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Abstract: Two-dimensional (2D) pore-scale models have successfully simulated
microfluidic experiments of aqueous-phase flow with mixing-controlled reactions in devices
with small aperture. A standard 2D model is not generally appropriate when the presence
of mineral precipitate or biomass creates complex and irregular three-dimensional (3D) pore
geometries. We modify the 2D lattice Boltzmann method (LBM) to incorporate viscous
drag from the top and bottom microfluidic device (micromodel) surfaces, typically excluded
in a 2D model. Viscous drag from these surfaces can be approximated by uniformly
scaling a steady-state 2D velocity field at low Reynolds number. We demonstrate increased
accuracy by approximating the viscous drag with an analytically-derived body force which
assumes a local parabolic velocity profile across the micromodel depth. Accuracy of
the generated 2D velocity field and simulation permeability have not been evaluated in
geometries with variable aperture. We obtain permeabilities within approximately 10% error
and accurate streamlines from the proposed 2D method relative to results obtained from
3D simulations. In addition, the proposed method requires a CPU run time approximately
40 times less than a standard 3D method, representing a significant computational benefit for
permeability calculations.
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1. Introduction

Understanding reactive flow and transport processes at the pore scale has benefited from model
validation against experimental results using microfluidic devices. Also referred to as micromodels, these
devices serve as model porous media in laboratory experiments studying pore-scale reactive transport
processes [1,2] (see Figure 1). Micromodel experiments of solute mixing and reaction [3], calcium
carbonate (CaCO3) precipitation [4], and biomass growth [5,6] have been numerically modeled by
solving the Stokes equations for the flow field followed by the advection-diffusion-reaction equations
for concentration fields.

Due to the need to simulate small cross-sectional aspect ratios, i.e., the ratio of flow aperture to
width, some numerical models approximate the micromodel as a 2D system [3–7]. For special cases
where the micromodel aperture is constant, 2D numerical models appear to accurately capture flow,
transport, and reaction [3,7]. Such models are computationally efficient and avert costly 3D numerical
methods. However, when micromodel aperture is variable due to reactions that promote biomass or
mineral precipitate growth on its top and bottom surfaces, 2D flow models are not expected to accurately
capture the complex 3D flow paths that develop.

Figure 1. (a) Entire micromodel with a regular pore network of cylindrical pillars;
(b) Perspective view of micromodel interior taken with scanning electron microscope.
Pillars span the entire aperture; (c) Close-up side view of micromodel with CaCO3 on
top (glass) and bottom (silicon) surfaces. Precipitate appears in gray against a black
background of empty pore space. Image taken with environmental scanning electron
microscope (Philips/FEI XL30 ESEM-FEG, Urbana, IL, USA); (d) Streamwise slice of
randomly-generated symmetric aperture, denoted h(x, y), between cylindrical pillars. White
and black colors represent liquid and solid phases, respectively.

Some numerical models indirectly account for the micromodel aperture. For example, the CaCO3

precipitation model of Yoon et al. [4] assumes precipitate grows exclusively on the top and bottom
micromodel surfaces, motivated by the experimental observation depicted in Figure 1c. These surfaces
are outside the horizontal plane of a 2D simulation, and there is no accounting for the impact of
precipitate on flow. If instead a fully 3D model were used, a very fine grid would be required where the
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aperture was highly constricted. In this work, we propose a modified 2D flow model rather than full 3D
simulation, in order to maintain computational efficiency. The model is applicable to geometries in which
one spatial dimension is very small relative to the others. Motivated by our previous work [1,3,4,6], we
describe its application in microfluidics. More generally, it could approximate flow through rough-walled
fractures and in bounded thin films.

