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Abstract: We model the behavior of an ideal liquid junction, across a porous and possibly
charged medium between two ion-containing solutions, by means of the Nernst–Planck equation
for the stationary state, in conditions of local electroneutrality. An analytical solution of the
equation was found long ago by Planck for the uncharged junction with only ions of valences +1
and −1. Other analytical results, which have later been obtained also for more general situations,
seem impractical for performing calculations. In this paper, we obtain analytical solutions for
systems with up to three valence classes, which can be applied to perform numerical calculations
in a straightforward way. Our method provides a much larger amount of information on the
behavior of the system than the well-known Henderson’s approximation. At the same time, it is
more simple and reliable, and much less demanding in terms of computational effort, than the
nowadays commonly employed numerical methods, typically based on discrete integration and
trial-and-error numerical inversions. We present some examples of practical applications of our
results. We study in particular the uphill transport (i.e., the transport from the lower-concentration
to the higher-concentration region) of a divalent cation in a liquid junction containing also other
univalent anions and cations.

Keywords: liquid junction; membrane; Nernst–Planck equation; uphill transport
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1. Introduction

When two solutions of different electrolytes, or of the same electrolyte but with different
concentrations, are put into contact, a potential, called “liquid junction potential”, spontaneously
arises between them [1]. Such a potential develops for instance across the porous diaphragm of
concentration cells, thus affecting the output potential, and across the diaphragm of the reference
electrodes which are commonly used in electrochemistry, thus affecting the measurements of the
electrode potentials. On the other hand, since every electrochemical measurement also involves
potential differences which arise between the electrodes and the solutions, a reliable experimental
measurement of the liquid junction potential alone is often practically unavailable. For this reason,
several methods to theoretically calculate the liquid junction potential have been conceived and
employed for a long time.

An approximated formula for the junction potential, which gives results sufficiently accurate for
most practical purposes, and which is for this reason largely employed still today, has been obtained
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by Henderson in 1907 [2,3]. A more rigorous approach to the problem had however been adopted
by Planck already in 1890 [4,5]. The general behavior of an ion in an ideal liquid junction, which
moves under the influence of diffusion and of an electric field, is described by the Nernst–Planck
differential equation [4–7]. Planck obtained an analytical solution of this equation describing the
stationary state of an uncharged liquid junction in which only univalent ions are present, under the
assumption of local electroneutrality. This assumption means that the Nernst–Planck equations, for
all the ionic species present in the junction, are solved with the constraint that the total electric charge
vanishes at all points of the junction. In most practically relevant cases the behavior of the electric
potential, which is obtained with this method, turns out to be consistent, according to the Poisson
equation, with the presence of a charge density which is indeed very low compared with the charge
density carried by each individual ionic species. This can be considered as a sound justification for
the electroneutrality assumption.

A more rigorous procedure would be to couple the Nernst–Planck equations right from the
beginning with the Poisson equation for the electric potential, without invoking electroneutrality.
One obtains in this way a closed set of equations which is known as the Poisson–Nernst–Planck
system. MacGillvray [8] proved that, for membranes such that the fixed charges are described by a
continuum distribution, the solution of the stationary Nernst–Planck equations with electroneutrality
represents the zeroth-order term of the expansion of the solution of the full Poisson–Nernst–Planck
system, with respect to a parameter which is the square of the ratio of a suitable Debye length in
the junction and the junction thickness. Since in practical situations such a parameter is typically
very small, this argument represents a mathematically rigorous justification for the use of the
electroneutrality condition.

From Planck’s solution, an analytical expression for the potential and the ionic fluxes can
be derived. Planck considered a junction with well-defined spatial boundaries, corresponding for
instance to the walls of a porous diaphragm between the solutions. The same situation will be
considered in the present paper, and is often referred to in modern literature as the “constrained
junction”, to distinguish it from the “free junction” which establishes between two solutions when
they are simply in contact with one another without any physical separation between them [9].
For ideal junctions the diffusion and mobility coefficients D and µ of each ion are assumed to be
constant parameters related to one another by Einstein’s relation D = µkT. For real solutions these
conditions are usually approximately satisfied only for low concentrations: in the general case, the
dependence of D and µ on the ion concentrations ought to be taken into account.

The Nernst–Planck equation can also be applied to describe the diffusion of ions inside a charged
membrane, which can be considered as a porous medium with fixed electric charges. The simplest
way to do so is to include in the model a fixed uniform charge density. Membranes have become
increasingly important over the years in several technological domains, thanks to their capability to
favor the exchange between two solutions of ions with a definite sign, namely the opposite one with
respect to the fixed charges [10]. Membranes are also largely studied in connection with the research
on nanopores and biological ion channels.

After Planck, several other authors have applied the Nernst–Planck equation to the theoretical
study of liquid junctions and charged membranes [11–14]. In 1954 Schlögl [15] obtained a general
analytical solution for a (possibly) charged membrane with arbitrary numbers of ionic species
and ionic valences. His formulas are however rather cumbersome and contain parameters which
are determined by implicit relations which are impractical to use for numerical computations.
For these reasons Schlögl’s work, although occasionally mentioned in advanced textbooks [10], is
today essentially neglected in the praxis of scientific research.

Several years later Morf [16] has considered again the problem with ions of only two different
valences, providing a new interesting derivation of Planck’s old result, which applies also to the case
in which the two valences—a single one for all the cations and another one for all the anions—are
arbitrary and not necessarily +1 and −1.



Computation 2016, 4, 17 3 of 33

In more recent times, solutions of the Nernst–Planck equations for liquid junctions and
membranes have been mainly obtained by means of finite difference numerical integrations, and
the development of computers has made possible to treat with these methods a much wider class
of situations, including the time-dependent case [17–21]. Several works have also been devoted to
the determination of numerical solutions of the full Poisson–Nernst–Planck system. This approach
has been used to study the behavior of liquid junctions and membranes in various scientific
contexts [9,22–30], and in particular in the study of the ions flow across biological cells [31–39].
More specifically, the problem of liquid junction potentials has received careful consideration owing
to its importance for the correct interpretation of electrophysiological measurements [40].

In the present paper we shall study the Nernst–Planck equations in conditions of local
electroneutrality, and we shall present a new analytical method of solution which extends Planck’s
results by considering the presence of a fixed charged background and of mobile ions of arbitrary
valences. Our main result is that a complete analytical solution can be obtained for an ideal junction
across a possibly charged porous diaphragm containing ions with up to three different valences, in
the presence of an arbitrary electric current. We obtain in this way, as functions of the total current,
the ionic fluxes and the potential difference between the two sides of the junction or membrane,
as well as the profiles of the ion concentrations and of the electric potential across the diffusion
layer. These results can in particular be applied to the calculation of the potential and ionic fluxes
through a diffusion layer between the solutions of two generic binary salts having an ion in common.
An interesting phenomenon which can also be described is the uphill transport of a divalent cation
(i.e., the transport of the ion against its concentration gradient) driven by the liquid junction or
membrane potential at open circuit.

For more than three valence classes the differential equations that we obtain can be integrated
with a numerical computer program. A new open source applet to perform these calculations in the
case of a liquid junction at zero current has been recently made publicly available on the web [41,42].
This applet also allows considering nonideal junctions for which an analytical dependence of the ion
mobilities on the concentrations can be provided.

The paper is organized as follows. In Section 2 we explain the physical assumptions at the basis
of the model of liquid junction and charged membrane here considered, and recall the Nernst–Planck
equations for the ion concentrations in the stationary state. In Section 3, by a change of variables in the
Nernst–Planck equations, we obtain a closed system of differential equations, containing a suitable set
of independent parameters which can be determined from the available information on the system,
namely the ion concentrations at the two edges of the diffusion layer and the total current density.
In Sections 4 and 5 we show that this system of differential equations can be analytically solved
for systems with two and three different ionic species, and obtain explicit formulas ready for use
in practical applications. In Section 6 we show how our procedure can be generalized to the case
in which more than three ionic species are present, as far as they do not belong to more than three
different valence classes. In Section 7 we present and discuss the results which are obtained with
our method in particular cases, and show that they allow the study of phenomena which are not
described by Henderson’s simplified model. Finally, the conclusions of the paper are summarized in
Section 8.

2. Definition of the Problem

We assume that n ion species are present inside the diffusion layer, with concentrations ci,
i = 1, . . . , n, expressed as number of ions per unit volume, and therefore proportional to the
molar concentration. We assume that the system has a planar symmetry, so that the concentrations
depend only on one spatial coordinate x varying from x = 0 to x = L, where L is the thickness
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of the diffusion layer. The ion fluxes Φi (number of ions per unit time per unit area) satisfy the
Nernst–Planck equations

Φi = −Di
∂ci
∂x
− eziµici

∂V
∂x

i = 1, . . . , n (1)

where Di is the diffusion coefficient of the ion, zi is its relative charge, µi the mobility of the ion in
the solution (defined as the ratio between the drift velocity and the total acting force), e the (positive)
elementary charge, and V the electric potential. Since charged membranes and—in most cases—also
liquid junctions physically consist of porous materials, in the definition of ion fluxes one has to
consider an effective area which represents only the porous fraction of the geometrical cross section
of the diffusion layer. The numerical value of such a fraction of course depends on the particular
material considered, and will not be included in the calculations and in the results which will be
presented in the present paper. It can however easily be introduced in the final formulas, whenever
this is required for practical applications.

