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Abstract: Many industrial processes, several natural processes involving non-living matter, and all
the processes occurring within living organisms take place in solution. This means that the molecules
playing active roles in the processes are present within another medium, called solvent. The solute
molecules are surrounded by solvent molecules and interact with them. Understanding the nature
and strength of these interactions, and the way in which they modify the properties of the solute
molecules, is important for a better understanding of the chemical processes occurring in solution,
including possible roles of the solvent in those processes. Computational studies can provide a
wealth of information on solute–solvent interactions and their effects. Two major models have been
developed to this purpose: a model viewing the solvent as a polarisable continuum surrounding the
solute molecule, and a model considering a certain number of explicit solvent molecules around a
solute molecule. Each of them has its advantages and challenges, and one selects the model that is
more suitable for the type of information desired for the specific system under consideration. These
studies are important in many areas of chemistry research, from the investigation of the processes
occurring within a living organism to drug design and to the design of environmentally benign
solvents meant to replace less benign ones in the chemical industry, as envisaged by the green
chemistry principles. The paper presents a quick overview of the modelling approaches and an
overview of concrete studies, with reference to selected crucial investigation themes.

Keywords: green solvents; implicit solvation models; explicit solvation models; hybrid
solvation models; solute–solvent interactions; polarisable continuum model; water molecules in
biomolecule interactions

1. Introduction

As W. Ostwald already stated in 1890, “Almost all the chemical processes which occur
in nature, whether in animal or vegetable organisms, or in the non-living surface of the
earth, and also all the processes which are carried out in the laboratory, take place between
substances in solution” [1]. This is true also for most of the production processes in the
chemical industry, as being dissolved in a solution provides opportunity for the molecules
of different substances to meet and react.

Because of their general importance, the properties of solutions have been objects of
intensive studies since the late XIX century, and the interpretation of observations has led
to insights about what happens when a substance (solute) dissolves in a given solvent. For
instance, the fact that some solutions can conduct electric current led to the inference that
the particles dissolved in those solutions are in ionic form, and the fact that the magnitude
of the colligative properties of those solutions was greater than would have been expected
on the basis of the concentration values led to the inference that the molecules of those
solutes (acids, bases) dissociate into ions (or otherwise give rise to ions) in water solution.
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The key features of what happens when a substance dissolves in a solvent are known
from basic chemistry: the solvent molecules interact with the solute molecules with which
they come into contact, separate them from the solid of which they are initially part, and
surround them; the molecules of sufficiently polar solvents make the molecules of polar
solutes dissociate into ions and then surround the individual ions; if the solute is an ionic
compound and the solvent molecules are polar, they separate the ions from the solid and
surround them.

Whether a certain solute dissolves in a certain solvent, and the energetics of the
dissolution process, depend on the enthalpy and entropy changes accompanying the
process; therefore, the energetics is expressed in terms of free energy of solvation (∆Gsolv).
At the molecular level, it depends on the interactions between the solute molecules and
the solvent molecules (solute–solvent interactions). The interactions can be of various
types, depending on the nature of the solute and the solvent: intermolecular hydrogen
bonds, electrostatic interactions, hydrophobic interactions, dispersion interactions, and
also repulsion. Hydrogen bonds (H-bonds) are generally the strongest, and can form when
both the solute and the solvent molecules contain H-bond donor or acceptor groups. A
given solute dissolves in a given solvent if the solute–solvent interactions overcome the
interactions among solute molecules in the pure solute.

The solute–solvent interactions determine several changes in the properties of the
solute molecules with respect to when the molecules are isolated (gas phase). The changes
may concern the geometry parameters (bond lengths, bond angles, torsion angles) of the
equilibrium geometry of the molecule’s individual conformers, its conformational prefer-
ences, its charge distribution, dipole moment, IR vibrational frequencies, ultraviolet/visible
signals, electronic transition energies, NMR constants, chemical reactivity, and various
others [2–4].

Understanding how a specific solute and a specific solvent interact is fundamental
for a better understanding of the processes occurring in living organisms, including the
effects of biologically active substances introduced within an organism to obtain desirable
results, e.g., for the treatment of diseases. It is also fundamental for the understanding of
other processes occurring in solution, including industrial processes. In recent decades,
it is also fundamental in the design of more environmentally benign processes along the
patterns envisaged by green chemistry [5–8], as the general reduction of the use of solvents
and the selection of more benign ones play crucial roles to increase the sustainability of
industrial processes [9,10]. In order to be benign, a solvent should have low toxicity and low
volatility, not pose risks such as flammability, be biodegradable in the environment, with
non-harmful degradation products, and require low energy costs for its synthesis; in order
to be performing, it has to be inert (not reacting with the solutes) and be easily recovered at
the end (without contaminating the final product). Reducing the use of harmful solvents
entails a variety of approaches, from the design of new, more benign solvents suitable for
specific processes [11–15] to the design of processes that can make use of existing benign
solvents [16], such as water [17–20] or supercritical CO2 [21–25]. Separation processes
constitute a major component of many industrial processes and the possibility of carrying
them out in green solvents is often the focus of specific attention [26–28].