We consider two ways in which the 2D velocity field can be affected by the restricted vertical
dimension. First, the top and bottom surfaces, composed of glass, silicon, or reaction product, are
no-slip boundaries that impart viscous drag on the liquid. This effect has been approximated in a 2D flow
model for a micromodel with uniform aperture [8,9], but the approximation has not been evaluated in
geometries of variable aperture with respect to accuracy of the velocity field and computed permeability.
Second, spatial variation in aperture affects local velocity direction. For example, flow is diverted away
from more constricted regions. The objective of this work is to incorporate a spatially-variable aperture
in a depth-averaged 2D lattice Boltzmann model with viscous drag, determine if the approach yields
improved results relative to a standard 2D flow model, and quantify its computational benefit relative
to a fully 3D flow model. The proposed flow model is benchmarked in a micromodel unit cell and a
heterogeneous pore geometry. Extending the approach to 2D and 3D models of solute transport and
reaction is an important future research step, but outside the scope of this work.

In all test cases, 2D velocity fields are compared to the depth-averaged velocity field from a 3D lattice
Boltzmann model, which we consider the true velocity field. We also compare the permeability estimated
by the proposed 2D method with the true permeability computed by the 3D model, as lattice Boltzmann
models are commonly used to compute the permeability of porous media [9,10].

2. Methods

2.1. Governing Equations

The lattice Boltzmann method (LBM) has been used in a number of fundamental
investigations [11,12], including simulating Stokes flow in porous media [13,14]. Three-dimensional
steady flow at low Reynolds number is governed by the incompressible continuity and
momentum equations:

∇ · u3D = 0 (1)

ν∇2u3D = −a (2)

In which kinematic viscosity is ν, a is an external acceleration, and the 3D velocity vector
u3D(x, y, z) = [ u3D, v3D, w3D ]T . Note all equations utilize common notation, where plain and bold
font denote scalar and vector quantities, respectively. The forcing term on the right-hand side (RHS)
of Equation (2) often accounts for the effect of gravitational acceleration. In this application, that
term is a driving force representing the constant flow pumps used in micromodel experiments, where
a = [ ax, 0, 0 ]T .

The 2D governing equations are derived in three steps. First, we depth-average Equations (1) and (2).
Second, we assume the horizontal velocity components u3D(x, y, z) and v3D(x, y, z) have parabolic
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velocity profiles across the aperture h(x, y), a familiar result from the literature in lubrication
theory [15,16], making it possible to evaluate derivatives and integrals with respect to the vertical (z)
coordinate. Third, we assume the vertical velocity component w3D(x, y, z) ≈ 0, a common assumption
in fracture-like geometries [17], thereby eliminating the momentum equation in the vertical direction.
The resulting equations are:

∇ · (u2Dh) = 0 (3)

ν∇2 (u2Dh) = −
[
ha− 12ν

h2
(u2Dh)

]
(4)

where h = h(x, y), a = [ ax, 0 ]T , and u2D(x, y) = [ u2D, v2D ]T . Viscous drag from the top and bottom
surfaces is approximated by the second forcing term on the RHS of Equation (4). Referred to as the
viscous drag term, it was originally derived [18] for Hele-Shaw flow, i.e., flow between narrowly-spaced
parallel surfaces, but has been applied successfully to micromodels with spatially-uniform aperture [8,9].
We extend use of the viscous drag term to cases of spatially-variable aperture.

Several flow models for micromodel experiments have omitted the viscous drag term and scaled
the steady-state velocity field to match experimental Darcy velocity. This procedure is summarized
by cu(x, y) → u(x, y), where c is a constant. To determine if uniform scaling alone can yield
results equivalent to those using the viscous drag term, we perform 2D simulations, omitting that term,
governed by:

∇ ·
(
u∗

2D
h
)

= 0 (5)

ν∇2
(
u∗

2D
h
)

= −ha (6)

where u∗
2D

(x, y) = [ u∗2D, v
∗
2D ]T . A major aim of this work is to evaluate the accuracy of u∗

2D
(x, y) and

u2D(x, y) in geometries with spatially-variable aperture.
It should be noted that u∗

2D
(x, y) and u2D(x, y) are uniformly scaled to ensure their flow rate is

equivalent to that of the true velocity field prior to comparison. The only difference between these
2D velocity fields is whether or not they were generated under the influence of the viscous drag term.
No scaling is performed for the purpose of computing permeability, as that would artifically produce a
perfect result.

