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Abstract: In population genetics, information about evolutionary forces, e.g., mutation, selection and
genetic drift, is often inferred from DNA sequence information. Generally, DNA consists of two long
strands of nucleotides or sites that pair via the complementary bases cytosine and guanine (C and G),
on the one hand, and adenine and thymine (A and T), on the other. With whole genome sequencing,
most genomic information stored in the DNA has become available for multiple individuals of
one or more populations, at least in humans and model species, such as fruit flies of the genus
Drosophila. In a genome-wide sample of L sites for M (haploid) individuals, the state of each site may
be made binary, by binning the complementary bases, e.g., C with G to C/G, and contrasting C/G to
A/T, to obtain a “site frequency spectrum” (SFS). Two such samples of either a single population
from different time-points or two related populations from a single time-point are called joint site
frequency spectra (joint SFS). While mathematical models describing the interplay of mutation, drift
and selection have been available for more than 80 years, calculation of exact likelihoods from joint
SFS is difficult. Sufficient statistics for inference of, e.g., mutation or selection parameters that would
make use of all the information in the genomic data are rarely available. Hence, often suites of crude
summary statistics are combined in simulation-based computational approaches. In this article, we
use a bi-allelic boundary-mutation and drift population genetic model to compute the transition
probabilities of joint SFS using orthogonal polynomials. This allows inference of population genetic
parameters, such as the mutation rate (scaled by the population size) and the time separating the two
samples. We apply this inference method to a population dataset of neutrally-evolving short intronic
sites from six DNA sequences of the fruit fly Drosophila melanogaster and the reference sequence of the
related species Drosophila sechellia.

Keywords: bi-allelic mutation-drift model; small-scaled mutation rate; orthogonal polynomials;
transition probability

1. Introduction

Evolutionary forces, e.g., mutation, selection and genetic drift, shape DNA sequence information.
Typically, the evolutionary processes that have influenced the data reach back millions of generations
or years. Mathematical theory that describes these processes has been available for more than 80 years
(e.g., [1,2]), yet inference of population genetic parameters using probabilistic models is difficult, and
only few analytical maximum-likelihood estimators are available; those based on diffusion theory, so
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far, assume independence among sites and are briefly reviewed in Vogl [3], Vogl and Bergman [4] and
in the theory section below.

A DNA molecule is a string (or strand) of nucleotides (or sites) that usually pairs with a
complementary strand to form a double-stranded chromosome. Pairing of sites is accomplished
by hydrogen bonds between the complementary base pairs adenine (A) and thymine (T), on the one
hand, and cytosine (C) and guanine (G), on the other. An assortment of chromosomes forms a genome,
which is specific for a species. The main functional units of genomes are genes that often code for
proteins. Proteins provide structure, catalyze metabolism or mediate physiological pathways in all
living organisms. While the single-celled Bacteria and Archaea generally have compact genomes,
genes of the more complex eukaryotic organisms are often interrupted by non-coding introns. Introns
are spliced out, i.e., eliminated, during maturation of the messenger RNA, which is then translated
into the chain of amino acids that makes up proteins.

A point mutation at a certain nucleotide or site creates a new genetic variant, i.e., an allele.
Mutation is not strand-specific, but may be biased towards A or T (A/T) over C or G (C/G) or vice
versa, because mutation rates between these two allelic classes may vary. Genome-wide sequence data
may be made bi-allelic (binary), by considering A/T nucleotides as Allele 0 and C/G nucleotides as
Allele 1. This simplifies mathematical analysis, such that maximum-likelihood inference becomes
possible. Mutations introduce new variants into the genome and, thus, increase genomic variation.
Conversely, stochastic fluctuations of the allelic proportion due to finite population sizes, i.e., random
genetic drift, eventually cause fixation of an allelic type, thus eliminating variation. An equilibrium
between mutation and drift may establish with time.

Recently, relatively inexpensive, high throughput DNA sequencing methods have made available
population data from whole genomes (in multicellular organisms typically comprising 107− 1011 sites),
at least for humans and model species, such as fruit flies of the genus Drosophila. These data provide
the basis for inference of population genetic forces, such as random genetic drift, the mutation rate
scaled by the population size, directional selection and the time of the split between two populations.

In this article, we focus on inferring population genetic parameters using a mutation-drift model
of the allelic proportion x. For mathematical convenience, genomic sites are classified as binary with
respect to their nucleotide (C/G vs. A/T). A total of L sites are classified into categories, depending
on the count y of Allele 1 (C/G) among M aligned genomic sequences. Together, these counts form
a site frequency spectrum (SFS) of size (M + 1) with 0 ≤ y ≤ M. Joint SFS may be constructed
considering the allelic states of sites within a single population at two different time points or two
related populations at a single time point.

The solution of the diffusion equation describing the evolution of x conditional on mutation and
drift parameters has previously been represented as a series expansion of orthogonal polynomials
(e.g., [5–9]). In this article, we extend the mathematical theory to a boundary-mutation model [4],
which describes the evolution of x when the scaled mutation rate θ is small, i.e., on the order 0.1 or
smaller [10]. Using this model, a method for the inference of θ and the time of split t is derived and
applied to both simulated and empirical Drosophila population data. The empirical data are joint
SFS of short introns, as the nucleotide composition of this site class is considered to not be affected
by selection, but only by the joint forces of mutation and drift [11–13]. Therefore, the study of these
sites likely provides an accurate estimate of the population demography and the genome-wide scaled
mutation rate. The joint SFS from a sample of six individuals from the Malawian D. melanogaster
population [14] and the D. sechellia reference sequence (Release 1.0; [15]) is used to infer mutation and
drift parameters.

1.1. Inference with a Single Site Frequency Spectrum Assuming Equilibrium

Assume that a sample of L genomic loci or sites is available for M haploid individuals. The sample
space of the allelic count for each locus l is then yl = (0, . . . , M) copies of Allele 1, with 1 ≤ l ≤ L.
In regions of high recombination rates relative to mutation rates, sites may be assumed to be
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independently and identically distributed, such that the probabilities given the model parameters of
all L sites can be multiplied. In this case, the theory developed below can be considered maximum
likelihood. In regions of relatively low recombination rates, estimators are still consistent and may
be considered a composite likelihood. For notational convenience, the index l is often dropped in
the following.

1.2. Inference Based on the Beta Equilibrium Distribution

In a classical study, Wright [2] proposed a model for the evolution of a bi-allelic locus under the
influence of the population genetic forces: mutation, directional selection and drift. He also derived the
equilibrium distribution of the allelic proportion, conditional on the scaled mutation rate, the mutation
bias and the scaled strength of directional selection. In the absence of selection, the equilibrium
distribution of the population allelic proportion x of Allele 1 is a beta:

p(x|α, θ) =
Γ(θ)

Γ(αθ)Γ(βθ)
xαθ−1(1− x)βθ−1 , (1)

where α is the mutation bias towards Allele 1 and β = (1− α) and θ the overall scaled mutation rate,
i.e., the product of the per-generation mutation rate µ and the effective population number or size N.

Conditional on x, the distribution of the allelic count y is assumed to be binomial. Especially with
genome-wide samples, the allelic proportions at particular sites are not interesting and “integrated
out”, which leads to the beta-binomial distribution of the allelic count:

p(y | α, θ) =

(
M
y

)
Γ(θ)

Γ(αθ)Γ(βθ)

Γ(αθ + y)Γ(βθ + M− y)
Γ(θ + M)

. (2)

Given a sample of L independent loci for M individuals for each locus and a common α and θ, let
Ly represent the counts of sites with y alleles of Type 1. Set qy = p(y | α, θ). The likelihood is then:

`(L0, . . . , LM | α, θ, L) =
L!