The advances in computational chemistry have enabled the generation of models
for the study of solute–solvent interactions as well as continuous enhancements in their
appraisal. The next section presents a quick review of the major models for the study of
these interactions and their effects. The subsequent sections outline a number of issues
for which the study of solute–solvent interactions has proved of interest for research
and industry, and provide examples of the information contributed by computational
approaches. It is impossible to make a comprehensive review of studies of molecules and
processes in solution because their number is in the range of several thousands. The present
work aims at highlighting the variety of research questions and applications that require
adequate understanding of what happens in solution for the search of effective answers
to be viable, and the role of computational chemistry to facilitate this understanding.
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Since the main focus concerns the conceptual nature of the questions, relevant works
outlining the main characters of this nature, and of the corresponding search for answers,
are included in the review, which thus covers the last two decades (sometimes even earlier)
to ensure a comprehensive presentation; basic historical information is also included for the
development of the computational models and when expedient to highlight the research
questions more completely.

2. Models for the Computational Study of Solvent Effects

Two major approaches have been developed for the study of solute–solvent interac-
tions (including ∆Gsolv) and their effects on the properties of the solute molecules, differing
by the way in which the solvent is represented: implicit models, where the solvent is
represented as a continuum surrounding the solute molecule, and explicit models, where
a certain number of solvent molecules are considered individually. Several reviews of
the approaches are already available (e.g., [29]); a review giving particular attention to
biological systems is included in [4], and a review giving particular attention to green
chemistry in included in [30]; therefore, only the main features of the two approaches are
recalled here.

2.1. Implicit Solvation Models

Implicit solvation models represent the solvent as a continuous polarisable medium
characterised by its dielectric constant. The solute molecule is viewed as embedded in a
cavity within this continuum and is represented by the charge distribution (ρ(r)) on the
surface of the cavity. The dissolution process entails the formation of the cavity, with
the solute molecule displacing enough solvent molecules to form it [31,32]. The charge
distribution of the solute polarises the solvent around the cavity, generating a reaction field
potential in it, which, in turn, polarises the solute charge distribution. Methods utilising
this model are therefore often termed Self-Consistent Reaction Field (SCRF) methods. The
solute–solvent interactions are considered as a perturbation with respect to the situation of
the solute molecule in the gas phase, and a perturbation term is added to the Hamiltonian
operator of the isolated solute molecule to write the Schrödinger equation for the solute
molecule in solution. The simplest way to build the shape of the cavity considers the
solute molecule as made of interlocking spheres, each having the van der Waals radius
of the corresponding atom, and rolling a sphere with the diameter of a solvent molecule
on the surface of the resulting structure to smooth sharp intersections (solvent-accessible
surface [33,34]; some illustrations included in [4]).

The standard continuum model is typically represented by the polarisable continuum
model (PCM), in which the polarisation of the medium outside the cavity—generated by the
charge distribution inside the cavity—is modelled by a system of apparent surface charges
(ASC) spread on the surface of the cavity. Through the years after its introduction [35],
the model has seen continuous evolution, developing approaches to take into account
different solute and solvent characteristics and the resulting effects (e.g., [36–39]), including
the possibility of conductor solvents [40]. The integral equation formalism PCM (IEP-
PCM, [41–43]) enables the study of both isotropic systems (like solutions) and anisotropic
systems (like liquid crystals), as well as systems where the liquid contains charged species
(like ionic solutions). Subsequent advances are also outlined in review and reflection
articles [31,32,44,45].

∆Gsolv is defined as the change in the free energy of the solute upon going from being
isolated (ideal gas phase) to the solution phase. Therefore, it is estimated as the sum of the
contributions that arise because of the dissolution process [30,32,46]:

∆Gsolv = Gel + Gcav + Gdis + Grep (1)

where Gel is the electrostatic contribution and the other terms correspond to non-electrostatic
contributions: the free energy of cavitation (Gcav, which is the reversible work needed
to form the cavity within which the solute gets embedded); the dispersion contribution



Computation 2024, 12, 78 4 of 49

(Gdis), due to the dispersion interactions between the solute molecule and the solvent; and
the repulsion contribution (Grep), which relates to the Pauli repulsion between the solute
molecule and the solvent molecules. Some authors (e.g., [29]) add a thermal fluctuation
contribution Gtm.

Refining the evaluation of Gel has been a major focus of attention for the improvement
of the evaluation of ∆Gsolv [36]. Since the evaluation of Gel depends on the description of
the charge distribution, and the charge distribution is associated with the shape (surface)
of the cavity, improving the description of the cavity has been a route to improve the
evaluation of Gel [34,47–50].

The evaluation of Gel is based on the Poisson equation, which expresses the electro-
static potential (ϕ) in terms of the dielectric constant (ε) and the charge density (ρ). In
the PCM model, the value of ε is 1 inside the cavity and takes the value of the specific
liquid for the bulk medium representing the solvent. Two options have been developed to
solve the equation for continuum solvation models: the Poisson–Boltzmann (PB) model
and the Generalised Born (GB) model [29]. The former utilises the Poisson–Boltzmann
equation, which expands the Poisson equation to take into account the possible presence of
mobile electrolytes in the solution. The GB model utilises an approximation to the Poisson
equation which can be solved analytically.