2.2. The Lattice Boltzmann Method: A Brief Overview

The LBM is an explicit in time solver of the Navier-Stokes equations. The fluid is represented by
a set of pseudo-particles, whose motion is represented via probability distribution functions (PDFs),
propagate and collide on a lattice [19]. Spatial and temporal evolution of PDFs is governed by the lattice
Boltzmann equation:

fi (x + ei∆t, t+ ∆t) = fi (x, t) + Ω [fi (x, t)] + ∆tFi (7)

where fi denotes the PDF in the ith lattice direction defined by ei, the position of a lattice node is x, t is
the current time, ∆t the time step, Ω the collision operator, and Fi a body force in the ith lattice direction.
The equations presented in this section apply in general for both 2D and 3D lattice Boltzmann methods.
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Any differences in implementation, aside from the dimension of vector quantities, will be detailed in
later sections. Ω is often represented by the Bhatnagar-Gross-Krook (BGK) operator [20]:

Ω [fi (x, t)] = −1

τ
[fi (x, t)− f eq

i (ρ,u)] (8)

in which particle collision is modeled as a relaxation toward local Maxwellian equilibrium, f eq
i (ρ,u),

with a single relaxation time, τ , which we set to 1.1 in all simulations. We acknowledge that multiple
relaxation time methods [21] (Chapter 1) are preferable for their greater numerical stability [22,23] and
because they do not suffer from viscosity-dependence of the computed permeability [13]. Because our
aim is to match permeabilities from 2D and 3D models with equivalent viscosity, we select the single
relaxation time method for its simplicity.

Continuum-scale equations can be derived from Equation (7), with the BGK operator, via
Chapman-Enskog expansion [19] (Chapter 1). These equations differ from the Navier-Stokes equations
by additional terms that introduce weak compressibility [19] (Chapter 6). An incompressible LBM [24]
has been developed, which reduces the compressibility artifact by several orders of magnitude. All
references to the LBM in this work imply use of this incompressible formulation. The equilibrium
distribution function (EDF) is defined by:

f eq
i (ρ,u) = wi

[
ρ+ 3(ei · u) +

9

2
(ei · u)2 − 3

2
(u · u)

]
(9)

ρ =
∑
i

fi (10)

where wi denotes a directional weight [21] (Chapter 1). We note that the incompressible LBM solves
for the momentum per unit volume, v = ρ0u, where ρ0 is the constant fluid density and u is the velocity
field. For simplicity, we define ρ0 = 1.0 and formulate the model in terms of the velocity field u.
Several schemes have been proposed to implement the forcing term in Equation (7), some of which
do not satisfy mass conservation and may yield undesirable residual terms in recovered hydrodynamic
equations [21] (Chapter 3). All simulations in this work utilize the scheme proposed by Guo et al. [25],
which satisfies mass conservation by defining the fluid velocity u as:

u =
∑
i

fiei +
∆t

2
F (11)

And does not yield residual terms by defining Fi as:

Fi = wi

(
1− 1

2τ

)[
ei − u

c2s
+

(
ei · u
c4s

)
ei

]
· F (12)

In Equations (11) and (12), F is the physical body force, in lattice units, and cs is the lattice sound
speed, equal to 1/

√
3, which depends only on the type of lattice used. We solve for steady-state

velocity fields in all simulations, with a lattice time step of unity to simplify computations. The LBM
is a time-dependent flow solver that may be iterated to steady state. The velocity field is considered
converged when the L2 relative change [26] in the velocity field between successive time steps is less
than 10−10.
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2.3. Solving for u3D(x, y, z) and ū3D(x, y): Determining the True Velocity Field

