power, the software should be written with regard to the model of the parallelism of
a given system.

For physical media simulation, the common method of utilizing concurrency is domain
decomposition [3]. It assumes decomposition into large domains, the data of which fit into the
memory attached to a processor (coarse-grained parallelism). The common technology to implement
this is MPI [4].

The other method, tiling [5], is often used in computer graphics and other applications.
The data array is decomposed into small parts, which all lie in the same address space (fine-grained
parallelism), and OpenCL [6] and CUDA [7] are common technologies for this. A similar technique is
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loop nest optimization [8]. It appears when initially sequential programs are rewritten to be parallel
and a dependency graph [9] has to be analyzed to find an optimal algorithm. It is often executed
with OpenMP [10] in coarse-grained parallelism and loop auto-vectorization [11] in fine-grained
parallelism. With all parallel technologies, developers have to struggle with the issues of unbalance,
large communication latency and low throughput, non-uniform data access [12] and necessity of
memory coalescing [7].

The second issue in applied computations that deal with processing large amounts of data (such
as wave modeling) is the deficiency in memory bandwidth. The balance of main memory bandwidth
to peak computation performance is below 0.1 bytes/flop for the majority of modern computers
and tends to decrease even further as new computation units appear. In terms of hardware, the access
to data takes more time and costs more (in terms of energy consumption) than the computation itself.

Our aim was to construct an algorithm to solve these issues for stencil computations for
GPU-based systems. It should naturally utilize all available levels of parallelism and efficiently work
with all levels of the memory hierarchy. A decomposition of the modeling domain in both time and
space was essential to achieve this aim. Such an approach was used before by other authors [5,13–17],
but the mentioned problems of the incomplete use of parallel levels and memory layers have not been
sufficiently solved. Further, we aim to develop a theoretical model for an a priori assessment of the
performance efficiency by combining the knowledge of the computer system, the numerical scheme
and algorithm characteristics. The algorithm is implemented with CUDA, since it is an instrument
that allows convenient use of GPU parallelism and memory hierarchy levels [18,19] .

2. Computation Models

With the hierarchy of memory subsystems and levels of parallelism, contemporary computers
display an extreme complexity.

One helpful tool is a model of the pyramidal memory subsystem hierarchy. In Figure 1 in a log-log
scale, we plot rectangles, the vertical position of which shows the data throughput of the memory
level, and the width of the rectangle shows the dataset size. The picture looks like a pyramid for the
CPU device. With each level, the memory bandwidth is about twice higher, and the data size is smaller
by a factor of eight.
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Figure 1. Memory subsystem hierarchy for the GPGPU and CPU.

Locally-recursive non-locally-asynchronous (LRnLA) algorithms [20,21] use the divide and
conquer approach by decomposing the problem into subproblems recursively at several levels, so that
each time, the data of the subproblems fit into a higher level of the memory hierarchy. It allows one
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to reach peak performance for the problems, the data of which are as large as the lower level of the
memory subsystem.

This idea of recursive subdivision has been implemented in the LRnLA algorithm ConeFold.
It has provided the expected performance increase for CPU-based codes [21].

The register memory of GPGPU is larger than the CPU cash, so it may be used as a main data
localization site. This register file is distributed between several multiprocessors. The next significant
memory level (GDDR5) has worse memory bandwidth and latency. Therefore, instead of recursive
decomposition, it is important to provide a continuous data flow from device memory to registers
and back.

The DiamondTorre LRnLA algorithm has been developed based on this idea [22–24]. In this paper,
we show how it is constructed, discuss its characteristics, provide CUDA implementation details
and show its performance results on a simple memory-bound stencil problem. This paper is focused
on performance optimization for one device.

The hierarchy is best known to hardware designers, but this knowledge is impossible to ignore
in the programming process. The complex computer structure should be simplified as some model.
One example of such a model is the roof line. Introduced in [25], the roof line model is a graph of
attainable GFlops per second versus operational intensity. It has two distinct portions and visually
assorts the programs into the two categories based on the operational intensity: memory bound and
compute bound. The higher the ceiling rises (this corresponds to the increase in peak performance),
the more problems fall under the slope and suffer from memory bandwidth limitations.