Modified versions of the PCM model have been developed to respond to specific
criteria. The conductor-like polarisable continuum model (CPCM, [51]) is considered one
of the most successful [29]. The conductor-like screening model (COSMO) and conductor-
like screening model for real solvents (COSMO-RS) [52,53] are, respectively, variations
of Poisson–Boltzmann PCM and CPCM. They combine the ASC formulation for the elec-
trostatic component with a statistical thermodynamic treatment [30]. They consider the
solvent as a conductor (thus setting ε = ∞) and use a scaling factor to attain a correct de-
scription of the considered solvent. COSMO-RS adds a statistical thermodynamic approach
to the results of quantum chemical calculations to attain a realistic description of the disso-
lution mechanism [54]; it can provide very accurate ∆Gsolv estimations its ability to treat
mixtures at variable temperatures has made it very popular in chemical engineering and in
pharmaceutical chemistry, including for tasks like large-scale solvent screening [30,55].

The solvation model based on electron density (SMD, [56]) separates ∆Gsolv into
two main components: the electrostatic contribution, obtained via IEF-PCM, and a cavity
dispersion solvent structure term, arising from short-range interactions between the solute
and solvent molecules in the first solvation shell [30].

Calculation options based on continuum models are currently present in all the popular
computational chemistry software packages; IEP-PCM is the default option for PCM.

2.2. Explicit Solvation Models

Explicit solvation models consider individual solvent molecules interacting with a
solute molecule. Within a purely quantum mechanical (QM) approach, input supermolec-
ular structures (adducts) are built, considering the most favourable arrangements of the
solvent molecules around the solute molecule, and optimised with QM procedures. It
is expedient to include at least the solvent molecules forming the first solvation layer,
intended as those directly “attached” to the solute molecule and those bridging them [4].
The identification of possible arrangements is easier when sufficiently strong interactions
between the molecules can be predicted, as is the case of molecules that can form H-bonds
(for instance, water molecules surrounding a solute molecule having H-bond donors or
acceptors). The number of solvent molecules that can be included is, however, limited
because of the fast increase in computational costs as their number increases. In addition, it
is important to identify a “balanced” (not too high) number of solvent molecules to prevent
their clustering on optimisation if their mutual interactions are strong (as is the case, e.g., of
water molecules): if the solvent molecules cluster together during optimisation, they move
away from the solute molecule, and the resulting optimised geometry does not provide a
realistic description of the first solvation layer and short-range solvation interactions.



Computation 2024, 12, 78 5 of 49

The optimised structure does not correspond to a long-life structure in solution,
as the solvent molecules attached to a solute molecule interchange fast with molecules
from the bulk solvent; it does, however, show probable average arrangements of solvent
molecules around the solute molecule. Furthermore, it highlights geometry changes that
may occur in the solute molecules because of the presence of the solvent molecules, and
it highlights phenomena like the outcome of the competition between intramolecular H-
bonds that might be present in the isolated solute molecule and solute–solvent H-bonds
in solution (e.g., [57,58]). The approach is particularly relevant when directional solute–
solvent interactions like H-bonds are possible because they are not taken into specific
account by continuum models. For an adduct containing n solvent molecules, the energy
of the solute–solvent interactions is calculated as:

(energy of solute-solvent interactions) = (energy of the adduct)-(energy of the isolated solute molecule)
-n (energy of an isolated solvent molecule)-(energy of the interactions among solvent molecules)

and corrections [59] for basis set superposition errors (BSSEs) are advisable. Figure 1
illustrates the utilisation of adducts with one water molecule to compare the strength
of the solute–water H-bond for different donor or acceptor sites of the solute molecule.
Figure 2 illustrates the calculation of adducts with several water molecules of a solute
capable of forming various solute–water H-bonds; it also provides illustrations of how
water molecules may cluster during optimisation.

If the consideration of a high number of explicit solvent molecules is needed, ap-
proaches like Monte Carlo (MC) or molecular dynamics (MD, whose theoretical framework
was introduced in [60]) are utilised. The solvent molecules are considered in motion. While
the free energy contributions stemming from intramolecular components (vibrational and
librational motions) can be estimated from the partition function, the contributions from
the motion of the molecules through the solution and from the solute–solvent interactions
are not so easily identifiable, and additional approaches, such as free energy perturbation
methods, become expedient [29].
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2.3. Quantum Mechanical/Classical and Quantum Mechanical/Continuum Hybrid Approaches

QM methods provide the most accurate descriptions of molecular-level systems. On
the other hand, their computational costs increase rapidly as the complexity of the system
increases. Hybrid approaches have been developed, for which the portion of the system
that is of highest interest is described with best accuracy at the QM level, whereas the
rest of the system is described using a less expensive model. In the case of solutions, the
portion of highest interest is the solute molecule and the solvent molecules more closely
interacting with it (more often, the first solvation layer, as defined in Section 2.2); this
portion is described with QM approaches, and the rest of the solution with a continuum
model; thus, this hybrid method is a QM/continuum method. In the case of the interaction
between a biologically active molecule (substrate) and a protein, the portion of highest
interest is the part of the protein interacting with the substrate, the substrate molecule
itself, and the water molecules which might play a role in the interaction; this portion is
described at the QM level and the rest of the protein with a classical molecular mechanics
(MM) approach; this hybrid method is a QM/MM method [30]; it was first introduced
for the study of enzyme-involving reactions [61]. In both QM/continuum and QM/MM
hybrid approaches, the part that is outside the QM portion can influence its properties, and
this is taken into account through ways of coupling the descriptions of the two portions.

In a QM/MM hybrid method, an effective Hamiltonian operator Ĥeff is considered
and expressed as the sum of the Hamiltonian of the isolated QM subsystem (ĤQM) and a
term (Ĥenv) related to the presence of the classical subsystem [30].