L0! · · · LM!
qL0

0 · · · q
LM
M . (3)

For arbitrarily large values of θ, only iterative algorithms have been derived to obtain maximum
likelihood estimates of α and θ [3], even in the simple case without selection. Note that this model
corresponds to the canonical model of the empirical Bayes method, and maximizing this marginal
likelihood corresponds to a parametric empirical Bayes approach [16].

In the limit of small θ, the beta-binomial compound distribution (2) can be expanded into a Taylor
series in θ at θ = 0, up to first order. The “folded” site frequency spectrum (folded SFS) is derived
from the general site frequency spectrum by lumping the samples Ly with LM−y, such that the state
space becomes 0 ≤ y ≤ [M/2] per locus. For a polymorphic sample of such a folded SFS, the Taylor
series expansion in θ of the beta-binomial compound distribution has been derived by RoyChoudhury
and Wakeley [17]. In the general situation with 0 ≤ y ≤ M, the series expansion of the beta-binomial
compound distribution leads to the general “RoyChoudhury–Wakeley” distribution [3]:

p(y | α, θ) =


β− αβθ ∑M−1

y=1
1
y for y = 0,

αβθ M
y(M−y) = αβθ ( 1

y + 1
M−y ) for 1 ≤ y ≤ M,

α− αβθ ∑M−1
y=1

1
y for y = M.

(4)

With this first order expansion of the beta-binomial in θ, approximate maximum likelihood (ML)
estimators of α and θ and their posterior distributions can be obtained easily [3]. In particular, the
approximate ML estimator for the scaled mutation rate is:
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ϑ̂ =
Lp

2L ∑M−1
y=1 1/y

, (5)

where ϑ̂ = α̂β̂θ̂ and Lp = ∑M−1
y=1 Ly, i.e., the sum over all polymorphic sites in the sample, while the

approximate ML estimator for α is:

α̂ =
LM + Lp/2

L
. (6)

If the boundary mutation model is assumed, these estimators are maximum likelihood, rather
than approximations in the limit of small-scaled mutation rates θ [4].

1.3. Inference Based on the Assumptions of Equilibrium and Rare Mutations

The estimator ϑ̂ of Formula (5) is a variant of the well-known Ewens–Watterson estimator of
the scaled mutation rate [18,19], θ̂w = Lp/(L ∑M−1

y=1 1/y). The latter was originally derived assuming
the infinite sites model [20,21], which in turn was based on a model with irreversible mutation [2].
With the infinite sites model, infinitely many sites may be hit by mutation at a finite rate, such that each
site is hit only once [19,21]. Furthermore, it is usually assumed that the ancestral and derived allelic
states can be inferred with outgroup information, i.e., with information from closely-related species or
populations (e.g., [12,13,22–24]). Then, segregating mutations are assumed to only arise once from the
ancestral background. Alleles at a site are thus not defined as having bases A/T versus C/G, but as
being ancestral versus derived. Note that the factor of two difference between ϑ̂ of Formula (5) and
the Ewens–Watterson estimator reflects that mutations arise from both boundaries in the former and
only one boundary in the latter. Obviously, the mutation bias cannot be inferred with polarization. Yet,
irrespective of whether or not data are polarized, a polymorphic site is scored as polymorphic.

The Ewens–Watterson estimator is generally unbiased. If sites are unlinked, it can be shown that
it is also the maximum likelihood estimator of θ and, thus, a sufficient statistic (e.g., [3]). Ewens [18]
neglected to show this explicitly, while he earlier showed that the estimator for the corresponding
infinite alleles model is maximum likelihood [25]. Furthermore, it can been shown that the estimators
are unbiased (e.g., [3,18]). Note that if assumptions are met, θ̂w corresponds to the “expected
heterozygosity”, i.e., the expected proportion of polymorphism in a sample of size M = 2.

Similar to the infinite sites model, applications of the Poisson random field (PRF) model to
population genetics generally assume small mutation rates. The PRF theory is often based on
irreversible mutation models and, like the infinite sites model of Kimura [21], usually assumes the
presence of directional selection. For an equilibrium distribution to exist, an inexhaustible and
unvarying supply of sites must be assumed. Furthermore, the ancestral state of all sites must be known
without errors and conditioned on. This is because, as discussed above, the rates of mutation from
A/T to C/G generally differ, and the force of directional selection is reversed if an A/T mutates to
a C/G or vice versa. The above assumptions are not met with real datasets: genomes are finite, and
inference of the ancestral state is error-prone. Nevertheless, if appropriate outgroup information is
available and quasi-equilibrium is assumed, the approach is sensible [26–29].

While RoyChoudhury and Wakeley [17] also use the PRF approach, they do not assume
outgroup information, but rather start from a Taylor series expansion in θ of the equilibrium beta
distribution (1). As shown above (Equation (5)), the estimator RoyChoudhury and Wakeley [17]
derived is essentially identical to the Ewens–Watterson estimator of θ. Starting from a Moran model
that only allows for mutations from the boundaries, Vogl and Clemente [10] derive a generalization
of the estimator also for the case with directional selection, without assuming outgroup information.
Vogl and Bergman [4] derive ML estimators for all three parameters: mutation bias α, scaled mutation
rate θ and scaled selection strength γ, with the same assumptions, but base the analysis on a
diffusion model.
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2. Mathematical Theory and Algorithms

The Ewens–Watterson estimator θ̂w [18,19] or its varieties are sufficient statistics for the analysis
of site frequency spectra assuming the infinite sites model, equilibrium and unlinked sites. With real
datasets, however, changes in demography or mutation parameters usually invalidate the equilibrium
assumption. Moreover, the approach to equilibrium is dominated by the scaled mutation rate θ.
Since θ is often on the order of 10−2 per unit of diffusion time, which is scaled in N generations,
it takes on the order of 100 · N generations to reach equilibrium. This is on the order of 107 − 109

generations. Even with the short-lived fruit flies, equilibrium is thus usually not reached before a
change in population demography, the selection regime or the mutation bias. For probabilistic analysis
of datasets that have not yet reached equilibrium, calculation of transition probabilities or densities
is necessary. This is also necessary for joint site frequency spectra, where samples are drawn from a
single population at two different time points or two closely-related populations at a single time point,
which we will present in this article.

Consider a population of haploid population size N(t), where t is time. The dynamics are
governed by only two population genetic forces: mutation and drift. Generally, the diffusion limit,
i.e., N → ∞, is considered such that, at each time point only two quantities matter: the scaled mutation
rate θ(t) = µ(t)N(t) and the mutation bias α(t) = (1− β(t)) = µ1(t)/(µ0(t) + µ1(t)). Let x(t) denote
the proportion of the first allelic type, which in our case may be identified with the proportion of
C/G at this site in the population at time t. Assume now that the parameters N(t), µ(t) and α(t)
are piecewise constant and consider only a single such epoch of constant parameters. Usually, the
following forward operator is obtained [3,30]:

L f =
∂2

∂x2 x(1− x)− ∂

∂x
θ(α− x) . (7)

The corresponding forward diffusion or Kolmogorov equation is:

∂

∂t
φ(x, t) =

∂2

∂x2

(
x(1− x)φ(x, t)

)
− ∂

∂x

(
θ(α− x)φ(x, t)

)
, (8)

where φ(x, t) is the transition density of the allelic proportion x at any time t. To solve this equation,
Song and Steinrücken [7] employ a series expansion with the modified Jacobi polynomials:

R(θ,α)
i (x) = P(βθ−1,αθ−1)

i (2x− 1) , (9)

where P(a,b)
i (z) are the classical Jacobi polynomials [31]. Note that Song and Steinrücken [7] primarily

analyze the backward diffusion equation (but also use the forward diffusion equation in the section:
“Empirical Transition Densities and Stationary Distributions”). However, the relationship between the
adjoint backward and forward diffusion equations is such that adaption of the theory concerning the
backward equation to the forward equation is minimal (compare [9]).