The LBM is applied to solve Equations (1) and (2) on a 3-dimensional 19-velocity (D3Q19)
lattice [21] (Chapter 1). The acceleration ax, which drives flow, is set to 9.8 × 10−2 m/s2. This
value is arbitrary for our purposes due to the uniform scaling procedure described earlier, so long as
Stokes flow is achieved and the lattice Mach number remains sufficiently small to ensure accuracy in
the LBM [19]. The 3D LBM implementation is described by Equations (9)–(12) with F = a. The
true velocity field, denoted ū3D(x, y) = [ ū3D, v̄3D ]T , is computed by depth-averaging the horizontal
components of u3D(x, y, z), with numerical integration performed over the entire depth by trapezoidal
approximation. Thus, the components of ū3D(x, y) are:

ū3D(x, y) =
1

h(x, y)

∫
u3D(x, y, z) dz

v̄3D(x, y) =
1

h(x, y)

∫
v3D(x, y, z) dz

2.4. Solving for u2D(x, y) and u∗
2D

(x, y): Approximating the True Velocity Field

We solve Equations (3) and (4) with the LBM on a 2-dimensional 9-velocity (D2Q9) lattice [21]
(Chapter 1). Because u2D(x, y) is coupled to the aperture h(x, y), we formulate the new method to solve
for the lumped quantity u2Dh(x, y) via the substitution u2Dh → u in Equations (9)–(12). Two body
forces must be included in the LBM, a driving force and a viscous drag. These forces appear as the RHS
of Equation (4) and may be grouped as a total force, F :

F = ha− 12ν

h2
(u2Dh) (13)

Note F is itself a function of the lumped quantity u2Dh(x, y). After substituting Equation (13) in
Equation (11), we solve for u2Dh:

u2Dh =

∑
i

fiei +
1

2
∆tha

1 +
6∆tν

h2

(14)

The steady-state solution for u2Dh(x, y) is divided by h(x, y) to yield the velocity field u2D(x, y). The
LBM implementation for u2D(x, y) is given by Equations (9), (10) and (12)–(14) with the substitution
u2Dh→ u. The LBM implementation for u∗

2D
(x, y) differs only by omitting the second term on the RHS

of Equation (13) and setting the denominator appearing in Equation (14) to unity.

2.5. Comparing u2D(x, y) and u∗
2D

(x, y) to ū3D(x, y)

A fair comparison of u2D(x, y) or u∗
2D

(x, y) with ū3D(x, y) requires equal Darcy velocity in the two
velocity fields, but it is not known a priori the driving force required to yield this result. After achieving
steady state, u2D(x, y), u∗

2D
(x, y), and ū3D(x, y) undergo uniform scaling. For convenience, we scale to

a Darcy velocity of 208.33 µm/s, as in the study by Yoon et al. [4]. Uniform scaling is justified in a
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laminar flow regime because volumetric flow rate is directly proportional to the applied driving force.
Thus, scaling the velocity fields at steady state is equivalent to adjusting the driving force applied in each
simulation to achieve the target Darcy velocity.

A quantitative comparison of u2D(x, y) or u∗
2D

(x, y) to ū3D(x, y) is made by computing the normalized
root-mean-square error (RMSE) in each velocity component at steady state. For example, in the x
velocity component of u2D(x, y), normalized RMSE is:

RMSEu2D =

√
1

n

∑
i

∑
j

[u2D(xi, yj)− ū3D(xi, yj)]
2

max
(xi,yj)

|ū3D(xi, yj)| − min
(xi,yj)

|ū3D(xi, yj)|
(15)

where n is the number of liquid nodes, (xi, yj) is the position of a node, vertical bars denote the
absolute value, and normalization is performed by dividing by the range of values in ū3D(x, y).
The above definition is easily applied to v2D(x, y), u∗2D(x, y), and v∗2D(x, y). Normalized RMSE
measures the deviation of an approximating velocity field, u2D(x, y) or u∗

2D
(x, y), from ū3D(x, y) over

the entire velocity field. This measurement will be used to compare the accuracy of u2D(x, y) in
different geometries, and to compare the accuracy of u2D(x, y) and u∗

2D
(x, y) in the same geometry.