Ĥeff = ĤQM + Ĥenv

In turn, Ĥenv contains a term (ĤMM) corresponding to the MM force field description
of the classical subsystem and a term (ĤQM–MM) coupling the two descriptions:

Ĥenv = ĤMM + ĤQM–MM

Many different approaches for the evaluation of ĤQM–MM have been developed over
the years. A recent one allows mutual polarisation effects between the QM and MM
subsystems [30].

It may be interesting to consider the issue of the boundary somewhat in more detail.
Molecules are always moving in a liquid because their intermolecular interactions are
not strong enough to freeze their arrangement into a fixed structure. This is true also for
solute–solvent interactions, including H-bonds (which are the strongest ones). Therefore,
the solvent molecules included in the first solvation layer interchange fast with time: each
of them is replaced by another molecule from the bulk solvent and moves away from the
vicinity of the solute to become part of the bulk solvent. This is tantamount to a continuous
exchange of solvent molecules between the QM and MM part of the simulation. Shiga and
Masia suggested an approach restraining the solvent molecules from departing from the
QM region, while the boundary surface is allowed to fluctuate during the simulation, to
enable improvements of the geometrical definition of the QM region [62]. Takahashi and
co-workers developed a “boundary constraint with correction” approach to pursue the
same objective [63]. Adaptive QM/MM models attempt to introduce greater flexibility
for the boundary concept. Zheng and Waller provide a review of adaptive QM/MM
approaches, where the “adaptive” concept refers to the partition of the system into more
than two regions, namely: a QM-core region corresponding to the solute molecule; a QM-
adaptive region comprising the solvent molecules that are treated at the QM level of theory
dynamically; a transition region comprising the solvent molecules which can be viewed
as having partial QM and partial MM character; and an MM region comprising all the
solvent molecules beyond the transition region, which are treated with a force field [64].
The review also analyses the main approaches for a better identifications of these regions.
Duster and co-workers provide a review largely focusing on the merits and pitfalls of the
various adaptive treatments, also considering perspectives for future improvements [65].
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In a QM/continuum hybrid approach, a supermolecular structure (adduct) with a
suitable number of explicit solvent molecules takes the role of solute, the cavity is built
around it, and the rest of the solvent is viewed as a continuum with dielectric constant ε.
The problem becomes a typical ASC problem, with the polarisation of the medium outside
the cavity modelled by a system of apparent surface charges on the surface of the cavity.
The cavity surface and the apparent charges on it realise the coupling between the QM and
continuum descriptions (some examples in [4]). For instance, the optimised adducts shown
in Figure 2 can take the roles of solute in a continuum solvent approach.

3. Applications Relevant to Industry-Related Issues

Considering the properties and effects of solvents is crucial for all the processes
that occur in solution. In industrial processes, solvents may have the following major
roles: reactants, reaction media, separation agents, and transportation agents for both
mass and heat transfer [55]. In living organisms, they provide the medium within which
processes occur. In research, they are used for the roles that they play in the processes
under investigation. The present section attempts a sufficiently comprehensive overview of
applications of computational studies of the properties of solutions for a variety of research
and practical questions.

3.1. The Search for Green Solvents

Solvents play a crucial role in organic and inorganic syntheses as well as in extraction
processes, being therefore very important for industrial production processes. Careful
solvent selection is often essential to reduce process costs and to make a process greener.
Volatile organic compounds (VOCs, mostly of petrochemical origin) have been used ex-
tensively for decades, as they are comparatively easy to remove from reaction mixtures or
extracted materials; for instance, n-hexane has the advantages of low polarity, optimal boil-
ing point, ease of removal, and stability. On the other hand, the nature and high volatility
of VOCs pose significant risks to human and animal health. Exposure to VOCs, whether
through skin contact, inhalation, or contact with mucous membranes, can prompt various
health issues, including irritation, nausea, and dizziness; in the long term, it can cause
damage to vital organs such as the liver, kidneys, and central nervous system [66,67]. This
has prompted an active search for more benign solvents (green solvents, [16,68–70]), often
integrated with the design of more benign processes [11–15].

The traditional trial-and-error approach to solvent selection is highly expensive and
time-consuming, also in view of the high number of possible solvents for each task. The
continuous improvement of theoretical and modelling methods and the huge growth of
computing power enable the integration of computational methods into the selection and
design of solvents [55,71].

3.2. Predicting Solubility

The first requirement for a solvent to be suitable is its ability to dissolve the target
solute. The solubility thus becomes a key selection criterion. It is usually defined as the
maximum concentration of a specified solute that can be present in a specified solvent at
a given temperature. Predicting solubility becomes crucial in the selection and design of
suitable solvents.

A solubility parameter (δ) is defined as a property related to the intermolecular
interactions of a pure substance; it provides indications of the total cohesive forces holding
the molecules together in a given liquid or an amorphous solid [72,73]. It is equal to the
square root of its cohesive energy density, CED. CED was initially defined as the ratio of
the energy of vaporisation, ∆Uvap, to the molar volume, Vm; this definition makes it an
empirical quantity, which can be calculated from experimental values; it is suitable for non-
polar and non-associating systems [73]. Crowley [74] and later Hansen [72] proposed to split
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this parameter into three components, related to the types of intermolecular interactions in
a liquid:

δ =
√

(δ2
d + δ2

p + δ2
h)

where δd is the dispersive component, δp is the polar component, and δh represents the
H-bonding component. By reporting each of these components on one of the axes in a 3D
diagram, Hansen developed the Hansen solubility parameter (HSP) 3D space, in which a
material is represented by a point identified by its three components [73]. Two liquids with
close HSP parameters are likely miscible. The parameters are now-a-day often obtained
from computational simulations [73].