3. Problem Statement

The main scope of the current work is the wave modeling, which encompasses a vast range of
applications, such as the modeling of: elastic media wave propagation, nanophotonics, plasmonics
and acoustics. To be specific in the present paper, we choose to limit the discussion to the acoustic
wave equation, but the implications are easily generalized to all numerical methods with a local stencil.

∂2F
∂t2 = c2

(
∂2F
∂x2 +

∂2F
∂y2 +

∂2F
∂z2

)
(1)

The problem is to compute the temporal evolution of a field F = F(x, y, z, t) in a finite simulation
domain with the given initial (F(x, y, z, 0) = F0(x, y, z)) and boundary (F|boundary = U(t)) conditions.
The explicit scheme has the second order of approximation in time and an adjustable order of
approximation in space. That is, the mesh is introduced over the domain with Nx, Ny, Nz cells
along each axis, and the differentials are approximated by the finite sums of the form:

∆x2 ∂2F
∂x2

∣∣∣∣
x0,y0,z0,t0

=
NO/2

∑
i=0

Ci(F|x0+i∆x + F|x0−i∆x) (2)

where NO is the order of approximation (it is even), Ci are the numerical constants (sample coefficients
are given in the Table 1) and ∆ signifies a mesh step along the corresponding axis. Differentials in all
four variables are expressed similarly. NO = 2 for the time derivative; NO = 2, 4, 6 ... and more for
space derivatives.

Table 1. Numerical scheme coefficients.

NO C0 C1 C2 C3 C4

2 −1 1 — — —
4 −5/4 4/3 −1/12 — —
6 −49/36 3/2 −3/20 1/90 —
8 −205/144 8/5 −1/5 8/315 −1/560
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The following computation should be carried out to propagate the field value to a new (k + 1)-th
time layer:

F|k+1 = 2F|k − F|k−1 + c2∆t2

(
∂2F
∂x2

∣∣∣∣k + ∂2F
∂y2

∣∣∣∣k + ∂2F
∂z2

∣∣∣∣k
)

(3)

assuming that all values on the right-hand side are known. In the implementation, the field data for
two sequential time layers should be stored. Thus, it is common to use two program arrays F and G:
one for the even time steps, another for the odd ones. To compute, it is necessary for 2 + 3NO values
to be loaded from memory, one to be saved to memory, and if values like c2∆t2/∆x2 are defined as
constant, the number of FMA (fused multiply-add) operations in the computation is at least 1 + 3NO.

By applying the stencil for each point in the (d + 1)-dimensional mesh (d coordinate axes and and
one time iteration axis), we get an entity that we will call a “dependency graph” in this paper (Figure 2).
The first two layers along the time axis are an initial condition; the last layer is the desired result of the
modeling problem. Between layers, the directed edges show the data dependencies of the calculations,
and calculations are represented by vertices (the top point of the stencil that corresponds to F|k+1).
Initial values and boundary points represent the initialization of a value instead of calculation with
a stencil. All stencil computations in the graph should be carried out in some particular order.

Figure 2. Dependency graph of the problem (arrows are omitted) with example stencil for sixth order
of approximation.

The inherent property of the physical statement of the problem is a finite propagation velocity.
According to the special relativity, there exists a light cone in 4D spacetime, which illustrates the
causalities of events (see Figure 3). For a given observer spot, all events that affect it are contained
in a past light cone (cone of dependence), and all events that may be affected by the observer are
contained in the future light cone (cone of influence). In terms of the acoustic wave equation, the slope
of the cone is given by the sound speed c.

Numerical approximation of the wave equation by an explicit scheme with local stencil retains
the property; but, the cone is transformed according to the stencil shape, and its spread widens.
We shall refer to the resulting shapes as a “dependency conoid” and an “influence conoid” accordingly.
The shape of the conoid base for the chosen stencil is a line segment in 1D, a rhombus in 2D and an
octahedron in 3D. We will call this shape a “diamond” because of its similarity to the gemstone in the 2D
and 3D cases. The distance between the opposing vertices of the d-dimensional orthoplex in the cone
base increases by NO cells along each axis with each time step away from the synchronization instant.
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Figure 3. Dependence and influence cones in Minkowski space.