The diffusion coefficient Di and the mobility µi generally depend on the concentrations.
However they can be considered approximately constant for very low concentrations, or when the
concentrations at the two edges of the diffusion layer are similar. Furthermore, for low concentrations
one can apply Einstein’s relation Di = µikT, where k is the Boltzmann constant and T the absolute
temperature. Here however we shall make no use of Einstein’s relation and we shall treat Di and µi as
two constants such that µi = ηiDi/kT, where ηi a dimensionless coefficient not necessarily equal to 1.

The concentration ci and the flux Φi are connected to each other also by the continuity equation
∂Φi/∂x+ ∂ci/∂t = 0. If we assume that the junction has reached a stationary state, all time derivatives
vanish. Hence the continuity equation implies that the ionic fluxes are independent both of time
and of the position inside the junction. If we introduce the ionic charge densities (divided by e)
ρi = zici, the constants χi = ziΦi/Di, and the dimensionless potential φ = eV/kT, Equation (1) can
be written as

dρi
dx

= −χi − ζiρi
dφ

dx
i = 1, . . . , n (2)

with ζi = ηjzj (hence ζi = zi when Einstein’s relation is used).
In most practical situations a condition of local electroneutrality is satisfied inside the junction

with very good approximation, so that we can assume that the equation

n

∑
i=1

ρi(x) + ρ0 = 0 (3)

is almost exactly satisfied at all points x. In this formula ρ0 is a constant such that eρ0 represents a
charge density due to the presence of fixed charges uniformly distributed throughout a membrane.
For the case of liquid junctions one has simply to put ρ0 = 0 here and in all the equations that follow.
As a consequence of Equation (3) we can treat only ρ1, . . . , ρn−1 as independent charge densities,
while ρn = −∑n−1

i=1 ρi − ρ0.
Let us denote with a prime all physical quantities evaluated at the edge x = 0 of the diffusion

layer, and with a double prime the same quantities evaluated at the edge x = L. So, for instance,
V′ = V(0), V′′ = V(L), ρ′1 = ρ1(0), ρ′′1 = ρ1(L), etc. Assuming that the ion concentrations at the
two edges of the diffusion layer—i.e., ρ′1, . . . , ρ′n, ρ′′1 , . . . , ρ′′n—are known, our goal is to determine
the dependence of the potential difference ∆V = V′′ − V′ between the two edges, on the total
current density

J =
n

∑
i=1

eziΦi (4)

flowing through the liquid junction. In addition, for any arbitrary point of the J–∆V curve we aim to
fully characterize the stationary state of the junction by determining the fluxes Φi of the individual
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ionic species and their densities ρi(x) as functions of the position x, together with the behavior of the
potential V(x) across the diffusion layer.

In the case of the uncharged liquid junction, i.e., for ρ0 = 0, the concentrations of the ions at the
two edges of the junction are the same as those inside the solutions A and B at the two corresponding
sides: c′i = cA

i and c′′i = cB
i . Moreover, each of the two solutions is at the same potential as the

neighbouring boundary of the junction, i.e., VA = V′ and VB = V′′. Hence the potential difference
Vext = VB − VA between the two solutions is the same as the potential difference ∆V = V′′ − V′

between the two boundaries: Vext = ∆V.
In the case of the charged membrane instead, the concentrations at the edges of the membrane

do not coincide with the concentrations in the two solutions, since for the neutrality conditions
respectively in the membrane and in the solutions we have

n

∑
i=1

ρ′i =
n

∑
i=1

ρ′′i = −ρ0 (5)

n

∑
i=1

ρA
i =

n

∑
i=1

ρB
i = 0 (6)

where ρA
i = zicA

i , ρB
i = zicB

i . Correspondingly, in order to obtain the full potential difference Vext

between the solutions at the two sides of the membrane, one has to respectively add and subtract to
the voltage ∆V = V′′ − V′ the Donnan potentials VA

D = V′ − VA and VB
D = V′′ − VB which arise at

the two boundaries of the membrane:

Vext = ∆V + VA
D −VB

D

The Donnan potentials are related to the ion concentrations at the two boundaries by the Donnan
equilibrium relations [43]

ρ′i = kiρ
A
i e−zieVA

D /kT i = 1, . . . , n (7)

ρ′′i = kiρ
B
i e−zieVB

D /kT i = 1, . . . , n (8)

where ki are the partition coefficients. From Equation (5) one then obtains

n

∑
i=1

kiρ
A
i e−zieVA

D /kT = −ρ0 (9)

n

∑
i=1

kiρ
B
i e−zieVB

D /kT = −ρ0 (10)

When the ion concentrations cA
1 , . . . , cA

n , cB
1 , . . . , cB

n in the two solutions are known, by solving
these equations one can determine VA

D and VB
D . Then the ion concentrations at the two boundaries can

be computed using Equations (7) and (8). A rigorous justification of the use of the Donnan equilibrium
relations was given by MacGillvray [8], who proved that they lead to a good approximation of the
solution of the full Poisson–Nernst–Planck system of equations for the membrane, under the same
conditions which justify the use of the electroneutrality condition.

3. Mathematical Procedure

We assume the fixed charges to be uniformly distributes throughout the junction, so that
dρ0/dx = 0. By summing the Equation (2) over i we thus obtain

− dφ

dx
=

X
∑n

j=1 ζ jρj
(11)



Computation 2016, 4, 17 6 of 33

where X = ∑n
i=1 χi. Multiplying Equation (2) by dx and using Equation (11), we then obtain

dρi = dφ

(
hi

n

∑
j=1

ζ jρj − ζiρi

)
(12)

where hi = χi/X.
It is useful here to introduce the new variables

τi = ρi +
hi/ζi

∑n
k=1 hk/ζk

ρ0 (13)

which satisfy
n

∑
i=1

τi = 0 (14)

Note that τi = ρi for ρ0 = 0. Then Equation (12) can be rewritten

dτi = dφ

(
hi

n

∑
j=1

ζ jτj − ζiτi

)
= dφ

[
hi

n−1

∑
j=1

(ζ j − ζn)τj − ζiτi

]
(15)

which for n > 2 implies

dτi
dτn−1

=
hi ∑n−1

j=1 (ζ j − ζn)τj − ζiτi

hn−1 ∑n−1
j=1 (ζ j − ζn)τj − ζn−1τn−1

i = 1, . . . , n− 2

Putting

ri =
τi

τn−1
ξ = log τn−1 (16)

and using the relation
dτi

dτn−1
=

d(τn−1ri)

dτn−1
= ri +

dri
dξ

We obtain

dri
dξ

=
(hn−1ri − hi)∑n−1

j=1 (ζ j − ζn)rj + (ζi − ζn−1)ri

−hn−1 ∑n−1
j=1 (ζ j − ζn)rj + ζn−1

i = 1, . . . , n− 2 (17)

It is possible to write down two linear relations among the parameters χ1, . . . , χn−1. First of all
Equation (4) implies

n

∑
i=1

Diχi =
J
e

(18)

Furthermore, by dividing each of the Equation (2) by ζi and then summing over i, we obtain
using Equation (3)

dw
dx

= −
n

∑
i=1

χi
ζi

(19)

with

w =
n

∑
i=1

ρi
ζi
− ρ0φ (20)

Since the right side of Equation (19) is a constant, we deduce that w is a linear function of x.
Hence we can write

w = w′ +
∆w
L

x (21)
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and
n

∑
i=1

χi
ζi

= −∆w
L

(22)

with ∆w = w′′ − w′, w′ and w′′ being the values of w at the boundaries respectively x = 0 and x = L
of the diffusion layer. From Equations (18) and (22) it follows that

n

∑
i=1

(
Di +

Y
ζi

)
χi = 0 (23)

where
Y =

JL
e∆w

(24)

Let us define
αi =

χi
χn−1

=
hi

hn−1
(25)

As a consequence of Equation (23) and of Equation (25) we have

αn−1 = 1 αn = −
n−1

∑
i=1

Di + Y/ζi
Dn + Y/ζn

αi (26)

Therefore, calling β = 1/hn−1, and recalling that ∑n
i=1 hi = 1, we have

β =
n

∑
i=1

αi =
n−1

∑
i=1

siαi =
n−2

∑
i=1

siαi + sn−1 (27)

where
si = 1− Di + Y/ζi

Dn + Y/ζn
(28)

It follows that Equation (17) can be rewritten as

dri
dξ

=
(ri − αi)∑n−1

j=1 (ζ j − ζn)rj + (ζi − ζn−1)βri

−∑n−1
j=1 (ζ j − ζn)rj + ζn−1β

i = 1, . . . , n− 2 (29)

These represent a system of n − 2 differential equations in the unknown functions
r1(ξ), . . . , rn−2(ξ). Note that, according to Equation (16), one has to put in Equation (29), rn−1 = 1.