2.1. The Boundary-Mutation Model

Further in the text, we will follow Vogl and Bergman [4] and model mutations as only affecting
the boundaries. Then, φ(x, t) must be interpreted as a generalized probability measure that integrates
to one over the unit interval, but may contain point masses at the boundaries (compare [32]). Within
the polymorphic region, 1/N ≤ x ≤ (N − 1)/N, the dynamics are purely governed by drift, such that
the diffusion generator is:

L f =
∂2

∂x2 x(1− x) , (10)
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and the corresponding Kolmogorov forward (or forward diffusion) equation is:

∂

∂t
φ(x, t) =

∂2

∂x2

(
x(1− x)φ(x, t)

)
. (11)

Mutations are assumed to arise at the boundaries and correspond to a transition from x = 0 to
x = 1/N, for a mutation from A/T to C/G, or from x = 1 to x = (N− 1)/N, for a mutation from C/G
to A/T.

The Wright–Fisher model is most familiar to population geneticists. With this model, the transition
between subsequent generations due to drift is modeled via binomial sampling, such that transitions
between distant states are possible. The slightly less familiar Moran model only allows transitions
between neighboring states, which simplifies the math. This simplification pertains also to the
boundaries [4]. With the boundary-mutation model, mutations are assumed to arise only at the
boundaries; a transition from x = 0 to x = 1/N corresponds to a mutation from a monomorphic state
with only A/T to a polymorphic state with a single C/G in the population; conversely, a transition
from x = 1 to x = (N − 1)/N corresponds to a mutation from C/G to A/T. The reverse transitions
from the polymorphic region to the boundaries at x = 0 and x = 1 are caused by drift. In particular,
the flow from x = 1/N towards zero is proportional to drift times the probability mass at x = 1/N,
and similarly at the other boundary.

With a change from the Moran to the diffusion model, the formulas for the flow towards the
boundaries due to drift are:

d F(α, θ)

dt
=

{
−N−1

N φ(x = 1
N , t | α, θ) for x = 1/N to x = 0,

N−1
N φ(x = N−1

N , t | α, θ) for x = (N − 1)/N to x = 1,
(12)

where the sign of the flow represents the direction. Conversely, the mutational flow from the boundaries
to the interior is given by:

d F(α, θ)

dt
=

{
Nαθ

∫ 1
0 (1− x)φ(1− x, t | α, θ) dx for x = 0 to x = 1/N,

Nβθ
∫ 1

0 xφ(x, t | α, θ) dx for x = 1 to x = (N − 1)/N .
(13)

2.2. Modified Gegenbauer Polynomials

We will first analyze the situation without mutations, i.e., θ = 0. With pure drift, the transition
density φ(x, t) can be expanded into a series of Gegenbauer polynomials (e.g., [5,7–9,33]). Define:

Ui+2(x) = x−1(1− x)−1Gi(x) = − 2
i + 2

C(3/2)
i (2x− 1) , (14)

where the Gi(x) are the modified Gegenbauer polynomials of Song and Steinrücken [7], and the C(α)
i (z)

correspond to the classical ultraspherical or Gegenbauer polynomials with α = 3/2 ([31], Chapter 22),
also used by Kimura [5] and Tran et al. [8]. The forward and backward diffusion generators are adjoint,
such that the modified Gegenbauer polynomials from Song and Steinrücken [7] can also be used to
solve the forward diffusion equation. Multiplication of the weight function x−1(1− x)−1 and Gi(x) in
(14) transforms a solution of the backward equation into that of the forward equation (compare [9]).

The first two polynomials are U2(x) = −1 and U3(x) = (2− 4x); the recurrence relation to
calculate all other polynomials is [7]:

Ui+1(x)
(i + 1)(i− 1)

2i(2i− 1)
= Ui(x)

(
x− 1

2

)
−Ui−1(x)

(i− 1)
2(2i− 1)

. (15)
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The Ui(x) solve the differential equation:

− λiUi(x) =
d2

dx2

(
x(1− x)Ui(x)

)
, (16)

with:
λi = i(i− 1) . (17)

The Ui(x) are orthogonal with the weight function:

w(x) = x(1− x) , (18)

and the proportionality constant:

∆i =
i− 1

(2i− 1)i
. (19)

A function f (x) defined within ]0, 1[ can be represented by an expansion of the Ui(x).
The coefficients ci can be calculated using:

ci =
1
∆i

∫ 1

0
x(1− x)Ui(x) f (x) dx . (20)

2.2.1. Solution of the Pure Drift Forward Equation with Gegenbauer Polynomials

Substituting φ(x, t) = ∑∞
i=2 τi(t)Ui(x), where τi(t) is a function pertaining to the temporal part of

the transition density, into the diffusion Equation (11) leads to:

∂

∂t

( ∞

∑
i=2

τi(t)Ui(x)
)
=

∂2

∂x2

(
x(1− x)

∞

∑
i=2

τi(t)Ui(x)
)

. (21)

For each i, we have:

∂

∂t

(
τi(t)Ui(x)

)
=

∂2

∂x2

(
x(1− x)τi(t)Ui(x)

)
, (22)

which can be rearranged to:
∂
∂t τi(t)
τi(t)

=

∂2

∂x2

(
x(1− x)Ui(x)

)
Ui(x)

, (23)

Observing Equation (16), we obtain the eigenvalue equations:−λi =
d2

dx2

(
x(1−x)Ui(x)

)
Ui(x) ,

−λi =
d
dt τi(t)
τi(t)

.
(24)

As stated above, the Ui(x) solve the spatial differential Equation in (24) for each i, while
τi(t) = cie−λit solves the temporally homogeneous, linear differential Equation in (24). The ci depend
on the starting conditions and can be obtained from Formula (20). Since any function in ]0, 1[ can be
represented by ∑∞

i=2 ciUi(x),

φ(x, t) =
∞

∑
i=2

τi(t)Ui(x) =
∞

∑
i=2

cie−λitUi(x) (25)

solves the diffusion Equation (11) for any starting condition.
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Integrating (16) from zero to one for the symmetric eigenvectors with even i, we obtain:

−λi

∫ 1

0
Ui(x) dx =

∫ 1

0

d2

dx2

(
x(1− x)Ui(x)

)
dx

=
∫ 1

0

d
dx

(
x(1− x)

d
dx

Ui(x) + (1− 2x)Ui(x)
)

dx

=

(
x(1− x)

d
dx

Ui(x) + (1− 2x)Ui(x)
) ∣∣∣1

0

= −Ui(1)−Ui(0) .

(26)

Note that, for odd i, we have Ui(x) = −Ui(1− x), such that Ui(0) = −Ui(1), Ui(1/2) = 0, and∫ 1
0 Ui(x) dx = 0. Equation (26) is therefore trivially true for odd i.

Following Kimura [5], we substitute φ(x, t) = ∑∞
i=2 τi(t)Ui(x) into the differential Equation (11)

and integrate from zero to one observing Equation (26):

∂

∂t

(
lim

N→∞

∫ (N−1)/N

1/N
φ(x, t) dx

)
= lim

N→∞

∫ (N−1)/N

1/N

∂2

∂x2

(
x(1− x)φ(x, t)

)
dx

∂

∂t

( ∞

∑
i=2

τi(t)
∫ 1

0
Ui(x) dx

)
=

∞

∑
i=2

τi(t)
∫ 1

0

∂2

∂x2

(
x(1− x)Ui(x)

)
dx

∂

∂t

( ∞

∑
i=2

τi(t)
λi

(Ui(0) + Ui(1))
)
= −

∞

∑
i=2

τi(t) (Ui(0) + Ui(1)) .

(27)

As in the temporal part of Formula (24), substituting τi(t) = cie−λit solves the system of
differential equations:

d
dt

τi(t) = −λiτi(t) . (28)

For even i, the flow out at the boundaries zero and one per unit time is symmetric and corresponds
to what is present just inside the boundaries, i.e., Ui(0) and Ui(1). The rate of loss is the eigenvalue λi.