4. Algorithm as a Rule of Subdividing a Dependency Graph

In the current approach, an algorithm is defined as a traversal rule of a dependency graph.
Let us see how an algorithm may be represented by a shape in (d+ 1)-space where the dependency

graph is given. If some shape covers some number of graph vertices, it corresponds to an algorithm
(or some procedure or function in the implementation) that consists of processing all of the calculations
in these vertices. This shape may be subdivided into similar shapes, each of which contain a smaller
number of vertices, in such a way that the data dependencies across each subdivision border are
exclusively unilateral. The direction of data dependencies between shapes shows the order of the
evaluation of the shapes. If there is a dependency between two shapes, they must be processed in
sequence. If not, they may be processed asynchronously.

After a subdivision, all of the resulting shapes also correspond to some algorithm. By recursively
applying this method, the smallest shapes contain only one vertex and correspond to a function
performing the calculation. This is a basic idea of the LRnLA decomposition.

Let us give an example. The most prevalent way is to process the calculation one time
iteration layer after another. The illustration (see Figure 4) by graph subdivision shapes is as follows:
a (d + 1)-dimensional box, which encompasses the whole graph of the problem, is subdivided into
d-dimensional rectangles, containing all calculations on a certain graph layer. The order of computation
in each such layer may be arbitrary: either a loop over all calculations, subdivision into domains for
parallel processing or processing the cells by parallel threads.

Figure 4. Algorithm as a rule of subdividing a dependency graph: stepwise (left), domain decomposition
(center) and LRnLA example (right). Arrows show data dependencies between subdivision shapes.
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Layer-by-layer stepwise calculation is used in almost all physics simulation software, and very
few authors have ventured outside the comfort zone. The most notable unfavorable consequences
are that during processing each time layer, the whole data array should be loaded from memory and
stored into it, and the parallel processors have to be synchronized. There exist many other dependency
graph traversal rules, which require much less synchronization steps and much less memory transfer.
More operations may be carried out on the same data. One example is in Figure 4, which arises from
tracing dependency/influence conoids.

We shall show now how the optimal algorithm is constructed for a given problem (the wave
equation with cross-shaped stencil) and for a given implementation environment (GPGPU with CUDA).
The illustration is given for a two-dimensional problem with d = 2 in x-y axes. The dependency graph
is plotted in 3D x-y-t space. If we treat each vertex as the processing not of one, but of Nz elements,
then this illustration is also applicable for 3D simulation problems. Such DiamondTile decomposition
is assumed for all further discussions.

• The most compact shape that encompasses the stencil in space coordinates is a diamond. The 2D
computational domain is subdivided into diamond-shaped tiles. For NO = 2, each tile contains
two vertices.

• One diamond tile is chosen on the initial layer. Its influence conoid is plotted. After Nt layers,
we choose another tile, which lies near the edge of the influence conoid base, on the far side in the
positive direction of the x-axis. Its dependence conoid is plotted.

• On the intersection of conoids, we find a prism (Figure 5).

Figure 5. DiamondTorre algorithm construction as an intersection of an influence cone (orange) and
a dependence cone (red) of two tiles. If a point falls onto a shape border, we consider that it is inside
the shape if it is on the bottom face; and that it is outside the shape if it falls on the top face.

This prism is a basic decomposition shape for DiamondTorre algorithms. Since it is built as
an intersection of conoids, the subdivision retains correct data dependencies, and since the shape is
a prism, all space may be tiled by this shape (boundary algorithms are the only special case).

Each prism has dependency interconnections only with the prisms, the bases of which are directly
adjacent to the base of this prism (see Figure 6). That is, the bases have common edges. The calculations
inside the prism depend on the calculation result of the two right prisms and influence the calculations
inside the two prisms to the left. The crucial feature is that the calculations inside the prisms with the
common y coordinate, even those for which the bases touch each other, are absolutely independent.
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Figure 6. Data dependencies are directed from green prisms into purple one; from purple prisms to
yellow prisms. Red and purple prisms’ calculations are completely independent from each other and
may be processed asynchronously.

A certain freedom remains with the calibration of prism parameters: height and base size.
The distance from the stencil center to its furthest point is defined as a stencil half size and equals
ShS ≡ NO/2. By default, the base of the prism contains 2·ShS2 vertices. It may be increased in DTS
(diamond tile size) times along each axis, then the base would contain 2·ShS2DTS2 vertices. The height
of the prism equals Nt. Nt should be divisible by two and DTS.