The system Equation (29) contains the n− 1 independent parameters α1, . . . , αn−2 and Y, whose
physical meaning is expressed by Equations (24) and (25), but which are a priori unknown in practical
situations. Let us suppose that cn−1, and therefore also ξ, varies monotonically from one side of the
junction to the other. If the ion concentrations at the two edges are known, and a value of Y has been
assigned, then α1, . . . , αn−2 can be determined by imposing that the solution of Equation (29), with
initial data

ri(ξ
′) = r′i = e−ξ ′τ′i i = 1, . . . , n− 2 (30)

at ξ ′ = log τ′n−1, satisfies the n− 2 boundary conditions

ri(ξ
′′) = r′′i = e−ξ ′′τ′′i i = 1, . . . , n− 2 (31)

at ξ ′′ = log τ′′n−1, where τ′i = τi|x=0, τ′′i = τi|x=L, and

τi = ρi +
α̃i

β̃
ρ0 (32)
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On the right-hand of this formula we put α̃i = (ζn−1/ζi)αi and β̃ = ∑n
k=1 α̃k. Making use of

Equation (26) one obtains

β̃ =
∑n−2

k=1

(
D̃n − D̃k

)
α̃k + D̃n − D̃n−1

D̃n + Y
(33)

with D̃k = ζkDk = zkµkkT. Note that one has ξ ′ < ξ ′′ if ρ′n−1 < ρ′′n−1, and ξ ′ > ξ ′′ if ρ′n−1 > ρ′′n−1.
After the system Equation (29) has been solved and the parameters α1, . . . , αn−2 have been

determined, by inverting Equations (13) and (16) one can express the ionic charge densities inside
the junction as

ρi = eξ̄ri(ξ̄)−
α̃i

β̃
ρ0 (34)

where ξ̄ is an arbitrary value between ξ ′ and ξ ′′. The corresponding electric potential φ can instead
be calculated according to the equation

φ− φ′ = β
∫ ξ̄

ξ ′

dξ

∑n−1
j=1 (ζ j − ζn)rj(ξ)− ζn−1β

(35)

which follows from Equation (15) for i = n− 1. For ξ̄ = ξ ′′ the above formula provides the potential
difference ∆φ = φ′′ − φ′ between the edges of the diffusion layer. For n > 2, if r1(ξ), . . . , rn−2(ξ)

can be expressed as functions of one of them, say r1, which varies monotonically from one side to
the other, then the potential φ corresponding to an arbitrary value r1 = r̄1 between r′1 and r′′1 can be
calculated according to the equation

φ− φ′ = −β
∫ r̄1

r′1

dr1

(r1 − α1)∑n−1
j=1 (ζ j − ζn)rj + (ζ1 − ζn−1)βr1

(36)

which follows from Equation (29) for i = 1.
After having obtained ρi, φ, and therefore also w, it is possible to express the position x by making

use of Equation (21):

x =
w− w′

∆w
L (37)

Equations (34), (35) and (37) provide ρi, φ and x as functions of ξ. Then, by eliminating ξ, it is
also possible to express ρi and φ as functions of x. Finally, the ion fluxes Φi can be obtained as

Φi =
JDiαi

zie ∑n
k=1 Dkαk

= −∆wD̃iα̃i

Lzi β̃
(38)

where again on the right-hand side one can make use of Equation (33).
Assuming that the ion concentrations at the edges of a membrane (or liquid junction) are known,

the procedure outlined above allows the complete description of the stationary state for an arbitrary
value of the parameter Y. According to Equations (20) and (24), in the case of the uncharged liquid
junction, i.e., for ρ0 = 0, Y depends only on JL, i.e., on the current density multiplied by the thickness
of the junction. Therefore the described procedure allows the calculation of the junction potential ∆V
as a function of J. In the case of a charged membrane, instead, once ∆φ has been calculated for a given
Y, the corresponding current density can be obtained as

J =
e∆wY

L
(39)

Hence the J–∆V curve of the membrane can be reconstructed using Y as a parameter. Note that
for Y = 0 one has J = 0, so with the described procedure one directly obtains the open circuit potential
∆V|J=0. The membrane potential corresponding to a given value J 6= 0 can instead be approximated
with increasing precision by repeating the above procedure with different values of Y. We shall see
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later that in some situations, in order to simplify the calculations, it may be convenient to choose in
place of Y another independent parameter, such as β̃.

The effective electrical resistivity R of the liquid junction can be defined as

R = −
∆V − ∆V|J=0

JL
(40)

Such a resistivity, for fixed ion concentrations c′1, . . . , c′′n at the two edges, in general depends on
the product JL. For ρ0 6= 0, from the definitions Equation (20) of w and Equation (24) of Y one can
easily deduce the following expression for the resistivity:

R =
kT

e2ρ0Y
+

∆V|J=0 − (kT/eρ0)∑n
i=1 ∆ρi/ζi

JL

Then for the conductivity σ = 1/R we have

σ→ e2ρ0Y
kT

for J → ∞ (41)

From our results it follows that ∆V can be considered as a function of 2n variables:

∆V = ∆V(c′1, . . . , c′n−1, c′′1 , . . . , c′′n−1, ρ0, JL) (42)

c′n and c′′n being fixed by the condition of electrical neutrality. In particular, the potential at open circuit
∆V|J=0 is independent of the thickness L. The right-hand side of Equation (42) is a homogeneous
function of degree 0, which means that the potential is unaffected by a common rescaling c′1 → λc′1,
. . . , c′′n−1 → λc′′n−1, ρ0 → λρ0, JL→ λJL, where λ is an arbitrary positive constant.

4. The Solution for Two Ionic Species of Arbitrary Valence

For n = 2 the integrand function in Equation (35) reduces to a constant and, for a given value of
the parameter Y, we get the potential

φ− φ′ =
s

ζ1(1− s)− ζ2
log

τ1

τ′1
(43)

at an arbitrary point of the junction corresponding to a value of τ1 between τ′1 and τ′′1 . Equation (28)
here becomes

s = 1− D1 + Y/ζ1

D2 + Y/ζ2

while from Equations (32) and (33) we have

τ1 = ρ1 +
z2µ2 + Y/kT
z2µ2 − z1µ1

ρ0

For τ1 = τ′′1 Equation (43) provides the potential difference ∆φ between the edges of the junction.
We obtain

∆φ = −D1 − D2 + Y(1/ζ1 − 1/ζ2)

kT(z1µ1 − z2µ2)
log

ρ′′1 (z1µ1 − z2µ2)− ρ0(z2µ2 + Y/kT)
ρ′1(z1µ1 − z2µ2)− ρ0(z2µ2 + Y/kT)

= −D1 − D2 + Y(1/ζ1 − 1/ζ2)

kT(z1µ1 − z2µ2)
log

z1µ1ρ′′1 + z2µ2ρ′′2 − ρ0Y/kT
z1µ1ρ′1 + z2µ2ρ′2 − ρ0Y/kT

(44)
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in correspondence with a current density given by Equation (39) and ionic fluxes

Φ1 =
∆w
L

D̃1

z1

D̃2 + Y
D̃1 − D̃2

Φ2 =
∆w
L

D̃2

z2

D̃1 + Y
D̃2 − D̃1

(45)

For ρ0 6= 0, one can see from Equation (44) that Y can take all real values except those between
Y′ = (D̃1ρ′1 + D̃2ρ′2)/ρ0 and Y′′ = (D̃1ρ′′1 + D̃2ρ′′2 )/ρ0. When Y approaches either of these two values
both J and ∆φ diverge. For instance, if z1 > 0 > z2 and ρ0 > 0, then, using also Equation (41),
we have

∆V → +∞ J → −∞ σ→ e2(z2
1µ1c′′1 + z2

2µ2c′′2 ) for Y → Y′′ (46)

∆V → −∞ J → +∞ σ→ e2(z2
1µ1c′1 + z2

2µ2c′2) for Y → Y′ (47)

One can also easily prove that, at any inner point of the junction, hence for 0 < x < L, one has

c1(x)→ c′′1 c2(x)→ c′′2 for J → −∞ (48)

c1(x)→ c′1 c2(x)→ c′2 for J → +∞ (49)

Thus ion concentrations tend to constant values when the current tends to infinity. In particular,
the coions (the ions with charge of the same sign as the fixed charges of the membrane, i.e., the
negative ones in the present example) tend to assume inside the membrane the same concentration
they have at the boundary from which they enter the junction in their drift motion associated with
the electric current. This effect, which had already been noticed by Schlögl [15], of course determines
also the concentration of the ions of opposite sign (the counterions), due to the condition of charge
neutrality. On account of Equations (48) and (49), the limit values of the conductivity given by
Equations (46) and (47) assume an obvious physical meaning. The same is true for the limit values of
the ionic fluxes which follow from Equation (45):

Φ1 → −
∆V
L

ez1µ1c′′1 Φ2 → −
∆V
L

ez2µ2c′′2 for J → −∞ (50)

Φ1 → −
∆V
L

ez1µ1c′1 Φ2 → −
∆V
L

ez2µ2c′2 for J → +∞ (51)

where −∆V/L represents the electric field.
For ρ0 = 0 the model describes a liquid junction between two solutions of the same salt, which

dissociates into |z2| cations of valence z1, and z1 anions of valence z2, with z1 > 0 > z2. If cA
S and cB

S
are the concentrations of the salt in the two solutions, we have ρ′1 = −z2cA

S , ρ′2 = z1cA
S , ρ′′1 = −z2cB

S ,
ρ′′2 = z1cB

S . Formulas simplify considerably and it becomes possible to explicitly express ∆V as a
function of J. Since in the present case ∆w = (cB

S − cA
S )(ζ1 − ζ2)/η1η2, we get

∆V = −
log(cB

S /cA
S )

e(µ1z1 − µ2z2)

(
D1 − D2 −

JL
ez1z2(cB

S − cA
S )

)

from which we derive the junction potential at open circuit

∆V|J=0 = − D1 − D2

e(µ1z1 − µ2z2)
log

cB
S

cA
S

(52)

and the effective junction resistivity

R = −
log(cB

S /cA
S )

e2z1z2(µ1z1 − µ2z2)(cB
S − cA

S )
(53)
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Note that in this case R is independent of JL. Moreover, since w is a linear function of either ρ1

or ρ2, the concentrations of the two ions vary linearly with the position x along the junction.