Now, multiply φ(x, t) with x and integrate again from zero to one:

∂

∂t

(
lim

N→∞

∫ (N−1)/N

1/N
xφ(x, t) dx

)
= lim

N→∞

∫ (N−1)/N

1/N

∂2

∂x2

(
x(1− x)xφ(x, t)

)
dx

∂

∂t

( ∞

∑
i=2

τi(t)
∫ 1

0
xUi(x) dx

)
=

∞

∑
i=2

τi(t)
∫ 1

0

∂2

∂x2

(
x2(1− x)Ui(x)

)
dx

∂

∂t

( ∞

∑
i=2

τi(t)
λi

Ui(1)
)
= −

∞

∑
i=2

τi(t)Ui(1) .

(29)

Thus, xφ(x, t) will eventually drift to Boundary 1, and conversely (1− x)φ(x, t) to Boundary 0.
This is expected, since drift is symmetric, such that the probability of eventual fixation is equal to the
proportion x, for the boundary at one, and (1− x), for the boundary at zero (see also [30], Chapter 4.3).
As in the temporal part of Formula (24), substituting τi(t) = cie−λit solves the system of differential
Equations (28).

The solution of the diagonal system of differential Equations (28) thus fulfills Equation (11) for all
t, as well as the boundary conditions at both zero and one (12).

Note that: {
Ui(0)/λi =

∫ 1
0 (1− x)Ui(x) dx

Ui(1)/λi =
∫ 1

0 xUi(x) dx .
(30)
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The above results suggest augmenting the Ui(x) with the boundary terms:{
−Ui(0)/λi = (−1)i/i

−Ui(1)/λi = 1/i .
(31)

Furthermore, the result (30) shows that the boundary terms derived above correspond to those
defined by Tran et al. [8].

We therefore define the following set of orthogonal polynomials augmented with boundary terms:

Hi(x) =
(−1)i δ(x) + δ(x− 1)

i
+ Ui(x) , (32)

where δ(x) is the Dirac delta function (compare Tran et al. [8], who arrive at the corresponding set of
augmented eigenfunctions). With this definition of eigenfunctions, the probability mass that leaves
the polymorphic region for each i at 1/N and (N − 1)/N is added to the monomorphic boundaries at
x = 0 and x = 1. The integral over the closed interval between zero and one thus remains unity for all
times. In Appendix A.1, we show that these augmented orthogonal polynomials can also be obtained
by a Taylor series expansion of the general eigensystem solving the diffusion Equation (11) using the
modified Jacobi polynomials R(α,θ)(x).

2.2.2. Starting and Prior Distributions

We base the following description on the theory of hierarchical Bayesian models and the empirical
Bayes method [16] that we also employed earlier [3,4]. In a frequentist context, one would rather use
the context of marginal likelihoods.

Traditionally, a Dirac delta function at a certain position p has been used as a starting condition [33].
With a site frequency spectrum, however, the joint density of the population allelic proportion x and
the observed allelic count y in a sample of size M0 must be used as starting density. Most naturally, the
conditional distribution of the data y given the allelic proportion x is modeled as a binomial:

p(y | x, M0) =

(
M0

y

)
xy(1− x)M0−y . (33)

With the pure drift model, we are generally interested in the polymorphic region, since probability
mass at a boundary remains there due to the absence of mutations.

For “integrating out” the population allelic proportions x, a prior distribution for x must be
assumed. With small-scaled mutation rates, an “improper prior” proportional to x−1(1− x)−1 within
1/N and (N − 1)/N is appropriate, as this is proportional to the equilibrium distribution (see also
Subsections 2.3.4 and 2.3.5 below). Note that this prior corresponds to the inverse of the weight
function. Thus, the inner product (20) to calculate the initial coefficients becomes:

ci =
1
∆i

lim
N→∞

∫ (N−1)/N

1/N
x(1− x)Ui(x) p(y | x, M0)x−1(1− x)−1 dx

=
1
∆i

lim
N→∞

∫ (N−1)/N

1/N
Ui(x) p(y | x, M0) dx ,

(34)

where the limit notation indicates that the integration includes only the polymorphic region, i.e., no
point masses at the boundaries.

We can thus specify a general algorithm that also includes the boundaries.
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2.2.3. Algorithm 1: Allelic Proportions x with Pure Drift for All Times t, Conditional on Initial Values

• A measure f (x) between zero and one, which may have point masses m0 and m1 at Boundaries 0
and 1, is represented by an expansion of the Hi(x) up to i = n. The coefficients ci are calculated
according to Equation (34). The expansion of g(x) times the prior, up to the order n, is then:

g(x) =

(
m0 −

n

∑
i=2

ci
(−1)i

i

)
δ(x) +

(
m1 −

n

∑
i=2

ci
i

)
δ(x− 1) +

n

∑
i=2

(ci Hi(x)) + O(n + 1) . (35)

• The solution of Equation (28) for all t conditional on the initial distribution can be represented by
a series expansion up to n:

g(x, t) =

(
m0 −

n

∑
i=2

ci
(−1)i

i

)
δ(x) +

(
m1 −

n

∑
i=2

ci
i

)
δ(x− 1) +

n

∑
i=2

(
ci Hi(x)e−λit

)
+ O(n + 1) ,

(36)
with λi = i(i− 1).

Note that the Hi(x) contain the boundary terms that balance the probability masses at zero and
one. This is obvious if the initial probability measure f (x) does not contain point masses at the
boundaries, i.e., if m0 = m1 = 0.

2.3. Modified Gegenbauer Polynomials and the Boundary-Mutation Model

In this subsection, we will use the expansion in orthogonal polynomials with boundary terms to
model both mutation and drift.

2.3.1. Mutation and Drift: Slowly Evolving Dynamics

For the slowly evolving dynamics at the boundaries, we augment the system with two
eigenfunctions. Starting from the system for general θ, which can be expanded in a series of modified
Jacobi polynomials (see Equation (9) in Song and Steinrücken [7]), we note that the eigenfunction for
i = 0 does not change with time, i.e., λ0 = 0. The eigenfunction for i = 1 has the eigenvalue λ1 = θ

(compare: [7]) and reflects the slow change in allele frequencies through mutation. Expressing the
Jacobi polynomials as beta distributions and taking the limit θ → 0, such that only probability masses
at the boundaries remain, the first two eigenvectors become:{

H(α)
0 (x) = βδ(x) + αδ(x− 1) ,

H1(x) = −δ(x) + δ(x− 1).
(37)

(see Appendix A.1). Obviously, these two eigenfunctions are unaffected by the dynamics in the
polymorphic region inside [1/N, (N − 1)/N].

These two eigenvectors have no probability mass within the polymorphic region, such that only
eigenvectors with i ≥ 2 have nonzero probability masses in the polymorphic region. Hence, the
model separates two spatial regions: the monomorphic boundaries and the polymorphic interior.
As λ1 = θ � 1 while the λi > 1 for all eigenvalues with i > 2, two different temporal regions can also
be distinguished, in addition to the two spatial regions. Thus, evolution is modeled as a two-time
process, where the slow dynamics captured by the eigenfunctions i = 0 and i = 1 are evolving
independently from the polymorphic region, while the fast dynamics in the polymorphic region are
in quasi-equilibrium with the slow dynamics at the boundaries. Generally, we are thus looking at a
system of differential equations that for the slowly evolving part of the system is:{

τ0(t) = 1 ,
d
dt τ1(t) = −θτ1(t) .