5. Benefits of the LRnLA Approach

The goal of the introduction of these algorithms is the solution of the issues that were presented
in the Introduction, namely, the reduction of the requirements for memory bandwidth and the increase
of asynchrony.

To quantitatively compare different algorithms of wave equation modeling in terms of memory
bandwidth requirements, we introduce measures of the locality and asynchrony of an algorithm.
The locality parameter is defined as the ratio of the number of dependency graph vertices inside the
algorithm shape to the number of graph edges that cross the shape’s boundaries. The asynchrony
parameter is equal to the number of vertices that may be processed concurrently.

The higher the parameters of locality and asynchrony are, the higher the performance that can
be reached for memory-bound problems. While the locality parameter is generally not as high as
it could be, the asynchrony parameter is often redundantly large. It is imperative not to increase
the asynchrony parameter, but to correctly distribute the concurrent computation on different levels
of parallelism.

The locality parameter has a similar meaning as the “operational intensity” measure introduced
in the roof line model [25], but differs by a certain factor. The factor is defined from the scheme stencil
and is equal to the number of operations per one cell per one time step divided by the data size.

Let us calculate the locality parameters for the algorithms that are introduced above as
a subdivision of the dependency graph. For one dependency graph vertex, the locality parameter
is equal to 1/(3 + 3NO). This subdivision may be illustrated as enclosing each vertex in a box.
We will call such an algorithm “naive”, since it corresponds to the direct application of the scheme (3)
without accounting for caching ability specifics on contemporary computers with hierarchical memory
subsystem organization.

A row of cell calculations along one axis is asynchronous on one time step. Fine-grained
parallelism can be utilized by vectorizing the loop of Nz elements along one (z) axis. The locality
parameter increases to 1/(3 + 2NO); the asynchrony parameter is Nz.

More generally, the locality parameter may be increased in two ways. The first method is to use
the spatial locality of the data of a stepwise algorithm (Figure 4). The quantity of data transfers may be
reduced by taking into account the overlapping of the scheme stencils. If a scheme stencil stretches in
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k layers in time (k = 3 for the chosen scheme above), it is necessary to load data from k− 1 layers and
to save the data of one time layer. The locality parameter is equal to 1/k, and this value corresponds to
a maximal one for all stepwise algorithms. It is reached only if the algorithm shape covers all vertices
of one time layer. In practice, this algorithm is impossible since there is not enough space on the upper
layers of the memory subsystem hierarchy (which means the register memory for the GPGPU) to
allocate the data of all of the cells in the simulation domain.

Taking the limited size of the upper layer of the memory hierarchy into account, we choose the
tiling algorithm with a diamond shape tile as the optimal one. It corresponds to the DiamondTorre
algorithm with Nt = 1, so it is also a variation of a stepwise algorithm. Since the stencil occupies
three time layers, two arrays are needed for the data store in the implementation, which are updated
one-by-one in a similar fashion. The number of operations for one diamond update is equal to the
number of vertices inside one diamond (2·DTS2ShS2) times the number of operations for one vertex.
To compute, we need to load 2·DTS2ShS2 cells’ data to be updated (first array), 2·(DTS·ShS + ShS)2

cells’ data required for the update (second array) and save 2·DTS2ShS2 updated cells’ data (first array).
The locality parameter in this case is equal to 1/(3+ 2/DTS+ 1/DTS2), and it differs from the optimal
one (1/k = 1/3) by a factor of two or less. The asynchrony parameter reaches Nz·2DTS2ShS2 since all
vertices in a horizontal DiamondTorre slice are asynchronous.

The further increase of the locality may be reached through temporal locality, namely
by the repeated updating of the same cells, the data of which are already loaded from
memory. The DiamondTorre algorithm contains 2ShS2DTS2 cell calculations on each of
Nt = 2DTS·n (n is some integer number) tiers and requires 2ShS2(DTS + 1)2 − 2ShS2DTS2 loads
and 2ShS2DTS2 − 2ShS2(DTS− 1)2 saves on each layer, as well as 4ShS2DTS2 initial loads
and 4ShS2(DTS− 1)2 final saves. The locality parameter for one DiamondTorre amounts to:

DTS · n/(4n + 2− 2/DTS + 1/DTS2) (4)

and approaches DTS/4 with large Nt.
At this step, the transition from fine-grained to coarse-grained parallelism takes place. For a

row of asynchronous DiamondTorre (with a common y coordinate), the asynchrony parameter is
increased by a factor of Ny/(2DTS·ShS), which is the number of DiamondTorres in a row. The locality
parameter increases to:

DTS · n/(n(4− 1/DTS) + 2− 2/DTS + 1/DTS2) (5)

and approaches DTS/(4− 1/DTS) with large Nt.
If the asynchrony of DiamondTorres with different x (and t) positions is involved, the coarser parallel

granularity may be utilized. The asynchrony parameter would increase by about Nx/(2Nt·ShS) times.
The roof line model may be plotted with the localization parameter as its horizontal axis.

In Figure 7, roof lines for the two target GPUs are plotted in red and green lines. The maximum
possible performance for a given algorithm is found as a ceiling point for its localization parameter
(black arrows).

The major difference between the mentioned LRnLA algorithms and trapezoid tiling [14] is
the predefined homogeneity of shapes. Trapezoid subdivision seeks for an optimal subdivision for
an arbitrary space-time mesh. As a result of this optimization, shapes may differ. These optimized
shapes include the ones similar to DiamondTorre in 1D, but others have lower locality. In the LRnLA
method, both ConeFold and DiamondTorre shapes are taken as the optimal ones from the theoretical
estimates of locality and asynchrony. Only a finite set of shape parameters is left for optimization.
One advantage of this approach is the homogeneity of shapes, so the code is comparatively simple,
and the overhead is minimized. The developed theory also provides performance estimates before the
algorithm is implemented in code.
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Figure 7. Roof line model for the wave equation on the GPGPU.

Anther approach for space-time subdivision uses a similar term diamond tile [15]. The diamond
in that paper works differently, since the shape is in the space-time axis (x-t for 1D, like in Figure 4).
DiamondTile in DiamondTorre spans the x-y axis. The idea in [15] works only for the 1D domain.
For 2D and 3D, the evident generalization of this shape does not tile the whole simulation domain.
When modeling in higher dimensions, it is necessary to provide additional shapes or to change
the algorithm. The evident disadvantage of the former is the lower locality coefficient of some of
these shapes.

The example of the latter is the wavefront diamond blocking method [16,17]. The advantage
of DiamondTorre in comparison to these is an efficient use of the GPGPU architecture. The data on
one DiamondTorre tier fit into the GPGPU register and may be processed asynchronously. This covers
GPGPU device memory latency. The data used by DiamondTorre fit in the device memory, so the
sliding window approach may be used to solve big data problems by utilizing whole host memory
without the drop in performance [24].

6. CUDA Implementation

The computing progresses in subsequent stages. A stage consists of processing a row of
DiamondTorre algorithm shapes along the y axis (Figures 8 and 9). They may be processed
asynchronously, since there are no dependencies between them on any time layers. They are processed
by CUDA blocks. Each element of the 3D dependency graph that was subdivided into prisms
corresponds to the processing of Nz elements for 3D problems. Therefore, in each DiamondTorre Nz,
CUDA threads process cells along the z axis. The DiamondTorre function contains a loop over Nt time
layers. Each loop iteration processes cells that fall into the DiamondTile.

It should be noted that as asynchronous CUDA blocks process cells in DiamondTorre in a row
along the y axis, the data dependencies are correct even without synchronization between blocks after
each time iteration step. The only necessary synchronization is after the whole stage is processed.
However, since there is no conoid decomposition along the z axis, CUDA threads within a block should
be synchronized. This is important to calculate finite approximations of the ∂2F

∂z2 derivative. When
the CUDA thread processes a cell value, it stores it in shared memory. After synchronization occurs,
the values are used to compute the finite sum of cell values along the z axis. This way it is assured is
that in one finite sum, all values correspond to the same time instant.
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Figure 8. DiamondTorre algorithm implementation with CUDA. First stage (left) and second
stage (right).

Figure 9. After boundary prisms are processed, in some cells of the computation domain, the field has
the values of the Nt-th iteration step; in some cells, the field has its initial values; and other cells have
values on the time step from zero to Nt (left). After all stages are processed, all field values reach the
Nt-th time step (right).