5. The Solution for Three Ionic Species of Arbitrary Valence

5.1. The General Case

When in the diffusion layer there are three ionic species, from Equations (32) and (33) with n = 3
we get

τ1 = ρ1 +
α̃

β̃
ρ0 τ2 = ρ1 +

1
β̃

ρ0 (54)

where

α̃ =
ζ2χ1

ζ1χ2
=

µ2Φ1

µ1Φ2
(55)

β̃ =
(D̃3 − D̃1)α̃ + D̃3 − D̃2

D̃3 + Y
(56)

If τ2 and φ refer to a point inside the junction such that r = r̄, where r = τ1/τ2, from
Equations (29) and (36) we obtain

log
τ2

τ′2
= −

∫ r̄

r′

r− u
r2 + br + c

dr = −
[

f (r̄)− f (r′)
]

(57)

φ− φ′ = −
(

u
ζ2

+
Z
ζ1

) ∫ r̄

r′

1
r2 + br + c

dr = −
(

u
ζ2

+
Z
ζ1

) [
g(r̄)− g(r′)

]
(58)

with

f (r) =
b + 2u +

√
δ

2
√

δ
log
(

2r + b +
√

δ
)
− b + 2u−

√
δ

2
√

δ
log
(

2r + b−
√

δ
)

(59)

g(r) =
1√
δ

[
log
(

2r + b−
√

δ
)
− log

(
2r + b +

√
δ
)]

(60)

δ = b2 − 4c (61)

In the above formulas we put

b = Z− α̃ + (1− Z)β̃ (62)

c = −Zα̃ (63)

u = α̃ +
ζ3

ζ1 − ζ3
β̃ (64)

with

Z =
ζ1(ζ2 − ζ3)

ζ2(ζ1 − ζ3)
(65)

The value of the fluxes Φ1 and Φ2, and so also of the parameter α̃, is a priori unknown. Let us
put r̄ = r′′ in Equations (57) and (58):

log
τ′′2
τ′2

= −
∫ r′′

r′

r− u
r2 + br + c

dr = −
[

f (r′′)− f (r′)
]

(66)

∆φ = −
(

u
ζ2

+
Z
ζ1

) ∫ r′′

r′

1
r2 + br + c

dr = −
(

u
ζ2

+
Z
ζ1

) [
g(r′′)− g(r′)

]
(67)
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If we assume that the ion concentrations at the two edges of the diffusion layer are given, then
all the quantities appearing in Equations (66) and (67) can be expressed as functions of the two only
unknown parameters α̃ and β̃. For a chosen value of β̃, the former equation can thus be used to
determine α̃, and the latter then allows the calculation of the junction potential ∆φ. Finally, the current
density can be obtained as J = e(z1Φ1 + z2Φ2 + z3Φ3), where the ion fluxes can be expressed using
Equation (38) as

Φ1 = −∆wD̃1α̃

Lz1 β̃
(68)

Φ2 = −∆wD̃2

Lz2 β̃
(69)

Φ3 = −∆wD̃3(β̃− α̃− 1)
Lz3 β̃

(70)

In order to solve Equation (66) numerically with respect to α̃, one has first of all to observe that
the first member of this equation is real only for τ′′2 /τ′2 > 0, which means that β̃ must not lie betweeen
−ρ0/ρ′2 and −ρ0/ρ′′2 . In the following subsection we shall study how to determine the values of β̃ for
which the current density J goes to infinity. We shall find that, when there are two counterions, these
are finite values which do not coincide with −ρ0/ρ′2 and −ρ0/ρ′′2 , so the set of physically acceptable
values of β̃ must be further restricted.

The existence of the integral at the second member of Equation (66) requires that the integrand
function must have no poles between r′ and r′′. This implies that the solution α̃ can only be sought
within a certain set of intervals of the real axis. Endpoints of these intervals are values of α̃ for which
any of the two following events occurs:

1. Either r′ or r′′ coincides with one of the two roots r− = (−b−
√

δ)/2 and r+ = (−b +
√

δ)/2 of
the trinomial r2 + br + c, with δ > 0, while the other root does not lie between r′ and r′′.

2. δ = 0 and −b/2 lies between r′ and r′′.

These conditions correspond to simple second-degree algebraic equations, so the endpoints of
the intervals can be analytically determined. Using this initial input, it is then easy to set up a
numerical algorithm for the solution of Equation (66).

5.2. The Limit of Large Current Densities for the Charged Membrane

For ρ0 6= 0 the parameter β̃, and the corresponding solution α̃ of Equation (66), approach finite
values as the junction potential ∆V and the current density J go to infinity. Calling such values β̃±

and α̃± respectively, we can write

∆V → +∞ J → −∞ α̃→ α̃− for β̃→ β̃− (71)

∆V → −∞ J → +∞ α̃→ α̃+ for β̃→ β̃+ (72)

According to Equation (41), σ− = e2ρ0Y−/kT and σ+ = e2ρ0Y+/kT represent the two limit
values for the effective conductivity of the membrane, with

Y± =
D̃3 − D̃2 + (D̃3 − D̃1)α̃

±

β̃±
− D̃3

In general, all points of the J–∆V curve of the membrane are obtained by varying β̃ in the set of
all real values except those between β̃− and β̃+.
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As for the case with two ions, also in the case with three ion species, for ρ0 6= 0, the ion
concentrations inside the junction tend to constant values when the current tends to infinity:

c1(x)→ c−1 c2(x)→ c−2 c3(x)→ c−3 for J → −∞ (73)

c1(x)→ c+1 c2(x)→ c+2 c3(x)→ c+3 for J → +∞ (74)

with 0 < x < L and

c±1 = −ρ0α̃±

z1 β̃±
(75)

c±2 = − ρ0

z2 β̃±
(76)

c±3 = −ρ0(β̃± − α̃± − 1)
z3 β̃±

(77)

Taking into account Equation (32), these relations are equivalent to τi(x) → 0 for ∆φ → ±∞,
and this can be directly proved by studying analytically the asymptotic behavior of Equations (57)
and (58). The result however acquires an immediate physical meaning if one observes that, as a
consequence of Equations (68) and (70), one can then express the limit values of the ionic fluxes as

Φi → −
∆V
L

eziµic−i for J → −∞

Φi → −
∆V
L

eziµic+i for J → +∞

with i = 1, 2, 3. Similarly, for the electrical conductivity of the junction one has

σ→ e2(z2
1µ1c−1 + z2

2µ2c−2 + z2
3µ3c−3 ) for J → −∞ (78)

σ→ e2(z2
1µ1c+1 + z2

2µ2c+2 + z2
3µ3c+3 ) for J → +∞ (79)

These results are of course the direct analogue of those expressed by Equations (50) and (51) and
by Equations (48) and (49) for the case with two ionic species.

In order to study in more detail the behavior of the membrane for high current densities, let
us suppose that z1 > 0, z2 > 0, z3 < 0, so that two cations and one anion are present in the
membrane (the conclusions we are going to draw can be extended with obvious modifications also
to the opposite case). This implies that, for ρ0 > 0, we have in the junction two coions and only one
counterion. In such a case, using Equations (66) and (67) it is possible to show that ∆φ → +∞ for
τ′′1 ≈ 0, τ′′2 ≈ 0, r′′ ≈ r+ < u, where r− and r+, with r− < r+, are the two roots of the trinomial
r2 + br + c. Hence, by solving with respect to β̃ and α̃ the system formed by the two equations τ′′1 = 0,
τ′′2 = 0, one finds

β̃− = − ρ0

ρ′′2
α̃− =

ρ′′1
ρ′′2

(80)

Similarly, ∆φ → −∞ for τ′1 ≈ 0, τ′2 ≈ 0, r′ ≈ r+ < u, and the solution of the system τ′1 = 0,
τ′2 = 0 is given by

β̃+ = −ρ0

ρ′2
α̃+ =

ρ′1
ρ′2

(81)

Using Equations (75)–(77) one then obtains that c−i = c′′i , c+i = c′i for i = 1, 2, 3. This means again
that the ion concentrations inside the membrane tend, for high current densities, to the concentrations
assigned at the boundary from which the coions enter the membrane. Note that in this case, according
to Equations (80) and (81), β̃ can take all values for which τ′′2 /τ′2 > 0. Moreover, the corresponding
limit values of the parameter Y, namely
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Y− = (D̃1ρ′′1 + D̃2ρ′′2 + D̃3ρ′′3 )
1
ρ0

Y+ = (D̃1ρ′1 + D̃2ρ′2 + D̃3ρ′3)
1
ρ0

are similar to those for Y′′ and Y′ respectively, which were introduced in the preceding section for the
case with two ions.