For a qualitative assessment, we compare velocity field streamlines computed by the MATLAB
function “streamline”.

CPU run times for computing u2D(x, y) and ū3D(x, y) are compared by calculating the speedup (s):

s =
t3D

t2D

(16)

where t2D and t3D are the run times to calculate u2D(x, y) and ū3D(x, y), respectively. We perform all
simulations with custom sequential Fortran codes on an Intel i5-3570 CPU.

2.6. Computing Permeability

In both 2D and 3D simulations, we employ Darcy’s law to compute the permeability:

Q = −kA
µ

dP

dl
(17)

where Q is the volumetric flow rate, k is the permeability, A is the cross sectional area, µ is the dynamic
viscosity, and dP/dl is a pressure gradient or equivalent driving force. First, we perform four simulations
with varying driving force for each geometry. A linear regression is performed on the data (Q, dP/dl) to
determine the quantity kA/µ. The r-squared (r2) value for these data equals 1.00 in all cases, signifying
an excellent linear fit. Finally, the permeability is calculated using the known values of A and µ. In
contrast to the computation of normalized RMSE, the velocity field is not scaled prior to computing
permeability. When comparing results from 2D and 3D simulations, error is calculated as a percentage
of the 3D permeability:

k2D − k3D

k3D

× 100%
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3. Test Cases

All test cases are summarized in Figure 2. First, we consider a typical micromodel unit cell with
cylindrical pillars centered at each corner and the center of the unit cell. We consider both a uniform
aperture and a spatially-varying aperture given by a realization of a spatially-correlated Gaussian random
field. The aperture at each node is a Gaussian random variable with a mean of 15 µm and standard
deviation of 2.5 µm. The aperture covariance between nodes is given by a spherical covariance
function [27] with a range, the separation distance where correlation becomes zero, denoted by θ.
As a fraction of the unit cell length, θ is varied as 0.093, 0.19, 0.37, 0.56, and 0.74, where smaller
values correspond to more severe aperture variation. It is important to examine several θ values because
the assumption of a vertical parabolic velocity profile has been shown to degrade near large aperture
gradients [28]. After generating a realization of the random aperture (Spatially-correlated random fields
generated with the program available at [29]), it is truncated such that 10 µm ≤ h(x, y) ≤ 20 µm,
and clipped to the nearest multiple of twice the node spacing (2∆x) to allow for symmetry. Although
this procedure alters statistical properties of the aperture field, we only use the random field framework
as a consistent way to generate spatially-variable aperture fields to test the 2D methods’ accuracy. In
all test cases employing a random aperture, a buffer frame of 10 nodes for which h(x, y) = 15 µm is
imposed along the lattice edges to avoid severe variation across boundaries. This region is referred to as
the boundary frame, and calculations of normalized RMSE exclude its nodes when h(x, y) is a random
field. Last, we consider a heterogeneous pore geometry with variable cylindrical pillars. The geometry
has a porosity of 0.622 with a spatially-correlated random aperture, generated as just described, with θ
approximately 0.087, as a fraction of the geometry’s length.

In all test cases, the geometry is discretized with a node spacing of 1.25 µm. For unit cells,
this discretization yields a maximum of 18 lattice nodes across the aperture and 269 nodes across
the horizontal dimensions. Resolving the aperture with a relatively small number of nodes requires
over-resolving the length and width, even for a single unit cell. For the most narrow allowed aperture
of 10 µm, there are eight liquid nodes spanning the vertical dimension. We choose not to allow a more
narrow constriction, because with fewer than four fluid nodes the LBM should not be expected to produce
a realistic velocity field [19]. A possible solution to this challenge is the use of an irregular lattice with
finer discretization in the vertical dimension than the horizontal dimensions. Although the LBM can be
implemented on an irregular 3D lattice [30], we do not pursue that possibility in order to forego a 3D
method altogether. All simulations employ only periodic and no-slip boundary conditions. See Sukop
and Thorne [31] (Chapter 4) for a summary of these boundary conditions in the LBM, where the no-slip
condition is implemented with the halfway bounceback rule. In these simulations, liquid boundaries are
periodic and liquid-solid boundaries, including those in the lattice interior, are no-slip.