The next stage processes a row of DiamondTorre’s that is shifted by ShS · DTS in the negative x
direction and by the same amount in the positive y direction. The row is processed like the previous one,
and the next one is shifted again in x and y, so that by alternating these stages, all of the computation
domain is covered.

The first of these rows starts near the right boundary of the domain (Figure 8). The upper part
of the prisms falls outside the computation domain. These correspond to the boundary functions,
in which the loop over the tiles has fewer iterations, and the last iterations apply boundary conditions.
After boundary prisms are processed (Figure 9), we arrive at the situation when in some cells of the
computation domain, the acoustic field has the values of the Nt-th iteration step; in some cells, the field
has its initial values; and other cells have values on time steps ranging from zero to Nt. After all stages
are processed, all field values reach the Nt-th time step.

All calculations at each time are conducted in a region near the slope on the current DiamondTorre
row. This property can be used to implement a so-called “calculation window”. Only the data that are
covered at a certain stage have to be stored in the device memory; the rest remains in the host memory.
This way, even big data problems can be processed by one GPGPU device. If the calculation time of
one stage equals the time needed to store the processed data and load the data to be processed at the
next stage, then the computation reaches maximum efficiency.

To enable multi-GPGPU computation, the calculation on each stage may be distributed by
subdividing the DiamondTorre row in the y axis into several parts, equal to the GPGPU number [24].
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The following illustrates a code sample (NO = 2, DTS = 4), excluding complications at the boundaries.
f and g correspond to the two arrays for subsequent time layers.

__shared__ float2 ExchZ[8][Nz];
#define SH_c(i) ExchZ[i][threadIdx.x]
struct Cell { float F[Nz], G[Nz]; };
__global__ void __launch_bounds__(Nz, 1+(Nz<=320)) //regs limit for Nz>320
weq_calcO2_DDe(int Ntime, int ixs0, int ixa0) {
Cell* c0=...;//set pointer to tower’s bottom base cell
register float2 f00={LS(F,-5,0),LS(F,-4,0)};//load data of tower’s bottom
register float2 f10={LS(F,-4,1),LS(F,-3,1)};//from device memory
register float2 g00={LS(G,-4,0),LS(G,-3,0)};//using macro LS and pointer c0,
register float2 g10={LS(G,-3,1),LS(G,-2,1)};//then localize in 64 registers
...
for(int it=0; it<Ntime; it+=8) {

//DTS=4, 4 pair tiers per loop iteration, 4*4*4*2=128 cells steps
SH_c(0) = make_float2(f00.y,f01.x);//put data to the shared memory for
z-derivative
SH_c(1) = make_float2(f10.y,f11.x);//float2 for Kepler’s optimization
SH_c(2) = make_float2(f20.y,f21.x);
SH_c(3) = make_float2(f01.y,f02.x);
__syncthreads();//calculations chunk separation
g00 = K1*make_float2(f00.y,f01.x) - g00 + K2*(SH_p(0)+SH_m(0)+f00+f01+f10+f31);
//cross-stencil; SH_p, SH_m are the macros for getting iz+1, iz-1 data
from shared memory
LS(G,-4,0) = g00.x; LS(G,-3,0) = g00.y; //store recalculated
(up to 8 times) data
f00.x = LS(F,-1,4); f00.y = LS(F, 0,4); //load data from device memory
g10 = K1*make_float2(f10.y,f11.x) - g10 + K2*(SH_p(1)+SH_m(1)+f10+f11+f20+f01);
LS(G,-3,1) = g10.x; LS(G,-2,1) = g10.y; f10.x = LS(F, 0,5); f10.y = LS(F, 1,5);
g20 = K1*make_float2(f20.y,f21.x) - g20 + K2*(SH_p(2)+SH_m(2)+f20+f21+f30+f11);
LS(G,-2,c0,2) = g20.x; LS(G,-1,2) = g20.y; f20.x = LS(F, 1,6);
f20.y = LS(F, 2,6);
g01 = K1*make_float2(f01.y,f02.x) - g01 + K2*(SH_p(3)+SH_m(3)+f01+f02+f11+f32);
SH_c(4) = make_float2(f31.y,f32.x);
SH_c(5) = make_float2(f22.y,f23.x);
SH_c(6) = make_float2(f13.y,f10.x);
SH_c(7) = make_float2(f32.y,f33.x);
__syncthreads();
...
c0 += 2*Ny;//jump to next tower’s tier

}
...//store data from top tower’s tier

}

This kernel is called in a loop. Each stage (row of asynchronous DiamondTorres) is shifted to the
left from the previous one.

for(int ixs0=NS-Nt; ixs0>=0; ixs0--) {
weq_calc_O2_DD<<<NA, Nz>>>(Nt, ixs0, 0); //even stage
weq_calc_O2_DD<<<NA, Nz>>>(Nt, ixs0, 1); //odd stage

}
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7. Results

The algorithm has been implemented for the finite difference scheme described in Section 3.
In the initial values, we set a spherical wave source. The values on boundaries are set to zero and
not updated.