(38)
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Initially at t = 0, the boundary values are b0(0) =
∫ 1

0 x f (1− x | t = 0) dx and b1(0) =
∫ 1

0 x f (x | t =
0) dx = (1− b0(0)). The solution over time is τ1(t) = (b1(t)− α)e−θt, such that the boundary values
will slowly, at a rate of θ, approach the equilibrium values:

b1(t) = α + (b1(0)− α)e−θt = 1− b0(t) (39)

If f (x) does not integrate to one, i.e., b0(t) + b1(t) 6= 1, modifications are trivial. Note that
b0(t = 0) and b1(t = 0) correspond to the probability mass currently at the boundaries plus the part of
the probability mass within the polymorphic region that is expected to be fixed by drift (i.e., without
any further mutations) at the respective boundaries. They would only be identical to the probability
mass currently at the boundaries if there were no probability mass in the polymorphic region.

2.3.2. Mutation and Drift: Quickly Evolving Dynamics

The slowly evolving part of the system is given in (39). For the quickly evolving part, note that,
from Equation (13), mutation moves probability mass from the boundary at zero x = 0 to x = 1/N
and from x = 1 to x = (N − 1)/N, respectively. We can model this with a Dirac delta function at
x = 1/N and x = (N − 1)/N:{

Nαθδ(x− 1/N)b0(t) for x = 0 to x = 1/N,

Nβθδ(x− (N − 1)/N)b1(t) for x = 1 to x = (N − 1)/N,
(40)

with b0(t) and b1(t) as above. Combined with the pure drift diffusion Equation (11), we thus obtain
the following diffusion equation within the interval between 1/N and (N − 1)/N:

∂

∂t
φ(x, t) =

∂2

∂x2

(
x(1− x)φ(x, t)

)
+ Nαθδ(x− 1/N)b0(t) + Nβθδ(x− (N − 1)/N)b1(t) , (41)

Equation (41) is an extension of Equation (21) to mutations from the boundaries.

2.3.3. Mutation and Drift: Slowly and Quickly Evolving Dynamics

Theorem 1. Starting from a generalized probability measure f (x) within the unit interval (Equation (11)),
with the boundary Conditions (12) and (13), and letting N → ∞, the following function provides the general
solution for all times of the Kolmogorov forward equation of boundary-mutation drift diffusion:

φ(x, t) = H(α)
0 (x) +

∞

∑
i=1

τi(t) Hi(x) , (42)

with the previously-defined eigenfunctions (Equations (37) and (32)); the τi(t) are given by a system of linear
inhomogenous first order differential equations:{

d
dt τ1(t) = −θτ1(t)
d
dt τi(t) = −λiτi(t) + θ(2i− 1)i

(
(−1)iαb0(t) + βb1(t)

)
, for i ≥ 2.

(43)

The starting values, τi(t = 0) for i ≥ 1, are given by the initial probability masses at the boundaries and by the
expansion of the initial density f (x) in the interior into the eigenvectors.
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Proof. The slowly evolving part of the system is given in (39). The coefficients for expanding the delta
function in (40) are (compare Equation (20)) for the boundary at zero:

1
∆i

lim
N→∞

∫ (N−1)/N

1/N
Nx(1− x)Ui(1/N)δ(x− 1/N) dx =

Ui(0)
∆i

=
(2i− 1)iUi(0)

(i− 1)

= − (2i− 1)i(−1)i(i− 1)
i− 1

= −(−1)i(2i− 1)i ,

(44)

and similarly for the boundary at one. Substituting the Gegenbauer expansion into Equation (41),
we obtain:

∂

∂t

( ∞

∑
i=2

τi(t)Ui(x)
)
=

∂2

∂x2

(
x(1− x)

∞

∑
i=2

τi(t)Ui(x)
)
− θ(2i− 1)i

(
(−1)iαb0(t) + βb1(t)

)
Ui(x) . (45)

For each i, we have:

∂

∂t

(
τi(t)Ui(x)

)
=

∂2

∂x2

(
x(1− x)τi(t)Ui(x)

)
− θ(2i− 1)i

(
(−1)iαb0(t) + βb1(t)

)
Ui(x) , (46)

which can be rearranged to:

∂
∂t τi(t) + θ(2i− 1)i

(
(−1)iαb0(t) + βb1(t)

)
τi(t)

=

∂2

∂x2

(
x(1− x)Ui(x)

)
Ui(x)

, (47)

Observing Equation (16), we obtain eigenvalue equations corresponding to those in (24):−λi =
d2

dx2

(
x(1−x)Ui(x)

)
Ui(x) ,

−λi =
d
dt τi(t)+θ(2i−1)i(α(−1)ib0(t)+βb1(t))

τi(t)
.

(48)

Compared to the case without mutation, the spatial part is unchanged, while the temporal part
becomes a system of linear inhomogenous first order differential equations:

d
dt

τi(t) = −λiτi(t)− θ(2i− 1)i
(
(−1)iαb0(t) + βb1(t)

)
. (49)

All other considerations correspond to the case without mutation.

Note that, substituting b0(t) and b1(t), Equation (49) can also be written as:

d
dt

τi(t) = −λiτi(t) + Ai + Bi e−θt , (50)

with constants:

Ai = −αβθ(2i− 1)i
(
(−1)i + 1

)
,

Bi = −θ(2i− 1)i(b0(0)− β)
(
(−1)iα− β

)
.

(51)
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Furthermore, note that we assumed that the probability measure f (x) integrates to one over the
closed interval between zero and one, i.e.,

∫ 1
0 f (x) dx = 1. If this is not the case, the constants Ai and

Bi must be multiplied by
∫ 1

0 f (x) dx.

2.3.4. Boundary-Mutation-Drift Equilibrium Distribution

In earlier work [4], we show that the equilibrium solution of the boundary-mutation model is
the measure:

BME(x | α, θ, N) =


β− αβθ

∫ (N−1)/N
1/N

1
x dx for x = 0,

αβθ 1
x(1−x) for 1/N ≤ x ≤ (N − 1)/N,

α− αβθ
∫ (N−1)/N

1/N
1

1−x dx for x = 1 ,

(52)

where the interior region is bounded by 1/N and (N − 1)/N and BME stands for boundary-mutation
equilibrium. BME(x | α, θ, N) integrates to one over the unit interval, irrespective of N. However,
note that for large N, it integrates to more than one inside the interval [1/N, (N − 1)/N], while
assuming negative values at the boundaries. In this limit, it therefore must be considered an “improper
distribution” [4,34].

In Appendix A.2, we show that, with time, Solution (43) converges to the BME (Equation (52)).

2.3.5. Prior Distribution

With the BME as prior and a binomial likelihood p(y | x, M0) with 0 ≤ y ≤ M0, the coefficients of
the joint distribution p(x, y |M0, α, θ) = p(y | x, M0)x−1(1− x)−1 become:

ci = αβθ
1
∆i

lim
N→∞

∫ (N−1)/N

1/N
x(1− x)Ui(x) p(y | x, M0)x−1(1− x)−1 dx . (53)

where the limit notation indicates that the integration includes only the polymorphic region. Note that
already Ewens used the same limit for inference [18,25]. For polymorphic data, i.e., 1 ≤ y ≤ (M0 − 1),
this function is a polynomial and, thus, can be represented accurately as a series of Gegenbauer
polynomials as long as n > M0. The boundary terms can also be derived easily because the probability
of drifting to boundary one corresponds to the current proportion x (and to (1− x) to the boundary
zero), such that:b1(1 ≤ y ≤ M0, t = 0) = αβθ

∫ 1
0 p(y | x, M0)(1− x)−1 dx = αβθ 1

y

b0(1 ≤ y ≤ M0, t = 0) = αβθ
∫ 1

0 p(y | x, M0)x−1 dx = αβθ 1
M0−y ,

(54)

where the limit notation is not used for brevity.
For monomorphic y, i.e., y = 0 or y = M0, the ci for the probability mass in the interior are also

given by Equation (53) with i ≤ n. The corresponding boundary terms are:b1(y = M0, t = 0) = α− αβθ ∑M0
y=1

1
y

b0(y = M0, t = 0) = αβθ 1
M0

(55)

and analogously for y = 0.
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2.3.6. Algorithm 2: Allelic Proportions x with Boundary-Mutations and Drift for All Times t,
Conditional on Initial Values

• The interior of a joint distribution p(x, y |M0, α, θ) is represented as a Gegenbauer series (53).
• The slowly evolving part of the system consists of the dynamics at the boundaries. Set the

boundary terms at t = 0 to b0(t = 0) and b1(t = 0) as in Equations (54) and (55). With time, the
boundary terms b0(t) and b1(t) then change slowly at the rate of θ according to the exponential
function in Equation (39).