It should be noted that all test geometries have vertical symmetry. This simplification was employed
for two reasons. First, the derivation of the drag term [18] assumes vertical symmetry, i.e., Hele-Shaw
flow. Second, our derivation of Equations (3) and (4) assumes small vertical velocity component in the
3D velocity field. Symmetry results in the smallest vertical velocity components for a given level of
aperture constriction. Thus, vertical symmetry is a reasonable simplification with respect to satisfying
model assumptions. Future testing of the model will include asymmetric geometries.
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Figure 2. Flow is driven from left to right in all test cases. Cylindrical pillars span the entire
depth (into the page), resulting in zero aperture. (a) Top-down view of unit cell with length
(L) and width (W ) of 335 µm. Cell aperture may be uniformly 20 µm, or vary between 10
and 20 µm. Cylindrical pillars have radius L/4; (b) Top-down view of a heterogeneous pore
geometry, with dimensions of 720 × 600 × 20 µm and cylindrical pillars of varying size;
(c) Two realizations of randomly-generated aperture fields used in unit cell simulations, one
each for the smallest (0.093) and largest (0.74) values of θ. Aperture varies between 10 and
20 µm. Cylindrical pillars not shown.

4. Results

4.1. Unit Cell with Uniform Aperture

Due to the uniform aperture in this geometry, the 2D methods effectively reduce to a standard (not
depth-averaged) LBM, because the constant aperture can be divided out of the governing equations.
The streamlines of u2D(x, y) are indiscernible from those of ū3D(x, y), and not reported. Recall that the
viscous drag term was originally derived for Hele-Shaw flow. The close agreement between streamlines
of u2D(x, y) and ū3D(x, y) confirms that the viscous drag term accurately quantifies drag from the top and
bottom micromodel surfaces when they are parallel [8,9]. In contrast, the streamlines of u∗

2D
(x, y) deviate

significantly from ū3D(x, y), as shown in Figure 3. The transverse velocity component is overestimated,
yielding streamlines that move too far outward in the transverse direction. It is important to note the unit
cell’s symmetry results in errors generated in its upstream half to reverse themselves in its downstream
half. For this reason, the simple unit cell does not result in error propagation.
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Normalized RMSE is 0.0090 and 0.18 for u2D(x, y) and u∗2D(x, y), respectively, and 0.0045 and 0.088
for v2D(x, y) and v∗2D(x, y), respectively, with a speedup of 49.6 for u2D(x, y) (see Table 1). These results
agree with those illustrated by the streamline results: omitting the viscous drag term increases normalized
RMSE. Simulated permeabilities between 2D and 3D methods differ by 0.8% (see Table 1). As expected,
the viscous drag term is a good approximation in the case of uniform aperture.

Table 1. Normalized root-mean-square error (RMSE) values for each component of
u2D(x, y) and u∗

2D
(x, y), and percent error in permeability for all test cases. Permeability

error and speedup reported for the unit cell with variable aperture are averages (with standard
deviation) over 75 realizations and five values of θ, the aperture covariance range. Speedup
values are for u2D(x, y) only.