Results are different when there are in the membrane one coion and two counterions, as in the
case z1 > 0, z2 > 0, z3 < 0, ρ0 < 0. In such a case one cannot give for β̃± and α̃± expressions
as simple as Equations (80) and (81), and the limit concentrations c±i do not coincide with the ionic
concentrations at any of the two boundaries. One can prove that ∆φ → +∞ when r− / r′ < u <

r′′ / r+. Hence it is possible to determine the pair (β̃−, α̃−) as the solution of the system formed by
the two equations r− = r′, r+ = r′′. Similarly, ∆φ → −∞ when r− / r′′ < u < r′ / r+, and (β̃+, α̃+)

is the solution of the system r− = r′′, r+ = r′.

5.3. The Limit of Large Current Densities for the Uncharged Junction

For ρ0 = 0, the parameter Y is independent of V and directly proportional to J. Let us suppose
again that z1 > 0, z2 > 0, z3 < 0, so that there are two cations and one anion (the conclusions we
draw are then valid of course also in the opposite case). By analyzing the behavior of Equations (66)
and (67), one finds that α̃→ r′ for J → +∞, i.e., when either ∆w > 0, Y → +∞, or ∆w < 0, Y → −∞.
Furthermore, by using Equation (57) one obtains that in this limit r ≈ r′ everywhere in the junction
except a narrow region near the edge x = L. Then Equation (21) implies that

lim
J→+∞

ci(x) = c′i

(
1 +

∆w
w′

x
L

)
for 0 ≤ x < L (82)

so that the limiting ion distributions are linear in the position x. We have c′i = cA
i and c′′i = cB

i ,
where A and B indicate the solutions at the two sides of the junction. It is then easy to realise that the
distributions Equation (82) are the same as if on the side x > L there were, in place of B, a solution
C with the same ratios between the different ionic species as the solution A, but with concentrations
rescaled so that wC = wB, i.e., cC

i = cA
i wB/wA. This is reflected also by the limiting value of the

resistivity, which is just the value one would obtain for a liquid junction between solutions A and C:

lim
J→+∞

R =
kT
e2

wA

∆w ∑3
i=1 D̃izicA

i
log

wB

wA =
kT
e2

1

∑3
i=1 D̃izi(cC

i − cA
i )

log
wC

wA (83)

The same is true for the ionic fluxes:

lim
J→+∞

Φk =
J
e

µkcA
k

∑3
i=1 µizicA

i
=

tA
k J

ezk
(84)

The last member of this equation expresses the fact that the ions of the species k carry in this
limit a fraction of the total current density J equal to their transference number tA

k in the solution A,
i.e., ezkΦk → tA

k J, with

tA
k =

cA
k µkz2

k

∑3
j=1 cA

j µjz2
j

(85)

Results are similar if J → −∞, i.e., when either ∆w > 0, Y → −∞, or ∆w < 0, Y → +∞.
In such a case α̃ → r′′, and r ≈ r′′ everywhere in the junction except a narrow region near the edge
x = 0. Hence the ratios between the ionic concentrations become almost everywhere the same as in
the solution B, and the junction behaves as if at the side x < 0 there were in place of A a solution D
with cD

i = cB
i wA/wB. Equations (82)–(84) have to be modified accordingly:
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lim
J→−∞

ci(x) = c′′i

(
1 +

∆w
w′′

x− L
L

)
for 0 < x ≤ L (86)

lim
J→−∞

R =
kT
e2

wB

∆w ∑3
i=1 D̃izicB

i
log

wB

wA =
kT
e2

1

∑3
i=1 D̃izi(cB

i − cD
i )

log
wB

wD (87)

lim
J→−∞

Φk =
J
e

µkcB
k

∑3
i=1 µizicB

i
=

tB
k J

ezk
(88)

We can thus conclude that in the limit of large current densities, the ionic concentrations inside
an uncharged liquid junction depend linearly on the spatial coordinate, and are proportional to the
concentrations of the solution at the side where the two ions with the same sign exit the junction
according to their drift motion. The ion distributions depart from this behavior only in a narrow
region near the opposite side of the junction.

5.4. The Uncharged Junction between Solutions of Binary Salts

Let us finally consider more closely the case of an uncharged liquid junction between two binary
salts with one ion species in common. Let us suppose for instance that on the side x < 0 there is a
solution A of concentration cA

S of a salt which dissociates into |z3| cations of species 1 and valence
z1, and z1 anions of species 3 and valence z3, while on the side x > L there is a solution B of
concentration cB

T of another salt which dissociates into |z3| cations of species 2 and valence z2, and
z2 anions of species 3 (the same as in solution A) and valence z3, with z1 > 0, z2 > 0, z3 < 0.
We have in this situation c′1 = −z3cA

S , c′2 = 0, c′3 = z1cA
S , c′′1 = 0, c′′2 = −z3cB

T , c′′3 = z2cB
T , whence

wA = cA
S (ζ1 − ζ3)/η1η3, wB = cB

T(ζ2 − ζ3)/η2η3. Then, by putting in Equations (66) and (67) r′′ = 0
and taking the limit c′2 → 0, r′ → +∞, with r′c′2 = −(z1z3/z2)cA

S , we obtain

log
cB

T
cA

S
=

b + 2u−
√

δ

2
√

δ
log
(

b−
√

δ
)

− b + 2u +
√

δ

2
√

δ
log
(

b +
√

δ
)
+ log

2z1

z2
(89)

∆φ = −
(

u
ζ2

+
Z
ζ1

)
1√
δ

[
log
(

b−
√

δ
)
− log

(
b +
√

δ
)]

(90)

For ρ0 = 0, Y = JL/e∆w depends on the current density J but not on the potential ∆V. When
J is known, the two above formulas express both ∆φ and the ratio cA

S /cB
T as functions of the single

parameter α̃. One can easily determine the interval of the real axis made by all values of α̃ for which
the integrand functions in Equations (66) and (67) have no poles in [0,+∞). Each point of this interval
corresponds to a particular value of cA

S /cB
T between 0 and +∞. Thus the problem can be solved if the

concentrations of the two solutions at the two sides of the liquid junction are known.

6. Systems with More Ionic Species Having the Same Valence

Let us suppose that in the diffusion layer there are ions with n different valences z1, . . . , zn, and
that there are one or more ionic species for each of these valences. More precisely, we have mi ionic
species with valence zi, with mi ≥ 1 for i = 1, . . . , n, and so altogether m = m1 + · · ·+ mn different
ionic species. In this section, we shall label with a double index quantities which refer to an individual
ionic species: for instance cik, with 1 ≤ i ≤ n and 1 ≤ k ≤ mi, will denote the concentration of the
species k with valence zi. Quantities with a single index will instead refer to a entire valence class, i.e.,
to all ions having a certain valence.

Let us suppose that the coefficient ηik = µikkT/Dik is the same for all ions having the same
valence, so that we shall write ηik = ηi for all k = 1, . . . , mi. This also implies ζik = ηizi = ζi. We want
to show that it is possible to reduce the solution of the system of m Nernst–Planck equations



Computation 2016, 4, 17 16 of 33

dρik
dx

= −χik −
dφ

dx
ζiρik (91)

with χik = ziΦik/Dik, to the solution of a system of equations of the form Equation (29) for the
same value of n, i.e., for n equal to the number of valences and not to the actual number m ≥ n of
ionic species.

Let us introduce, for i = 1, . . . , n, the quantities

ρi =
mi

∑
k=1

ρik (92)

Φi =
mi

∑
k=1

Φik (93)

χi =
mi

∑
k=1

χik (94)

We can then also define Di = ziΦi/χi, which represents a suitably averaged diffusion coefficient
of the ions with valence zi. From Equations (2)–(4) we then obtain

dρi
dx

= −χi −
dφ

dx
ζiρi i = 1, . . . , n (95)

n

∑
i=1

ρi(x) + ρ0 = 0 (96)

J =
n

∑
i=1

eziΦi (97)

It is then clear that the above equations are formally identical to those already studied in
Sections 2 and 3. It follows that one can write a system of n − 2 differential equations of the form
Equation (29) which, as we have seen, admits an analytical solution for either n = 2 or n = 3. In this
case however, for all those i such that mi > 1, the value of the coefficient Di is unknown, since by
definition it depends on all the Φik with 1 ≤ k ≤ mi. We recall that coefficients Di appear in the term
β of Equation (29) through Equations (27) and (28). However, it is not necessary to use all the fluxes
Φik as free parameters in the equations, as the following analysis will show.