• Set ω =
∫ 1

0 p(x, y |M0, α, θ) dx = b0(t) + b1(t). The solution of Equation (41) for all t conditional
on f (x) can be represented by a series expansion up to n:

f (x, t) = b0(t)δ(x) + b1(t)δ(x− 1) +
n

∑
i=2

(τi(t)Hi(x)) + O(n + 1) , (56)

with:

τi(t) =
A′i
λi

+

(
ci −

A′i
λi
−

B′i
λi − θ

)
e−λit +

B′i
λi − θ

e−θt , (57)

and constants analogous to (51):

A′i = −ωαβθ(2i− 1)i
(
(−1)i + 1

)
,

B′i = −θ(2i− 1)i(b0(0)−ωβ)
(
(−1)iα− β

)
.

(58)

Equation (57) is a solution to (50), as can be shown by substitution.

3. Applications

In this section, we illustrate the calculation of the marginal likelihoods of a mock dataset and an
empirical fruit fly dataset using the expansion of Gegenbauer polynomials up to degree n = 52.

3.1. A Joint Site Frequency Spectrum under Pure Drift

With the pure drift model, the time between two time points t0 = 0 and t1 > 0 is assumed to
be so small that newly arising mutations can be neglected. Moreover, sites where the samples from
both time points are monomorphic for the same allele are usually ignored with such data analysis.
For simplicity, assume that the sample size of the initial sample at time t0 is M0 = 3 and that of time t1

also M1 = 3. Four different cases need to be considered: (i) a site is polymorphic in both samples; (ii) a
site is polymorphic in the first sample and monomorphic in the second; (iii) a site is monomorphic
in the first sample and polymorphic in the second; and (iv) a site is monomorphic in the first sample
for one allelic type and polymorphic in the second sample for the other allelic type. For Cases (i) and
(ii), assume, e.g., a sample with two alleles of a certain type (zero or one), i.e., y0 = 2. Thus, the joint
density of the sample y0 and the allelic proportions x become:

p(y0 = 2, x |M0 = 3, t = 0) ∝
(

3
2

)
x2(1− x) x−1(1− x)−1 = 3x . (59)

This is represented by a sum of the modified Gegenbauer polynomials of degree up to three with
c3 = − 3

4 and c2 = − 3
2 . At time t1, before considering the second sample, the probability mass of the

joint interior distribution has diminished:

p(y0 = 2, 0 < x < 1 |M0 = 3, t = t1) ∝ −3
2

e−2t1(−1)− 3
4

e−6t1(2− 4x) , (60)

while it has grown at the boundaries:
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p(y0 = 2, x = 0 |M0 = 3, t = t1) ∝
3
2
· 1

2
(1− e−2t1)− 3

4
· 1

3
(1− e−6t1) (61)

and:
p(y0 = 2, x = 1 |M0 = 3, t = t1) ∝

3
4
(1− e−2t1) +

1
4
(1− e−6t1) . (62)

For Case (i), the likelihood of a second sample of size M1 = 3 with y1 = 1 alleles of the first type
is binomial: 3x(1− x)2. The joint distribution consists only of an interior part, from which x can be
integrated out to obtain the marginal likelihood:

`(y0 = 2, y1 = 1 |M0 = 3, M1 = 3, t = t1) ∝
∫ 1

0
3x(1− x)2

(
3
2

e−2t1 − 3
4

e−6t1(2− 4x)
)

dx

=
3
8

e−2t1 − 3
40

e−6t1 .
(63)

For Case (ii), the likelihood of a second sample of, e.g., size M1 = 3 with y1 = 3 alleles of the
first type, is binomial: x3. The joint distribution consists of an interior part, from which x can be
integrated out:

p(y0 = 2, y1 = 3 |M0 = 3, M1 = 3, t = t1, 0 < x < 1) ∝
∫ 1

0
x3
(

3
2

e−2t1 +
3
4

e−6t1(−2 + 4x)
)

dx

=
3
8

e−2t1 +
9
40

e−6t1 .
(64)

Summing the interior and the boundary part, the marginal likelihood of the two samples
is obtained:

`(y0 = 2, y1 = 3 |M0 = 3, M1 = 3, t = t1) ∝
3
8

e−2t1 +
9

40
e−6t1 +

3
4
(1− e−2t1) +

1
4
(1− e−6t1) . (65)

For Cases (i) and (ii), thus, a finite expansion of the Gegenbauer polynomials was sufficient.
For Cases (iii) and (iv), the product of the likelihood and prior at time t = 0 results in an infinite

series of Gegenbauer polynomials. Note that the monomorphic term at t = 0 does not need to be
included since, without new mutation, a polymorphism or a monomorphic alternative allele at t = t1

implies that the population allelic proportion x must have been in the polymorphic region already at
t = 0. Take, e.g., M0 = 3 and y0 = 3, which results in:

p(y0 = 3, x |M0 = 3, t = 0) ∝ x3 x−1(1− x)−1 = x2(1− x)−1 . (66)

While Equation (20) can be used in this case, it results in a rather “wiggly” function of x (Figure 1).
With the expansion (1− x)−1 = ∑n−2

i=0 xi a much smoother polynomial of degree n will be obtained,
which can be expressed without loss as a sum of Gegenbauer polynomials up to that degree. Even with
only moderate n, the two expansions will produce nearly indistinguishable likelihoods. In either case,
the algebra cannot easily be reproduced here, but likelihoods corresponding to transitions between
all possible allelic states with arbitrary (but moderate) M0, M1 and t1 can be easily calculated using
computers. We implemented such an algorithm and tested inference using simulated datasets of
L = 105 and M0 = M1 = 3, while varying the parameter t1. As expected, the modes of the likelihood
curves closely coincide with the true values of t1 (Figure 2).
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Figure 1. Approximate densities using the Gegenbauer polynomial expansion with terms up to
n = 52. (A) Approximation to point masses at both boundaries, but without mass in the interior
region; (B) approximation to the equilibrium improper density overlying the function x−1(1− x)−1;
(C) approximation to the joint posterior distribution for a sample with y = 1, M = 1 overlying the joint
distribution 2 x1−1(1− x)1−1; (D) approximation to the joint posterior distribution for a sample with
y = 3, M = 6 overlying the joint distribution (6

3) x3−1(1− x)3−1.
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Figure 2. Pure drift model. Likelihood curves of the parameter t1 given a sample of L = 10, 000,
M0 = M1 = 3 and true t1 (dashed vertical lines) equal to 0.1 (A), 0.5 (B), 1 (C) and 2 (D).