Normalized RMSE

Test Case u2D(x, y) v2D(x, y) u∗2D(x, y) v∗2D(x, y) Error in k Speedup
unit cell (uniform aperture) 0.0090 0.0045 0.18 0.088 0.8% 49.6
unit cell (variable aperture) 0.020 0.026 0.19 0.19 8.3 ± 2.7 % 41.1 ± 3.5

heterogeneous pore geometry 0.0094 0.0069 0.086 0.054 11% 40.5

Figure 3. Streamlines for u∗
2D

(x, y) and ū3D(x, y) in a unit cell with uniform aperture.
Streamlines for u2D(x, y) are indistinguishable from those for ū3D(x, y) and are not shown.

4.2. Unit Cell with Spatially-Variable Aperture

In a unit cell with spatially-variable aperture, we first compare the accuracy of streamlines for
u2D(x, y) and u∗

2D
(x, y) in one realization of h(x, y) with θ = 0.093. As shown in Figure 4, which

includes a color map of h(x, y), omitting the viscous drag term yields streamlines represented by
u∗

2D
(x, y) in Figure 3, suggesting the viscous drag term is needed to orient local velocity. To see why, note

that when the lumped quantity u2Dh(x, y) is divided by h(x, y), flow direction is unaffected because both
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vector components are modified identically. Later, when u2D(x, y) is scaled to achieve the target Darcy
velocity, vector direction is again unaffected for the same reason. The viscous drag term, however, is
able to modify each vector component differently, allowing it to affect velocity direction and streamlines.

Normalized RMSE is 0.020 and 0.026 for u2D(x, y) and v2D(x, y), respectively, and 0.19 for both
components of u∗

2D
(x, y) (see Table 1). These RMSE values are significantly greater than those in the

previous test case. Speedup in this geometry is 41.1 for u2D(x, y), similar to the result for the unit cell
with uniform aperture.

Figure 4. Streamlines in a unit cell with spatially-correlated random aperture between 10
and 20 µm, with aperture covariance range of θ ≈ 0.1 (as a fraction of the unit cell length).
Streamlines for u2D(x, y) and ū3D(x, y) are shown in (a), while streamlines for u∗

2D
(x, y) and

ū3D(x, y) are shown in (b).

Next, we determine if the difference in normalized RMSE between u2D(x, y) and u∗
2D

(x, y) is
dependent on the range of the random aperture field. As the range decreases, the aperture changes more
erratically over a short length. For each value of θ, 15 realizations of h(x, y) are generated, then truncated
and clipped. Normalized RMSE in each velocity component is averaged over the 15 realizations and
reported in Figure 5, with bars representing one standard deviation above and below the mean value. In
both velocity components, mean normalized RMSE is reduced with inclusion of the viscous drag term,
and is relatively constant as θ varies. In addition, the transverse velocity component consistently shows
greater error than the streamwise component. Considering our results, we conclude that scaling does not
reproduce the effect of the viscous drag term.

Figure 5 also plots the mean error in computed permeability versus θ. Mean error shows a consistent
downward trend with increasing θ, decreasing approximately from 12% to 5%, with an average of 8.3%
over all realizations. The viscous drag approximation is expected to lose accuracy for geometries
with variable aperture, as the local velocity profile across the micromodel depth deviates from the
assumed parabolic shape. Additional error may be attributed to sources of drag, such as those from
vertically-oriented surfaces, that are not accounted for. Note that smaller θ, i.e., more severe aperture
variation, implies a greater area of vertically-oriented surfaces, in agreement with the observed trend in
permeability error.
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Figure 5. Mean normalized RMSE for u2D(x, y) and u∗
2D

(x, y) (left vertical axis) and error
in computed permeability (right vertical axis) versus θ, the aperture covariance range. The
mean value and standard deviation, shown with bars, are calculated over 15 realizations of
h(x, y) at each θ. Note that permeability is consistently overpredicted, i.e., percent error
is positive.