By direct integration of the differential Equation (91) we get

ρik(x) = e−ζiφ(x)
[
−χik

∫ x

0
eζiφ(y)dy + ρ′ikeζiφ

′
]

and similarly from Equation (95)

ρi(x) = e−ζiφ(x)
[
−χi

∫ x

0
eζiφ(y)dy + ρ′ie

ζiφ
′
]

By eliminating the integral from these two equations, it follows that we can express the charge
densities ρik of the individual ionic species along the diffusion layer in terms of φ and of the ρi as

ρik(x) =
χik
χi

[
ρi(x)− ρ′ie

−ζi(φ(x)−φ′)
]
+ ρ′ike−ζi(φ(x)−φ′) (98)

For x = L the above equation provides

χik
χi

=
ρ′′ikeζi∆φ − ρ′ik
ρ′′i eζi∆φ − ρ′i

(99)
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Hence, since ziΦi = ∑mi
k=1 Dikχik, we get

Di =
ziΦi
χi

=
mi

∑
k=1

Dik
χik
χi

=
mi

∑
k=1

Dik
ρ′′ikeζi∆φ − ρ′ik
ρ′′i eζi∆φ − ρ′i

(100)

This formula shows that, if the all the concentrations ρ′ik and ρ′′ik at the two boundaries are known,
it is possible to express all the Di as functions of the one unknown parameter ∆φ. Therefore, with
respect to the situation considered in Section 3, in the present case we have in Equation (29) just one
more free parameter, namely ∆φ, in addition to α1, . . . , αn−2 and Y. Once ∆φ has been arbitrarily
fixed, the remaining n− 1 parameters are determined by n− 1 equations, represented by the n− 2
boundary conditions Equations (30) and (31) and by the equation for ∆φ given by Equation (35) with
ξ̄ = ξ ′′.

After the Equation (29) have been solved and all the parameters have been determined, as in
Section 3 one can obtain the current density J and the fluxes Φi with the analogue of Equations (38)
and (39). One can also calculate the densities ρi(x) and the electric potential φ(x) as functions of the
spatial coordinate x along the diffusion layer. Then the fluxes and the densities of the individual ionic
species can be calculated using Equations (98) and (99).

7. Applications and Results

7.1. Henderson’s Approximation

An approximated formula for the liquid junction potential at open circuit was obtained by
Henderson [2,3]. His calculation is based on the assumption that the solution at any point inside
the diffusion layer is simply given by a mixture of the solutions at the two sides, according to a
“mixing factor” κ which varies from 0 to 1 as one moves across the layer from one side to the other.
In this way, in the ideal case (i.e., when the diffusion coefficients Di and the mobilities µi are treated
as constants) one obtains a potential at open circuit

∆VHen = −G′′ − G′

F′′ − F′
log

F′′

F′
(101)

where

F =
n

∑
i=1

µiz2
i e2ci G =

n

∑
i=1

Dizieci (102)

F′ = F|x=0, F′′ = F|x=L, etc. These equations do not contain ρ0, and they apply to both charged and
uncharged liquid junctions.

In the ideal case with two ions, Equation (101) coincides with Equation (44) for Y = 0, so the
value of the potential at open circuit given by Henderson’s model is the same as that given by
Nernst–Planck’s model. As we are going to see, the predictions of the two models are however
no more identical already in the case with three ions. In the following subsections we shall study
some examples of concrete problems to which our method of solution can be applied. We shall see
that it leads to many analytical results which cannot be obtained using Henderson’s approximation,
and which could only be reproduced by making use of numerical routines for the integration of
Nernst–Planck differential equations.

7.2. A Neutral Junction between KCl and MgCl2 Solutions

Let us consider an uncharged liquid junction between a solution 0.1 M of KCl on the first
side, and a solution 0.1 M of MgCl2 on the second one, at temperature T = 298.15 K. We can
apply our equations with n = 3, identifying ions 1, 2 and 3 with K+, Mg2+ and Cl– respectively.
Assuming that the solutions behave ideally, with diffusion coefficients D1 = 1.957× 10−9 m2·s−1,
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D2 = 0.706× 10−9 m2·s−1, D3 = 2.032× 10−9 m2·s−1 [44], and with η1 = η2 = η3 = 1, we obtain
using the formulas of Section 5.4 a liquid junction potential at open circuit ∆V|J=0 = 12.68 mV, to be
compared with the value ∆VHen = 12.48 mV provided by Equation (101).

In Figure 1 we display the behavior of the electric potential and of the ionic concentrations
inside the junction according to the Nernst–Planck equation. We see that for vanishing current the
concentrations inside the junction are with good approximation linearly dependent on the position,
and this explains why the discrepancy between Nernst–Planck’s and Henderson’s predictions for the
junction potential is quite small.
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Figure 1. Electric potential V − VA and ionic concentrations c as functions of the position x inside
a neutral liquid junction, for vanishing electric current. The regions x/L < 0 and x/L > 1 correspond
to the solutions at the two sides of the junction, which are KCl 0.1 M at the first one, and MgCl2 0.1 M
at the second one.
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Figure 2. Effective resistivity of a liquid junction between KCl 0.1 M and MgCl2 0.1 M, as a function of
the current density multiplied by the thickness of the junction, according to the Nernst–Planck model.

By using the formulas of Section 5.4, we can also calculate the junction potential as a function of
the current flowing through the junction. If we then evaluate the effective resistivity of the junction
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according to Equation (40), we obtain the results which are displayed in Figure 2. We see that, when
a large current flows from the KCl solution to the MgCl2 solution, the Nernst–Planck resistivity is
more than 10% larger than when a large current flows in the opposite direction.
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Figure 3. Electric potential V − VA and ionic concentrations c as functions of the position inside
a neutral junction for JL = 1 A/m, where J is the current density. The regions x/L < 0 and x/L > 1
correspond to the solutions at the two sides of the junction, which are the same as in Figure 1.
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Figure 4. Electric potential V − VA and ionic concentrations c as functions of the position inside
a neutral junction for JL = −1 A/m, where J is the current density. The regions x/L < 0 and x/L > 1
correspond to the solutions at the two sides of the junction, which are the same as in Figure 1.

The behavior of the ionic concentrations inside the junction is displayed in Figure 3 for
JL = 1 A/m, and in Figure 4 for JL = −1 A/m. We see that the results are in agreement with the
conclusions of Section 5.3. Note in fact that a solution 0.1 M of MgCl2 has the same w as a solution
0.15 M of KCl. For large positive current densities, the concentration profiles inside the junction
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are thus similar to the linear profiles of a junction between two KCl solutions 0.1 M and 0.15 M
respectively. The effective resistivity of such a junction, according to Equation (53), is 0.5413 Ωm, and
this is in fact the value that the curve of Figure 2 approaches for JL→ +∞. In this limit, Mg2+ ions are
present inside the junction only in a narrow region near to the right side. Similarly, since a solution
0.1 M of KCl has the same w as a solution 0.06667 M of MgCl2, for large negative current densities the
concentration profiles inside the junction tend to the linear profiles of a junction between two MgCl2
solutions 0.06667 M and 0.1 M respectively. Such a junction has an effective resistivity of 0.4703 Ωm,
which indeed corresponds to the limit of the curve of Figure 2 for JL→ −∞. In this limit, K+ ions are
present inside the junction only in a narrow region near to the left side.

In Figure 5 we report the contributions to the quantity JL which come from the individual ion
species. The contribution of the ion i is defined as JiL = eziΦiL, where Φi can be calculated using
Equations (68)–(70). For JL = 1 A/m, the ratios Ji/J between the partial currents of the ions and
the total current are reported in the first column of Table 1. These values are very close to the
corresponding transference numbers in a KCl solution, as shown in the second column of Table 1.
Similarly, for JL = −1 A/m, the ratios Ji/J are very close to the corresponding transference numbers
in a MgCl2 solution (see third and fourth columns of Table 1). These results are clearly in agreement
with Equations (84) and (88).
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Figure 5. Ionic current densities Ji and total current density J, multiplied by the junction thickness L,
as functions of the junction potential ∆V, for a liquid junction between KCl 0.1 M and MgCl2 0.1 M.

Table 1. Partial currents in a liquid junction between KCl 0.1 M and MgCl2 0.1 M, for JL = 1 A/m
(column 2) and JL = −1 A/m (column 4), compared respectively with transference numbers in a KCl
solution (column 3) and in a MgCl2 solution (column 5).

Ion Ji L/(A/m) ti (KCl) −Ji L/(A/m) ti (MgCl2)

K+ 0.481 0.491 −7× 10−9 0
Mg2+ −1× 10−18 0 0.418 0.410
Cl– 0.519 0.509 0.582 0.590

Finally, in Figure 6 we study the dependence of the junction potential, for vanishing current, on
the ratio cB

MgCl2
/cA

KCl between the concentrations of the MgCl2 solution on the first side and of the KCl
solution on the second side. We see that the absolute value of the junction potential is considerably
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higher when the concentration of the MgCl2 solution prevails with respect to the concentration of the
KCl solution. This is related to the fact that the mobility of the Mg2+ ion is about 65% lower than the
mobility of the Cl– ion, whereas the difference between the mobilities of K+ and Cl– is less than 4%.
This implies that MgCl2 gives to the junction potential a stronger contribution than KCl.
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Figure 6. Liquid junction potential at open circuit between solutions of KCl and MgCl2, as
a function of the ratio between the two concentrations, according to the Nernst–Planck’s and
Henderson’s models.

7.3. Uphill Transport of Minority Ionic Species

In a system with at least three different ionic species, it is possible to observe in some cases
the interesting phenomenon called “uphill transport”, in which one species is transported by the
electric field, generated by the liquid junction at open circuit, against its concentration gradient.
This effect has been well studied in perm-selective membranes [45,46] and is relevant for the reverse
electrodialysis technique for the production of energy from salinity differences [47,48], since it
generates an unwanted accumulation of magnesium ions from sea water that affects the performances
of the device.