3.2. Application to Drosophila Population Data

The joint site frequency spectrum of putatively neutral short intronic sites (positions 8–30
of introns less than 66 bp in length [11]) was used for inference (Table 1). The interior part of
short introns is unlikely to contain selectively-constrained sequences. Short introns also show the
highest intra- and inter-species diversity of any sequence class within the Drosophila genome [11].
Furthermore, short introns are the most abundant intron type within the Drosophila genome. It is
therefore assumed that mutation-drift dynamics shape the nucleotide composition of short intronic
sites, and since polymorphism within a single intron is rare and linkage disequilibria decrease quickly,
free recombination among sites may be assumed. Sites were classified as binary by lumping A and
T nucleotides together as Allele 0 and C and G nucleotides as Allele 1. The reference sequence from
D. sechellia (Release 1.0; [15]) was taken as ancestral, i.e., the initial sample of size M0 = 1 at time
t0 = 0. While the states of closely related species are routinely taken as ancestral (e.g., [12,13,22–24]),
this practice violates the model assumptions that data are from a single populations and two time
points. A D. melanogaster Malawian population sample [14] of size M1 = 6 was considered as a sample
from a later time point t1. The sequences were annotated by aligning the D. sechellia reference and the
D. melanogaster population sample to the D. melanogaster reference sequence (Release 5.9; [15]).
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Table 1. A joint site frequency spectrum of Drosophila short intronic sites with M0 = 1 and M1 = 6.
The left-most column and the upper row of the table represent the possible allelic states of sites for the
sample M0 and M1, respectively. The interior entries of the table are the counts of sites with a specific
allelic state with respect to Allele 1.

0 1 2 3 4 5 6

0 84, 294 862 369 59 233 293 5121
1 5637 259 276 310 475 1168 41, 531

Interest is centered on inferring the time point t1, i.e., the time in N generations since the split
of the two Drosophila species and the scaled mutation rate θ1, corresponding to the current mutation
rate of the D. melanogaster population sample. Firstly, a prior distribution of allelic counts needed to
be determined by setting initial parameters, α0 and θ0. The ancestral mutation bias α0 was inferred
from the D. sechellia data to be α̂0 = 0.35 and is assumed to not change, i.e., α1 = α0. We estimate the
ancestral scaled mutation rate to be about θ̂0 = 0.079 [4] from D. simulans data, as this closely related
species most likely reflects the ancestral state of both D. sechellia and D. melanogaster species due to its
relatively constant (over the evolutionary times considered) and large effective population size [35].

We implemented a direct grid search algorithm, with the likelihood calculated as in
Subsection 2.3.6, to obtain maximum likelihood estimates of parameters t1 and θ1 (Figure 3).
The maximum likelihood estimates t̂1 = 4.5 and θ̂1 = 0.03 correspond closely to previously published
estimates [36,37].

0.02

0.045

0.07

0.095
2

4.5

7

9.5

e 1 t 1

log−LH

Figure 3. Likelihood surface with respect to parameters θ1 and t1 estimated from the joint site frequency
spectrum in Table 1. The point on the likelihood surface corresponds to ML estimates: θ̂1 = 0.03 and
t̂1 = 4.5.

4. Discussion

Most population genetic models, e.g., the Wright–Fisher and Moran models and the corresponding
(forward) Wright–Fisher or Moran diffusion models, do not restrict the number of mutations
segregating in a population at a given site and time. By contrast, most population genetic methods that
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allow for analytical maximum likelihood estimators assume that variation at a specific site originates
from only a single mutation, such that no more than two alleles can be present at any given site and
time. This assumption is made for the Ewens–Watterson estimators of the scaled mutation rate [18,19]
and the Poisson random field (PRF) models [26–29]. These approaches thus implicitly assume low
scaled mutation rates. Usually, it is also assumed that the ancestral state of a site is known. Both of
these assumptions are made explicit with the infinite sites model. When introducing the infinite sites
model, Kimura [20,21] assumed selection against the mutant allelic variant, such that only the favored
ancestral allele would exist in the monomorphic state, while a mutant allele is eventually lost from
the population by the joint action of adverse selection and drift. Kimura based the mathematics on a
model of irreversible mutation [2].

In later developments of the infinite sites model [18,19], the assumption of selection was dropped.
Without selection, sites may become monomorphic for all possible allelic states (usually two states
are assumed, such that the model is bi-allelic). In practical applications, the ancestral state has to
be inferred via “outgroup” information. For this inference, which is also called “polarization”, data
from an extant closely related population or species, i.e., an “outgroup”, are used (e.g., [12,13,22–24]).
Polarization can only be successful if the outgroup is related closely enough to the focal population,
such that double mutations are improbable, but distantly enough, such that allelic polymorphism is
not shared with the focal population. These biological assumptions are rather restrictive.

With unrestricted mutations, i.e., with the assumptions of the Wright–Fisher diffusion or the Moran
models, allelic proportions in a population converge to a beta equilibrium distribution. For a sample of
moderate size, a beta-binomial equilibrium distribution is obtained. It seems that RoyChoudhury and
Wakeley [17] were the first to expand the beta-binomial equilibrium distribution into a Taylor series up
to first order in the scaled mutation rate θ to derive the sample distribution of a bi-allelic locus. With this
approach, polarization is not necessary. Rather, DNA sequence data can be made binary by grouping
together sites with the bases adenine (A) and thymine (T) to A/T and cytosine (C) and guanine
(G) to C/G. In spite of this difference of the original infinite sites model, the sample distribution of
polymorphic sites is a variant of the infinite sites model [18], and the maximum likelihood estimator of
the scaled mutation rate derived from this distribution is a variant of the Ewens–Watterson estimator.
Based on the Moran model, Vogl and Clemente [10] arrived at the same distribution of polymorphic
sites if mutations only occur at the monomorphic boundaries. A Moran model with mutations only at
the boundaries approximates a Moran model with mutations at any allelic state sufficiently well if the
scaled mutation rate θ is below 0.1 [10]. Obviously, the critical assumption that allows for analytical
derivation of the maximum likelihood estimator is not that the ancestral state is known, but rather that
only a single mutation segregates. Indeed, without selection equivalence of the estimators derived from
the Taylor series expansion in θ of the general mutation model, estimators assuming the boundary
mutation model can be shown [4]. In the latter case, the ML estimators can be considered exact.
Note that mutation bias has generally been ignored when analyzing DNA sequence data. In contrast
to the usual infinite sites model, which assumes that ancestral and derived states can be inferred, a
mutation bias α creating an imbalance between A/T and C/G sites can be modeled naturally with
our approach. As deviations in the A/T:C/G ratio from 1:1 are generally observed and as inference of
ancestral states is difficult, such theory is practically useful. Vogl [3] derived a maximum likelihood
estimator for not only the scaled mutation rate θ, but also the mutation bias α.

Computation-intensive, probabilistic methods for estimating population genetic parameters, such
as the ones implemented in the LAMARC software package [38], are suitable for the analysis of
populations governed by non-equilibrium dynamics. Our method also considers non-equilibrium
population dynamics, such as changes in the effective size of the population, the mutation rate and
mutation bias between different time points, but poses less computational burden. This is achieved
by extending the boundary mutation model [4] to joint site frequency spectra and using modified
Gegenbauer polynomials to solve the transition density φ(x, t) of the allelic proportion x at any time t.
If these model assumptions hold, the method also provides maximum likelihood estimates.
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Gutenkunst et al. [39] estimate migration rates, selection coefficients and split times from joint site
frequency spectra in their program ∂a∂i by approximating the diffusion process using a numerical grid
of population proportions x. Influx of mutations is modeled by “injecting φ density at low frequency
in each population (at a rate proportional to the total mutation flux θ)”. This presumably corresponds
to the boundary mutation model, but seems to assume influx in equal proportions from the boundaries.
Furthermore, this method is directed towards evaluating population sizes, growth rates and migration
rates from joint site frequency spectra, rather than scaled mutation rates. The difference in mutation
rates of the different allelic classes, i.e., mutation bias, is not taken into account.

With mutations arising only at the boundaries, evolution of the allelic proportion x separates
into a slowly evolving part, where the proportions of alleles at the boundaries change at a rate of θ,
while the interior dynamics adjust relatively quickly to the slowly evolving boundary proportions.
This process leads to a system of inhomogeneous linear differential equations. With this theory,
changes in the parameters, i.e., the scaled mutation rate θ or the mutation bias α, do not necessitate a
recalculation of the eigensystem, unlike the approach described in Song and Steinrücken [7]. Thus, our
approach speeds up computation, such that more complicated population genetic scenarios may
be modeled, e.g., growing or shrinking population sizes that are commonly observed in nature.
Since the equilibrium is reached at the rate of the scaled mutation rate θ, natural populations are
rarely in equilibrium, and non-equilibrium dynamics need to be considered when inferring population
genetic parameters.