COSMOS-RS is widely used to compare the solubilities of a variety of compounds in
different solvents, as well as other solvents’ properties [75–79]. Being based on quantum
chemistry, it does not require experimental data.

When two non-miscible solvents are in contact, it becomes interesting to know how
solute molecules distribute between the two solvents. The most typical example is that of
water and an organic solvent not miscible with water. The solute distribution in the two
media is expressed by the partition coefficient P, where

P = {[solute]organic phase} / {[solute]aqueous phase}

The lipophilicity of a solute is usually referred to 1-octanol as organic solvent. The
octanol/water partition coefficient is expressed as logPow and is related to the difference in
free energy of solvation of the given solute in the two solvents (∆Goctanol − ∆Gwater). Its
experimental determination is not always straightforward for non-UV-active compounds,
and computational evaluations have become the preferred option. Kundi and Ho [80]
compare the performance of the three methods’ categories for its computational estima-
tion, namely: an empirical fragment-based method, QM implicit solvent models, and
explicit solvent models with MD or MC simulations (with the empirical method being
the least costly and explicit solvent simulations being the most expensive). They used a
set of 34 organic molecules with a broad range of functionalities, plus a set of 55 different
fluorinated molecules, and used various calculation approaches for each of the methods’
categories. They concluded that the empirical fragment-based method—although less
sophisticated—performs well, and that implicit solvent models perform better than explicit
ones. They also accentuate the recommendation that is general for any calculation of prop-
erties of interest—the necessity of initially performing a conformational study to identify
the lowest energy conformer in the medium considered.

3.3. Solvents for Extraction Processes

A variety of compounds are obtained from natural sources (herbs, leaves, barks, roots,
fruits, etc.) via extraction processes. The compounds to be extracted must have good
solubility in the solvent used for the extraction.

Greener solvents, meant to replace those of petrochemical origin like VOCs, can be
derived from natural sources, including agri-food byproducts (e.g., orange and grape
peels, mangosteen pericarps) and their extraction ability can be predicted and subsequently
tested [79,81–83]. The dissolving power and selectivity of these solvents can be predicted
using computational methods [84]. Filly and co-workers utilised HSP simulation and
experimental studies to evaluate the performance of nine alternative solvents (α-pinene,
MeTHF, ethyl acetate, methyl acetate, ethyl lactate, butanol, isopropanol, ethanol, and
CO2 supercritical fluid) with respect of that of n-hexane (a VOC) for the extraction of
aromas from blackcurrant buds (Ribes nigrum L.); the results indicated MeTHF as the most
promising for n-hexane substitution [85]. They also evaluated the performance of eight
solvents that could replace n-hexane for the extraction of food aromas from caraway seeds
(Carum carvi L.) using both COSMOS-RS studies and experimental solubility profile; the
results indicated ethyl acetate and dimethylcarbonate as promising alternative solvents [79].



Computation 2024, 12, 78 13 of 49

Extracts from mangosteen (Garcinia mangostana L., a plant common in eastern and
southern Thailand) exhibit a wide range of pharmacological activities, including antioxi-
dant, anticancer, antimicrobial, anti-inflammatory, and wound-healing properties [86–89],
and they have been incorporated into various commercial products, including nutritional
supplements, pharmaceuticals, and cosmetics [90]. Traditionally, dichloromethane (a VOC)
was the preferred solvent for the extraction of α-mangostin (the main active compound)
from mangosteen pericarps [91]. However, its toxicity recommends its replacement with
safer solvents. Bundeesomchok and co-workers compared the effectiveness of potentially
alternative solvents, including d-limonene, DMC, ethanol, ethyl acetate (EtAc), ethyl lactate,
and methyltetrahydrofuran (MeTHF), with that of dichloromethane [84], utilising both
HSP and COSMO-RS. HSP analysis indicated dichloromethane as the most suitable solvent,
whereas the COSMO-RS analysis indicated that α-mangostin has greater solubility in ethyl
lactate, DMC, MeTHF, ethyl acetate, and ethanol. Experimental studies (classical reflux
extraction and HPLC analysis) confirmed the COSMO-RS simulation’s predictions [84],
thus indicating those solvents as promising alternative greener solvents. All this confirms
that COSMO-RS is more suitable than HSP for screening solvents for the extraction of
complex molecules [84].

Rosemary (Rosmarinus officinalis L.) contains several bioactive compounds (phenolic
compounds, such as carnosol, carnosic acid, and rosmarinic acid, and volatile compounds
from essential oil like α-pinene, camphor, eucalyptol, or 1,8-cineole); it therefore exhibits
antioxidant, anticancer, diuretic, antimicrobial, antiproliferative, anti-inflammatory, and
antihyperglycaemic properties [92]. Nutrizio and co-workers used both HSP analysis and
COSMO–RS simulations to assess the viability of ethyl acetate, methylacetate, ethanol,
1-butanol, isopropanol, methanol, CPME, dimethylcarbonate, and MeTHF as possible
alternatives to the traditionally used n-hexane [92]. Although the trends from the two sets
of results were largely similar, COSMO–RS gave better solubility results than HSPs for
extraction with ethanol, and closer-to-experimental results for the solubility of camphor
and borneol in ethanol [92].