An application of our method to the theoretical prediction of this phenomenon for charged
membranes will be presented in Section 7.4. The uphill transport can however be observed also
in neutral liquid junctions, and Figure 7 shows the results of the calculations for two systems in
which this phenomenon indeed takes place. We consider a liquid junction between two solutions
of HCl, with concentration 10 mM at the side x = 0 (solution A) and 100 mM at the side x = L
(solution B), at T = 298.15 K. Solutions with Hydrogen ions are considered in this example,
since their high mobility (we have D = 9.311 × 10−9 m2 s−1 for the diffusion coefficient of H+ at
25 ◦C [44]) enhances the phenomenon which we want to study (see [18] for the investigation of
a similar situation in charged membranes). We suppose that the two solutions also contain a second
electrolyte, namely the chloride of a different cation, with much smaller concentrations which we
shall call cA

min and cB
min, since they correspond to the concentrations of the minority cation in the

two solutions A and B. We fix cA
min = 0.1 mM at x = 0, and we study the flux of the minority

cation as a function of the concentration cB
min at x = L (roughly speaking, as a function of the

concentration gradient), at zero total current. We shall consider two situations: in the first one the
minority electrolyte in the two solutions is KCl, and so we have in the junction a univalent minority
cation K+; in the second one the electrolyte is instead MgCl2, and so we have a divalent minority
cation Mg2+.
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Figure 7. Fluxes (multiplied by the thickness L of the junction) of K+ or Mg2+ ions in a liquid junction
mainly containing H+ and Cl– ions, at zero total current. The concentrations of HCl are 10 and 100 mM
respectively at x = 0 and x = L. The x-axis represents the concentration cB

min of the second electrolyte,
KCl or MgCl2, at x = L, while the concentration cA

min at x = 0 is fixed at 0.1 mM. For cB
min > 0.1 mM,

a positive value of the flux represents an uphill transport of the ions, i.e. a transport against the
diffusion Fick’s flow of that ion.

The graph in Figure 7 reports the fluxes of the minority cations (multiplied by the thickness L of
the junction) calculated by means of Equation (69). The positive direction of the fluxes corresponds
to that of the x-axis, and so goes from solution A to solution B. In the region of the graph for
cB

min > 0.1 mM the diffusive Fick’s flux for the minority cation would be negative. Nevertheless,
we observe positive values of the actual flux in a considerable range of concentrations above that
value, especially for Mg2+ ions, representing an uphill transport of the ion, i.e., a transport against the
diffusive Fick’s flow.

The fluxes of the majority ions H+ and Cl– are weakly affected by the presence of the
minority electrolyte, and are not shown in the figure. We have from Equations (68) and (70)
ΦH+ L ≈ ΦCl−L ≈ −3× 10−7 g ions/s m. A liquid junction potential of approximately −38 mV,
essentially independent of the minority electrolyte, develops across the liquid junction, due to the
fact that the mobility of H+ ions is significantly larger than that of Cl– ions. This potential generates
an electric field directed along the positive x axis.

At values of cB
min less than the concentration cA

min = 0.1 mM of the minority cation at x = 0,
both the diffusive Fick’s flux and the flux induced by the electric field are positive. At values of cB

min
approaching the concentration at x = 0, i.e., cA

min ≈ cB
min, the concentration gradient, and thus the

diffusive Fick’s flux, vanish. In this situation, the minority cations (Mg2+ or K+) will be dragged
by the electric field generated by the liquid junction and will generate a flux with positive sign, i.e.,
directed as the positive x-axis. The same will be true in the presence of an opposing concentration
gradient, provided that the diffusive Fick’s flux it generates is small compared to the flux induced by
the electric field. This phenomenon is responsible for the uphill transport observed for both K+ and
Mg2+ ions at concentrations cB

min & cA
min.

At higher values of cB
min, the behaviors of K+ and Mg2+ ions become remarkably different from

one another. A particularly significant value of concentration is cB
min = 1 mM, at which the ratio

between the concentration of the minority electrolyte and that of HCl takes the same value (namely
1/100) at the two sides of the junction. At this concentration, the system can be formally treated as
containing a single electrolyte with three different ion species, and the concentrations of all the ions
have fixed ratios along the liquid junction. This implies that all the cations with the same charge
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will have the same flux direction. In particular, both H+ and K+ ions will be transported towards the
less concentrated region, giving the negative flux observed for the K+ ion at cB

min = 1 mM, which
corresponds to the usual downhill transport. Instead, due to its higher charge, the Mg2+ ions still
show an uphill transport, that also persists at even higher values of opposing concentration gradients.

For both K+ and Mg2+ ions, when the concentration gradient becomes strong enough, the
diffusive Fick’s flux finally overcomes the uphill transport generated by the liquid junction potential,
and thus negative values of the flux are observed for sufficiently high values of cB

min.
It is worth noting that, when the ratio between the concentrations of the two electrolytes

is the same at the two sides of the junction (i.e., for cB
min = 1 mM in the example considered

above), the assumptions at the basis of Henderson’s method become verified, and the values of the
fluxes resulting from the Nernst–Planck equations can be computed by rather elementary means.
However, for arbitrary concentrations Henderson’s method does not provide results comparable with
those reported in Figure 7, since in general it does not allow definite predictions for the fluxes of the
individual ion species. Note also that the most interesting situation for the uphill transport, i.e., that
with both univalent (H+) and divalent (Mg2+) ions present together, cannot be treated with Planck’s
method of solution, and so can be solved analytically only with more advanced procedures as those
presented in this paper.

7.4. Charged Membranes between Solutions of NaCl and MgCl2

As an example of application of our methods to the study of charged membranes, let us consider
a membrane between solutions of a mixture of two salts, with identical ratios with respect to one
another at the two sides of the membrane, but with concentrations which are considerably higher at
one side than at the other. In particular, we shall consider a solution NaCl 0.5 M, MgCl2 50 mM at the
first side, and a solution NaCl 20 mM, MgCl2 2 mM at the second side. Thus in this section indexes 1,
2, and 3 will refer to ions Na+, Mg2+, and Cl– respectively, and we will use the diffusion coefficients
D1 = 1.334× 10−9 m2 s−1, D2 = 0.706× 10−9 m2 s−1, D3 = 2.032× 10−9 m2 s−1 [44], at T = 298.15 K.
We also assume η1 = η2 = η3 = 1 and, in Equations (7) and (8), k1 = k2 = k3 = 1.

In Figure 8 we show the potential difference between the two solutions, and the current carried
by each ionic species, for vanishing total current, as functions of the density of fixed charges in
the membrane, represented as in Equation (3) by the quantity ρ0 (ρ0 = 1 g eq/L corresponds to a
charge density of 96,485 C/L). It can be noticed that for ρ0 → +∞ the membrane potential tends
to the Donnan limit V+

D = −(kT/e) log(cA
3 /cB

3 ) = −82.70 mV. For ρ0 → −∞ the Donnan potential
is mainly determined by the divalent cation, and the limiting value of the membrane potential is
V−D = (kT/2e) log(cA

2 /cB
2 ) = 41.35 mV. However, the presence also of univalent ions affects the

behavior of the membrane in such a way that a maximum potential of 53.24 mV is reached for a
finite value of the background charge density, namely ρ0 ≈ −2.20 g eq/L. A remarkable fact is that
local maxima of all the ion fluxes are reached for ρ0 ≈ −0.06 g eq/L. One can also notice that for
ρ0 < −0.45 g eq/L the flux of Mg2+ ions becomes negative, which corresponds to the well-known
phenomenon of the uphill transport of minority ions, already discussed in the preceding section.