The performance of the code is tested for various values of the Nt, DTS, NO parameters.
The grid size was chosen as the maximal that fits the device memory (approximately 3.5 × 108 cells
and 1.5 × 108 for 750Ti). Due to the algorithm shape, the code efficiency depends on its dimensions.
The Nx, Ny, Nz values that comprise this total cell number were varied, and the optimal result is
taken for the graph. A few hundreds of time steps were taken to measure the efficiency.

In Figure 7, the achieved results for the second order of approximation are plotted under the roof
line. The lowest point corresponds to the result of a sample code from the built-in CUDA examples
library, “FDTD3d”. result from the built-in CUDA examples. It should be noted that the comparison is
not exactly fair, since in FDTD3d, the scheme is of the first order in time and uses a stencil with one
point less (k = 2). Other points are from the computation results with the DiamondTorre algorithm
with increasing DTS parameter, Nt = 100.

In Figure 10, the calculation rate is plotted versus parallel levels, measured in warps.
It is measured as a strong scaling, for a calculation mesh of about ∼0.5 × 109 cells. From 1/32 to one
on the horizontal axis, the number of used GPGPU threads rises from one to 32. This corresponds
to the growth of Nz, while Ny is minimal (one DTS), and Nx is scaled to occupy all device memory.
The increase in the calculation rate is satisfactorily linear. After one, the parallel levels increase by
adding whole warps up to the maximum number of warps in the block (eight), with the number
of enabled registers per thread equal to 256. As before, only Nz grows, and Nx is scaled down
proportionally. After this, the number of blocks is increased, which corresponds to the Ny growth.
The increase of the calculation rate remains linear until the number of blocks becomes equal to the
number of available multiprocessors. The maximum achieved value is over 50 billions cells per second.
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Figure 10. Strong scaling for the wave equation. DTS = 6, Nt = 96, NO = 2.

In Figure 11, the achieved calculation rate for different parameters is plotted. The labels on the
horizontal axis are in the form NO/DTS. Overall, the results correspond to the analytical predictions (5).
With fixed DTS = 1 and NO = 2, 4, 6, 8 (first four points), the calculation rate is constant (for Maxwell
architectures), although the amount of calculation per cell increases. This is explained by the fact that
the problem is memory bound. The computation rate increases with DTS for constant NO, since the
locality parameter increases. For the rightmost points of the graph, the deviation from the analytical
estimate for Kepler architecture is explained by insufficient parallel occupancy.
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8. Generalization

The area of DiamondTorre application is not limited to acoustic wave equation. It has also been
successfully implemented for finite difference time domain methods (FDTD) [26], the Runge–Kutta
discrete Galerkin method [22,27] and particle-in-cell plasma simulation [23]. The LRnLA method of
algorithm construction may also be applied for any other numerical methods with local dependencies
and other computer systems and methods of parallelism.

9. Conclusions

The algorithm DiamondTorre is constructed to maximize the efficiency of stencil computations
on a GPU. The theory to estimate its performance is developed, based on the roof line model and
two algorithm parameters: locality and asynchrony. The algorithm is implemented in code, and the
performance has been tested for various algorithm parameters. The result show the expected increase
of performance in comparison with stepwise methods and agrees with the quantitative estimates.
The goal to efficiently utilize all parallel levels of the GPU device and all if its memory is achieved.
For the scheme with the second order of approximation, the calculation performance of 50 billion cells
per second is achieved, which exceeds the result of the best stepwise algorithm by a factor of five.
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FDTD: finite difference time domain
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CUDA: compute unified device architecture, a parallel computing platform and application programming interface
MPI: message passing interface, a communication protocol for programming parallel computers
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