The determination of lipids is important in food chemistry because of the effects of
different types of lipids on human health. Lipids are usually classified into non-polar
lipids (triglycerides (TAGs), diglycerides (DAGs), monoglycerides (MAGs), and sterols)
and polar lipids (free fatty acids (FFAs), phospholipids, and sphingolipids) [93]. The long-
chain omega-3 polyunsaturated fatty acids present in salmon have received particular
attention because they can reduce the risk of cardiovascular events such as sudden cardiac
death, coronary heart disease, and congestive heart failure [93]. Cascant and co-workers
utilised both HSP analysis and COSMO-RS simulations to assess the solvation properties of
different solvents for different lipid classes found in salmon oil [93]. Both models indicated
that d-limonene and p-cymene had abilities similar to n-hexane for solvating TAGs. HSP
predicted that cyclopentyl methyl ether (CPME) could be the most suitable solvent for all
the considered compounds. COSMO-RS values indicated that CPME, ethyl acetate (EtAc),
and methyltetrahydrofuran (MeTHF) had similar solvation capabilities for TAGs, DAGs,
FFAs, and ergosterol; however, experimental data showed that TAGs were the predominant
lipid class (73–77%), followed by DAGs (15–20%), FFAs (5–6%), and ergosterol (2–3%) in
these solvents. On the other hand, p-cymene and limonene extracts contained higher levels
of DAGs and lower amounts of TAGs compared to other solvent extracts. The discrepancy
could be attributed to lipid degradation caused by the elevated temperatures needed when
using p-cymene and limonene—a factor that is not included in the simulation; therefore,
p-cymene and limonene should theoretically be the best solvents for dissolving TAGs [93].

In recent times, COSMO-RS is often the only simulation option utilised for solvent
screening and assessment. Touaibia and co-workers utilised it to assess the capability of
biobased solvents chloropinane and chloromenthene—which can be obtained from pinene
and limonene—to solubilise β-carotenoids, vanillin, and rosmarinic acid [54]. The results
indicated that these two solvents have 3.5 to 2 times greater efficiency in solubilising
the target compounds than hexane. Moreover, β-carotene and vanillin exhibited 6 to
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20 times greater solubility in chloropinane than in hexane. This highlights potentialities
for chloropinane and chloromenthene as green solvents; a final confirmation requires
additional investigation of their bioaccumulation potential and their ecotoxicological profile.
Yara-Varon and co-workers used HSP and COSMO-RS to evaluate the performance of 2-
methyltetrahydrofuran (2-MeTHF), dimethyl carbonate (DMC), cyclopentyl methyl ether
(CPME), isopropyl alcohol (IPA), and ethyl acetate as possible substitutes of n-hexane in
the extraction of carotenoids from carrots [94]. HSP analysis indicated non-polar or slightly
polar solvents as the most suitable. COSMO-RS analysis indicated higher probability of
solubility of the carotenoids in CPME, 2-MeTHF, and ethyl acetate than in n-hexane, and
this was confirmed by experimental results.

The wastes from the food industry may contain valuable compounds. An example
is offered by orange peels, which contain fermentable sugars, carbohydrate polymers,
flavonoids, polyphenols, and essential oils; their extraction would correspond to the val-
orisation of a renewable source of high-value-added chemicals (perfectly in line with
the green chemistry principles). Ozturk and co-workers used COSMO-RS simulation to
conduct preliminary solvent screenings and identified biobased CPME and 2-MeTHF as
promising options, capable of increasing limonene extraction yields from orange peels
up to 80% and 40% with respect to hexane [95]. The recyclability of these solvents fur-
ther increases their potential for the development of sustainable biorefineries for citrus
waste valorisation.

In homogeneous catalysis, the catalyst is dissolved in the reaction mixture, and it needs
to be recovered from it at the end of the process. In their search for eco-friendly solvents to
replace dimethylformamide (DMF, developmentally toxic) for catalyst separation, Linke
and co-workers [96] utilised COSMO-RS for thermodynamic property prediction; they
also performed a screening of the solvents’ compatibility with environmental, health, and
safety (EHS) criteria using VEGA, a toolbox containing 33 Quantitative Structure Activity
Relationships (QSAR, [97]) models in association with 15 different EHS properties [98].
Diethyl sulfoxide (DESO) emerged as a highly promising solvent, outperforming DMF, and
is potentially capable to replace DMF in other applications [96].