In Figure 9 we display the ionic currents as functions of the potential difference between the
two solutions, for an AEM (anion exchange membrane) with a density of positive fixed charges such
that ρ0 = 1 g eq/L. A similar study is presented in Figure 10 for a CEM (cation exchange membrane)
with ρ0 = −1 g eq/L. The resulting behavior of the effective resistivity of the junction as a function
of the current is shown in Figure 11. The difference between the limiting values of the resistivity
at the two sides of the graph is due to the dependence of the ionic concentrations on the current, as
mathematically discussed in Section 5. Such a dependence is illustrated for the AEM in Figures 12–14,
and for the CEM in Figures 15–17, by considering the potential and concentration profiles inside the
junction for particular values of the current. One can observe that the results are in agreement with
the general analysis of Section 5.2. In particular, in the case of the AEM (for which only one counterion
is present) the ion concentrations inside the membrane approach for high currents the values at the
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boundary from which the coions Na+ and Mg2+ enter the membrane. According to Equations (78)
and (79), the curve for ρ0 = 1 g eq/L of Figure 11 tends to the limits 0.1309 Ωm for JL → −∞ and
0.0915 Ωm for JL → +∞. The limits of the curve for ρ0 = −1 g eq/L are instead 0.1014 Ωm for
JL → −∞ and 0.1959 Ωm for JL → +∞. So the limiting resistivity of the CEM between the two
solutions considered is in one of the two directions almost twice as big as in the other.
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Figure 8. Membrane potential Vext (including Donnan potentials at the two boundaries) and ionic
electric currents Ji multiplied by the membrane thickness L, for vanishing total current density J, as
functions of the fixed charge density ρ0. The solutions at the two sides of the membrane are: NaCl
0.5 M, MgCl2 50 mM at x < 0; NaCl 20 mM, MgCl2 2 mM at x > L. The graph on the right is a zoom
of the region near the origin of the left bottom graph, showing in more detail the occurrence of the
uphill transport (here corresponding to negative current) of the Mg2+ ions for sufficiently negative
values of the charge density of the membrane.
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Figure 9. Ionic current densities Ji and total current density J, multiplied by the thickness L of the
porous membrane, for ρ0 = 1 g eq/L, as functions of the membrane potential Vext (including the
Donnan potentials at the two boundaries). The solutions at the two sides of the membrane are: NaCl
0.5 M, MgCl2 50 mM at x < 0; NaCl 20 mM, MgCl2 2 mM at x > L.
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Figure 10. Ionic current densities Ji and total current density J, multiplied by the thickness L of the
porous membrane, for ρ0 = −1 g eq/L, as functions of the membrane potential Vext (including the
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0.5 M, MgCl2 50 mM at x < 0; NaCl 20 mM, MgCl2 2 mM at x > L.
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Figure 12. Electric potential V − VA and ionic concentrations c as functions of the position x inside
a membrane with ρ0 = 1 g eq/L, for vanishing electric current. The regions x/L < 0 and x/L > 1
correspond to the solutions at the two sides of the junction, which are the same as in Figure 8.
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Figure 13. Electric potential V − VA and ionic concentrations c as functions of the position x inside
a membrane with ρ0 = 1 g eq/L, for JL = −2 A/m, where J is the current density. The regions
x/L < 0 and x/L > 1 correspond to the solutions at the two sides of the junction, which are the same
as in Figure 8.
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Figure 14. Electric potential V − VA and ionic concentrations c as functions of the position inside
a membrane with ρ0 = 1 g eq/L, for JL = 2 A/m, where J is the current density. The regions x/L < 0
and x/L > 1 correspond to the solutions at the two sides of the junction, which are the same as in
Figure 8.
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Figure 15. Electric potential V − VA and ionic concentrations c as functions of the position x inside
a membrane with ρ0 = −1 g eq/L, for vanishing electric current. The regions x/L < 0 and x/L > 1
correspond to the solutions at the two sides of the junction, which are the same as in Figure 8.
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Figure 16. Electric potential V − VA and ionic concentrations c as functions of the position x inside
a membrane with ρ0 = −1 g eq/L, for JL = −2 A/m, where J is the current density. The regions
x/L < 0 and x/L > 1 correspond to the solutions at the two sides of the junction, which are the same
as in Figure 8.
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Figure 17. Electric potential V − VA and ionic concentrations c as functions of the position inside
a membrane with ρ0 = −1 g eq/L, for JL = 2 A/m, where J is the current density. The regions
x/L < 0 and x/L > 1 correspond to the solutions at the two sides of the junction, which are the same
as in Figure 8.

The Nernst–Planck model is able to reveal detailed features of the behavior of a charged
membrane which, although not necessarily relevant from a quantitative point of view, are
nevertheless qualitatively quite remarkable. As an example, we show in Figure 18 the effective
resistivity of charged membranes between solutions of mixtures of NaCl and MgCl2, with different
concentrations from those previously considered. We see that small variations in the composition of
the two solutions affect in a significant way the behavior of the resistivity, which can present minima
and maxima as a function of the current density flowing through the membrane.
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Figure 18. Effective resistivity of a negatively charged membrane (blue line) and a positively charged
membrane (green line) between two solutions A and B specified below, as functions of the current
density multiplied by the thickness of the membrane. (left) Solution A NaCl 500 mM + MgCl2
400 mM, solution B NaCl 100 mM + MgCl2 600 mM. (right) Solution A NaCl 550 mM + MgCl2
380 mM, solution B NaCl 130 mM + MgCl2 655 mM.

8. Conclusions

In the present paper we have solved the Nernst–Planck equations for an ideal constrained
liquid junction or charged membrane, and we have provided analytical expressions for the junction
potential, the resistivity and the ionic fluxes, as well as for the potential and concentration profiles
inside the diffusion layer. These analytical expressions have been given for an arbitrary value of the
total current density flowing through the junction or membrane, and are valid for systems containing
up to three different ionic species with arbitrary valence. We have also shown that the results can be
generalized with not too much difficulty to the case of an arbitrary number of ionic species, provided
that the total number of valences is not greater than three.

Although the problem considered in this paper has already been the subject of several
investigations, the form of our analytical results is new, and they can be rather easily applied to
obtain quantitative predictions in a wide range of practical situations. The only step which needs
to be performed with a computer is as simple as locating the zero of a function of one real variable.
Using these methods it is thus possible to obtain in a simple and reliable way a set of results which are
usually derived by means of heavy ad hoc numerical routines. Therefore our results may represent
a useful tool for researchers having to study problems involving the behavior or either charged or
uncharged liquid junctions in not too complex chemical systems.

We have applied our procedure to the study of a few concrete situations. Our results confirm that
the simple Henderson model generally agrees with the predictions of the Nernst–Planck model, as far
as the value of the junction potential at zero current is concerned. Nevertheless, the Nernst–Planck
model provides a much more general and complete description of the system, including the ionic
fluxes and distributions for arbitrary values of the total electric current flowing through the junction.
As a result, it is able to highlight interesting features of the behavior of a system, that disappear in
the rougher description given by Henderson’s model. A remarkable example is given by the uphill
transport of a divalent ion, i.e. its global flow from the side with lower concentration to the side with
higher concentration of a liquid junction or of a charged membrane, which may occur at open circuit
in the presence of a majority of univalent ions with the same sign.



Computation 2016, 4, 17 30 of 33

Acknowledgments: We are grateful to Andrea Carati and Luigi Galgani for interesting discussions.

Author Contributions: Doriano Brogioli has proposed the object and aim of the work. Both authors have worked
out together the general plan of the research. Massimo Marino has elaborated the mathematical methods and
carried out the numerical calculations. Both authors have contributed to the writing of the paper.

Conflicts of Interest: The authors declare no conflict of interest.

List of Symbols

A Solution in contact with the liquid junction at x = 0
b Defined by Equation (62)
B Solution in contact with the liquid junction at x = L
c Defined by Equation (63)
ci Concentration of the i-th ion expressed as number of ions per unit volume
cmin Concentration of the minority ion
cS Concentration of the salt S
Di Diffusion coefficient of the i-th ion
D̃i Defined as D̃i = ζiDi
e Absolute value of the elementary charge
F Defined by Equation (102)
f (r) Defined by Equation (59)
G Defined by Equation (102)
g(r) Defined by Equation (60)
hi Defined as hi = χi/X
J Total current density, defined by Equation (4)
Ji Current density carried by the i-th ion, Ji = eziΦi
k Boltzmann constant
ki Partition coefficient of the i-th ion
L Thickness of the diffusion layer
mi Number of ionic species with the i-th valence in Section 6
m Total number of ionic species (sum of the mi) in Section 6
n Number of ionic species, or of valences in Section 6
R Effective electrical resistivity of the liquid junction, defined by Equation (40)
ri Defined by Equation (16)
r Stands for r1 for n = 3
r̄i An arbitrary value of ri
r−, r+ Roots of the trinomial r2 + br + c, with r− < r+
si Defined by Equation (28)
tA
i Transference number of the i-th ion in solution A, defined by Equation (85)

T Absolute temperature
u Defined by Equation (64)
V Electric potential
VA

D Donnan potential at x = 0, defined as VA
D = V′ −VA

VB
D Donnan potential at x = L, defined as VB

D = V′′ −VB

Vext Potential difference between the solutions A and B, Vext = VB −VA

w Defined by Equation (20)
x Spatial coordinate across the junction, from x = 0 to x = L
X Defined as X = ∑n

i=1 χi
Y Defined by Equation (24)
Z Defined by Equation (65)
zi Relative charge of the i-th ion
αi Defined by Equation (25)
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α Stands for α1 when n = 3
α̃i Defined as α̃i = (ζn−1/ζi)αi
α̃ Stands for α̃1 when n = 3
β Defined as 1/hn−1

β̃ Defined as ∑n
k=1 α̃k

δ Defined by Equation (61)
ζi Defined as ζi = ηjzj
ηi Ratio between µi and Di/kT; ηi = 1 if Einstein relation holds
κ Mixing factor used in Henderson theory
µi Mobility of the i-th ion in the solution (ratio between drift velocity and total force)
ξ Defined by Equation (16)
ξ̄ An arbitrary value of ξ

ρ0 Charge density of the fixed charges in the porous membrane divided by e
ρi Charge density carried by the i-th ion divided by e, ρi = zici
σ Effective electrical conductivity of the liquid junction, σ = 1/R
τi Defined by Equation (13)
φ Dimensionless potential, φ = eV/kT
Φi Flux of the i-th ion, expressed as number of ions per unit time per unit area
χi Defined as χi = ziΦi/Di
�jk A symbol with two subscripts refers to the ion k of the valence class j
�′ Represents the value of � at the boundary x = 0
�′′ Represents the value of � at the boundary x = L
∆� Difference of � across the liquid junction, defined as ∆� = �′′ −�′
�A Represents the value of � in the solution A, in contact with the boundary x = 0
�B Represents the value of � in the solution B, in contact with the boundary x = L
�+ Represents the limiting value of � for J → +∞, or for ρ0 → +∞
�− Represents the limiting value of � for J → −∞, or for ρ0 → −∞
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