4.3. Heterogeneous Pore Geometry

In a heterogeneous pore geometry of cylindrical pillars, streamlines of u2D(x, y) and ū3D(x, y) are
generally close. At five locations, indicated by arrows in Figure 6, streamlines diverge just upstream of a
pillar, travel around it on opposite sides, and reconnect just downstream of the pillar. Agreement between
streamlines downstream of these errors appears unaffected, suggesting that error does not propagate.
The divergence of streamlines around pillars may be caused by differing position of the stagnation point
in u2D(x, y) and ū3D(x, y). This error does not appear in our simulations with uniform aperture, in
which streamlines near pillars suggest the stagnation point is positioned as theory would predict [32]
(Chapter 6.9). Streamline error may depend on properties of the porous medium, such as its permeability,
porosity, and the shape of grains. Even with these properties kept constant, different arrangements of
grains may yield different results. Because streamline error appears mostly localized near grains, we may
reason that for a fixed porosity, porous media with a larger number of grains are more likely to suffer from
the streamline error shown in Figure 6. In that pore geometry, streamlines diverge around both small and
large grains. It is unclear if there is a trend between grain size and local error. Further investigation is
needed to elucidate limitations of the proposed model with respect to porous medium properties. The
example presented in Figure 6 serves as a proof of concept for application of the proposed 2D method in
a larger and more complex geometry.

Normalized RMSE is 0.0094 and 0.0069 for u2D(x, y) and v2D(x, y), respectively, with a speedup of
40.5. In comparison with other test cases, we observe the greatest discrepancy in streamlines but not the
greatest RMSE values for u2D(x, y) in the heterogeneous pore geometry, suggesting normalized RMSE
may not be a good indicator of streamline error. This result is reasonable, because the RMSE measures
error over the entire velocity field, while streamline error appears to be a more local phenomenon.
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Computed permeability yields an 11% error (see Table 1) for the large heterogeneous pore geometry.
Recall θ = 0.087 for this geometry, and for the unit cell with θ = 0.093 error in permeability was about
12%. The similarity of these figures suggests permeability error may not depend strongly on domain
size, considering the heterogeneous geometry has an area nearly four times larger than the unit cell. This
observation bodes well for the proposed method’s scalability.

Figure 6. Streamlines of u2D(x, y) and ū3D(x, y) in a heterogeneous pore geometry. Aperture
is a spatially-correlated random field between 10 and 20 µm, shown as color map, with an
aperture covariance range of θ ≈ 0.09 (as a fraction of the geometry’s length). Arrows
indicate locations where streamlines diverge around grains.

5. Conclusions

In this work, a 2D depth-averaged LBM is presented to approximate the depth-averaged results of
a 3D LBM in micromodels with variable aperture, created by impermeable precipitate or biomass.
The key ingredient in the 2D approximation is an external body force that approximates the viscous
drag imparted on the fluid by the top and bottom micromodel surfaces, which are typically omitted
in 2D simulations. We show that this viscous drag term orients the velocity field, taking into account
local variation in aperture, which does not occur with the uniform scaling procedure implemented in
previous work. Applicability of the proposed method to reactive transport models is judged mainly
by the accuracy of streamlines it produces. In unit cells, streamlines agreed strongly with those of
the depth-averaged 3D velocity field. In the larger domain, streamlines sometimes diverged around
cylindrical obstructions. This discrepancy did not appear to propagate downstream, as streamlines soon
reconnected. For this reason, the proposed 2D method appears appropriate for applications in reactive
transport in large porous domains, provided some local error near grains is acceptable. More precisely,
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in the case of surface reactions [33] with advection-dominated transport, i.e., large Peclet number, results
are likely to be highly sensitive to velocities near grain boundaries. In this scenario, the aforementioned
local error may be problematic. Permeabilities computed by the proposed method were accurate to
within approximately 10% but required about 40 times less CPU run time to compute than from a fully
3D method. Error in permeability can be attributed to sources of drag that are not accounted for by the
2D method, such as drag from vertically-oriented surfaces, as well as reduced validity of the model’s
assumptions. For test cases considered in this work, the proposed 2D method captured the permeability
and depth-averaged velocity field of a fully 3D method with reasonable accuracy, while significantly
reducing computational expense.
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