3.4. Deep Eutectic Solvents

Deep eutectic solvents (DES) were introduced by Abbott and co-workers between
2002 and 2003 [99]. They are mixtures of two compounds which, when mixed, form a
eutectic system (a system that melts at much lower temperature than each of the starting
components). The molecules in a DES form a network held together by intermolecular
H-bonds and/or van der Waals interactions; these interactions force the DES to remain
liquid in a wide range of temperatures. The molecules’ ability to establish combinations of
H-bond donor–acceptor interactions allows the tailoring of the physical and chemical prop-
erties and phase behaviours of ndividual DES, making them suitable for being employed as
versatile solvents [100,101]. When the starting compounds are abundant in natural sources
(like sugars, amino acids, organic acids, and choline derivatives), their mixtures are termed
natural deep eutectic solvents (NADES [102]). NADES respond to the green chemistry
criterion of favouring materials from natural sources. Their properties (adjustable viscosity,
negligible volatility, capacity to dissolve several less polar compounds, ability to remain
in the liquid phase at temperatures below 0 ◦C, limited or null toxicity, biocompatibil-
ity, and low cost) make them promising green alternatives to environmentally harmful
solvents [101,103,104] and also to ionic liquids, whose toxicity makes their “greenness”
uncertain [105]. Their application has been explored for selective adsorption on contami-
nants such as aromatic compounds, pharmaceuticals and personal care products, heavy
metal ions, and other hazardous materials, including gaseous ones [106], and also as sol-
vents for syntheses, biomass processing, electrolytes for energy storage devices, and metal
processing [107]. Because of their nature, the interaction in a DES mixture, as well as the
interactions with a potential solute, can be investigated with standard QM methods.
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El Kantar and co-workers investigated the use of different DES to extract polyphenols
(especially naringin) from grapefruit peels [104]. The experimental procedures utilised
high-voltage electrical discharge and showed that DES, or a mixture of glycerol and water,
are promising green solvents to replace VOCs for this extraction. HSP predictions proved
consistent with experimental results.

Most DES are mixtures of molecules containing H-bond donors (HBDs) and H-bond
acceptors (HBAs). Given the high number of HBAs and HBDs, an experimental trial-and-
error approach to identify DES suitable for a specific purpose would be faced with the
consideration of millions of potential combinations [106]. Computational approaches can
make the design and selection rational. An emerging strategy utilises Density Functional
Theory (DFT) to this purpose. Zhu and co-workers [106] used DFT calculations to prepare
a predictive virtual library for a theoretical screening of possible DES to be used for the
adsorption of mephedrone (4-methylmethcathinone). On the basis of their binding energies,
three types of DES were then selected for synthesis, using lactic acid as HBD and benzyl-
tributylammonium chloride, choline chloride, and tetrabutylammonium chloride in turn as
HBAs. These DES were associated with zeolite imidazoline framework-8 (a metal organic
framework, MOF) and shrimp shells as a biomass source to obtain a DES-functionalised
ZIF-8/biochar with high selectivity for mephedrone. Comprehensive characterisations
showed that DES impregnation of the MOF regulated pore space and introduced additional
adsorption sites. The DES with benzyltributylammonium chloride showed better perfor-
mance than the others and maintained stable adsorption capacity over a wide (5–11) pH
range; its greater affinity was attributed to pore-filling, H-bonding, and π–π interactions
made possible by its aromatic properties. Overall, the study highlights the potential of
tailored DES-functionalised materials for selective adsorption properties and the potential
of computational approaches to make the DES design rational.

3.5. Ionic Liquids
3.5.1. Nature and Properties of Ionic Liquids

Ionic liquids (ILs) are molten salts formed by an organic cation and an organic or
inorganic anion [66]. Due to their characteristics (asymmetrical and often larger cations), the
ions do not form crystals as easily as other salts; many of these compounds remain liquid
at room temperature, and their melting points are below 100 ◦C. ILs also have negligible
vapour pressure for temperatures below 400 ◦C, good ionic conductivity, high thermal and
chemical stability, and low flammability. These characteristics make them preferable to
organic solvents, and they are currently used in many industrial applications [108]. On the
other hand, it is not easy to decide whether they can be considered green solvents because of
some important drawbacks which do not make them environmentally safe. Their synthesis
process involves many steps and includes the use of solvents harmful to human health and
the environment. The identification of economically viable large-scale recovery options
after use is still a challenge. The main currently used ILs are non-biodegradable and toxic
in nature, and their toxicities vary considerably for different organisms. All this make ILs
not eco-friendly [66].

Trying to obtain ILs with both low toxicity and good biodegradability is a major
challenge. Computational modelling, including Quantitative Structure–Property Rela-
tionships (QSPR) analysis, can be of great help, making the search for “greener” ILs
rational [66,107,109]. Combinations of several theoretical models and approaches have
enabled the prediction of many properties [110]. On the other hand, the nature of ILs
poses various challenges to their modelling. In a conventional medium, solvent–solute
interactions are generally predominant while, in ILs, interactions within the solvent can
become more important. The presence of ion–ion interactions among the ions constituting
an IL may generate clusters, making its bulk inhomogeneous; this makes it difficult to trans-
fer continuum-type models to the study of ILs and of molecules dissolved in them [110].
The performance of DFT is not ideal because of the presence of delocalised charges in
the constituting molecular ions. Ab initio molecular dynamics (AIMD), which combines
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electronic structure calculations with conventional MD, appears to be the best approach to
predict the intermolecular structure of ILs [110]. The next subsections outline some of the
current applications of ILs that have also been objects of computational studies.

3.5.2. Representative Models and Applications of Ionic Liquids

Bruzzone et al. [111] developed QSAR analyses for the prediction of aquatic toxicity
(modelled as toxicity to Vibrio fischeri) of 33 ILs containing chloride or bromide anions
and different cations; this choice was motivated by the observation that ILs with the same
cation and different anions do not show any statistical toxicity difference. They determined
molecular properties by optimising the cations at the DFT level (including the natural
bond orbital method, NBO, [112,113], to obtain partial atomic charges) and performed
calculations both in the gas phase and in water solution, using the PCM model for the latter.
Then, they used the CODESSA programme to calculate the selected molecular descriptors
and to derive correlations between the descriptors and the toxicity data. Satisfactory
correlations with the same descriptors were found for both phases, but the descriptors
calculated in water solution provided better correlation and were inherently more reliable
because they referred to the actual medium where the toxicity action occurs. The results
are also consistent with the observation that toxicity is related to the cation branching and
to the ability of its lipophilic part to intercalate into the cell membrane. The model also
proved able to predict the correct order of magnitude of the toxicity.