We note that Evans et al. [40] also arrived at a system of inhomogeneous linear differential
equations assuming the infinite sites model as defined above. Furthermore, they assume directional
selection. Their analysis is based on iteration of moments, rather than on orthogonal polynomials,
which leads to a recursive inhomogeneous system of differential equations. Nevertheless, the
similarities between their and our approaches are readily apparent. In a follow-up study,
Zivkovic et al. [41] apply their algorithm to human and fruit fly data.

So far, we have only discussed approaches based on the Kolmogorov (or diffusion) forward or
backward equations. Another approach successfully employed for analyzing joint site frequency
spectra is based on Kingman’s coalescence [42,43]. With the coalescence, the starting point is the
sample. Inference proceeds by summing and integrating over the sample’s genealogical history.
It is also possible to derive the beta-binomial equilibrium distribution with the coalescent. In more
complicated cases, one or the other of the two approaches may be more suited. Generally, the
coalescence seems preferable if the sample distribution can be derived fairly easily compared to
the population distribution. This is the case for the infinite sites model without recombination, where
only the coalescence approach has been used to derive joint site frequency spectra, as far as we are
aware. Recently, Chen [44,45] and Kamm et al. [46] improved the computational efficiency of the
coalescence approach to joint site frequency spectra. We note that changes in the mutation bias, as
incorporated into our approach, have not yet been incorporated into the coalescence approach.

Our algorithm allows for inference of the mutation bias α, the scaled mutation rate θ and the
time separating the samples of joint site frequency spectra. A fruit fly dataset consisting of a joint site
frequency spectrum of two Drosophila species is analyzed to illustrate the method.

5. Conclusions

In this article, we present a method for inferring population genetic parameters from joint site
frequency spectra, i.e., from allelic frequencies at two (or more) time points. The parameters inferred
are the time between the samples t and the mutation rate θ, scaled by the (effective) population size N.
In contrast to earlier approaches [7,47,48], we assume a small mutation rate θ, such that only a mutation
of single origin may segregate per site at any given time point in a sample. This assumption simplifies
the mathematical treatment because, unlike with earlier approaches, changes in the parameters do
not lead to a change in the eigensystem. Rather, the spatial expansion in orthogonal polynomials,
specifically in Gegenbauer polynomials, remains unaffected. Compared to the case without mutations,
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i.e., to the pure drift model, the temporal part changes from a system of homogeneous to one of
inhomogenous linear differential equations. In effect, the system separates into the slowly evolving
boundaries, which change at a rate of the scaled mutation rate θ, and a fast evolving interior
polymorphic region, which changes at the rate of drift, conditional on the dynamics at the boundaries.
We show that the eigenvectors can be derived from the general Jacobi polynomials by a Taylor series
expansion. Furthermore, the equilibrium distribution corresponds to the Taylor series expansion of the
equilibrium distribution for general θ. Due to the underlying boundary mutation model, parameter
estimation is computationally efficient, and the method can be expanded to accommodate analysis of
more complex population genetic scenarios.
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Appendices

A.1. Appendix: Modified Gegenbauer Polynomials as the Limit of Modified Jacobi Polynomials

Lemma 1. The set of eigenvectors Hi(x), for i ≥ 2, can be derived from the modified Jacobi polynomials in
Equation (9) [7] multiplied by the weight function, w(θ,α)(x)R(θ,α)

i (x) if: (i) only terms in a Taylor expansion
in θ up to zeroth order are kept in the polymorphic region ]0, 1[, while (ii) terms that, for θ → 0, vanish in the
interior and converge to point masses at the boundaries are set to point masses at the boundaries; compactly,

w(θ,α)(x)R(θ,α)
i (x) = Hi(x) + O(θ) . (A1)

Proof. The modified Jacobi polynomials times the weight functions can be expressed as a sum of
polynomials, which in turn can be expressed as a sum of beta distributions:

w(θ,α)(x)R(θ,α)
i (x) =

i

∑
m=0

(−1)i−mΓ(i + αθ)Γ(i + βθ)

Γ(m + 1)Γ(i−m + 1)Γ(m + αθ)Γ(i−m + βθ)

· xm+αθ−1(1− x)i−m+βθ−1

=
i

∑
m=0

(−1)i−mΓ(i + αθ)Γ(i + βθ)

Γ(m + 1)Γ(i−m + 1)Γ(i + θ)
beta(x |m + αθ, i−m + βθ) .

(A2)

For m = 0, the beta distribution converges to a delta function for small θ and i ≥ 1:

(−1)iΓ(i + αθ)Γ(i + βθ)

Γ(1)Γ(i + 1)Γ(i + θ)
beta(x | αθ, i + βθ) =

(−1)iΓ(i)Γ(i)
Γ(1)Γ(i + 1)Γ(i)

δ(x) + O(θ)

=
(−1)i

i
δ(x) + O(θ) ,

(A3)

and analogously for m = i.
For i = 1, we therefore have:

w(θ,α)(x)R(θ,α)
1 (x) = −δ(x) + δ(x− 1) + O(θ) . (A4)
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For i ≥ 2, we have:

w(θ,α)(x)R(θ,α)
i (x) =

i

∑
m=0

(−1)i−mΓ(i + αθ)Γ(i + βθ)

Γ(m + 1)Γ(i−m + 1)Γ(m + αθ)Γ(i−m + βθ)

· xm+αθ−1(1− x)i−m+βθ−1

=
i−1

∑
m=1

(−1)i−mΓ(i)Γ(i)
Γ(m + 1)Γ(i−m)Γ(i−m + 1)Γ(m)

· xm−1(1− x)i−m−1 + (−1)iδ(x)/i + δ(x− 1)/i + O(θ)

=
i−2

∑
m=0

(−1)i−m−1Γ(i)Γ(i)
Γ(m + 2)Γ(i−m− 1)Γ(i−m)Γ(m + 1)

· xm(1− x)i−m−2 + (−1)iδ(x)/i + δ(x− 1)/i + O(θ)

= Ui(x) + (−1)iδ(x)/i + δ(x− 1)/i + O(θ)

= Hi(x) + O(θ) .

(A5)

Remark 1. The Hi(x) are obviously independent of θ and α for i ≥ 1.
Note that the integrals over the whole region, including the boundary terms, are:{

−
∫ 1

0 xHi(x) dx = 0

−
∫ 1

0 (1− x)Hi(x) dx = 0 ;
(A6)

such that the probability masses at the boundaries exactly offset that in the interior.

A.2. Appendix: Mutation-Drift Equilibrium

Theorem 2. The equilibrium solution of the dynamic system with the slowly evolving part given by
Equation (39) and the boundary Conditions (12) and (13) is given by (52) in the limit of N → ∞.

Proof. For any starting value, b0(t) will converge to b0(∞) = β and similarly b1(∞) = α.
Substituting these values into Equation (50) and setting the derivatives to zero, we obtain:

τi(∞) =
Ai
λi

(A7)

It follows that, for all odd i, τi(∞) = 0, and, for all even i,

τi(∞) = −αβθ(4i− 2)/(i− 1) . (A8)

The function:

φ(x, ∞) = βδ(x) + αδ(x− 1) + αβθ
∞

∑
i=1

c2i H2i(x) (A9)

corresponds to the modified Gegenbauer expansion of the equilibrium solution for N → ∞ where:

c2i =
1

∆2i

∫ 1

0
x(1− x)U2i(x)x−1(1− x)−1 dx = − (4i− 1)2i

2i− 1
2
2i

= −4(2i)− 2
2i− 1

. (A10)
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