Catalysis is fundamental in green chemistry to enable processes to occur under suffi-
ciently benign conditions [114,115]. The “green” tendency to use natural products or mimic
natural processes has prompted the exploration of a variety of biological or biomimetic
catalysts. For instance, the enzyme Candida antarctica lipase B (CALB) is an efficient biocat-
alyst for hydrolysis and esterification. Its activity also depends on the solvent used, and
the search for benign solvents is active. Several works showed that its activity in suitable
ILs is good; for instance, the conversion rate in fatty acid methyl ester synthesis using
CALB in [Emim][TfO] IL is greater than in tert-butanol [116]. Subtle interactions between
an enzyme and the IL in which it is dispersed influence the enzyme’s conformation, thus
determining whether its activity in the given IL increases or decreases with respect to
organic solvents [117]. Kim and co-workers investigated the catalytic activity of CALB
for the lipase-catalysed trans-esterification of butyl alcohol with vinyl acetate to produce
butyl acetate in four different solvents—[Bmim][TfO] IL, [Bmim][Cl] IL, tert-butanol, and
0.3 M NaCl solution. The study involved both experimental components and MD simula-
tions [117]. The experimental results demonstrated that the enzymatic activity followed
the order: [bmim][TfO] > tert-butanol > [bmim][Cl]. The MD simulations indicated that
the structure of the catalytic cavity is solvent dependent: the cavity can be open or closed
in water; it isopen in [Bmim][TfO] and tert-butanol and closed in [Bmim][Cl].

Since ILs are meant as solvents, it is important to predict the solubility in them of
the compounds of interest. Katritzky and co-workers developed QSPR predictive models
for the Ostwald solubility coefficient (log L) and partition coefficients (log P), considering
92 organic solutes and eight different ILs [118]. The QSPR analysis utilised molecular
descriptors calculated solely from the molecules’ structures—charge-related, geometrical,
topological, and QM descriptors. The most important descriptors (including H-bond
donor/acceptor abilities) in the log L models relate to the charge distribution within the
molecules, which, in turn, relates to the electrostatic interactions between the solute and
the IL. Geometrical descriptors account for the effects of the size and shape of the solute
molecule. The QM descriptors reflect the interatomic interactions within molecules. The
predictive power of the models proved satisfactory.

3.5.3. How Ionic Liquids Dissolve Cellulose

ILs have the ability to dissolve cellulose (the main component of biomass of plant
origin), primarily thanks to the formation of H-bonds and van der Waals interactions [119];
this is particularly interesting because cellulose does not dissolve in most other solvents.
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Several works investigated the possible mechanism of the dissolution process. Initial
studies considered the solvation of glucose, the monomer forming the long cellulose chains.
Youngs and co-workers used MD simulations to study the solvation of glucose in 1,3-
dimethylimidazolium chloride ([dmim][Cl]) and found that the anions interact directly
with the OH groups of glucose, while the cations interacted with the anions bonded to
glucose; the anions were thus forming the first solvation layer [120,121].

Derecskei and co-workers performed the first MD simulation of the interactions
involved, using polysaccharides of different lengths to mimic cellulose and calculating
solubility parameters; they found that the solubility parameters for longer oligomers were
significantly lower than those of the monomer [122]. Rabideau and co-workers performed
an MD simulation focusing on the role of the ions, and specifically of the cations [123].
They considered combinations of chloride, acetate, and dimethylphosphate anions with
alkylimidazolium-based cations of increasing tail length and confirmed that the anions bind
to the OH groups of the polysaccharide via H-bonds, while the cations interact through
dispersion interactions with the non-polar regions of cellulose and electrostatically with the
anions bound to the OHs. This leads to the formation of networks of alternating cations and
anions. The tail length causes only very minor effects on the solvation structure and overall
interaction energies, although it modifies the framework of the H-bonds. The imidazolium
ring also allows for the formation of anion–cation chains and networks at the cellulose
surface, resulting in strong cellulose–IL interactions without significant disruption of the IL
bulk connectivity. Payal and co-workers focused more specifically on the role of the anion,
considering cellobiose as a model for cellulose, and utilising ILs containing the [bmim]
cation and one of the following anions: [OAc]−, [NO3]−, [Cl]−, [BF4]−, [PF6]−, [CF3SO3]−,
and [NTf2]− [124]. MD simulations confirmed that the dissolution mechanism entails the
disruption of the intermolecular and intramolecular cellubiose H-bonding network and
that the anions play crucial role by H-bonding to the OHs.

Cao and co-workers [119] modelled the dissolution process utilising cellobiose and
1-butyl-3-methylimidazolium acetate (BmimAc) as model system for the calculations and
compared the results with experimental information. The calculations were performed at
the M062X/6-311++G** level, with the addition of approaches (NBO, AIM [125]) meant to
obtain information on charges on the atoms and on non-covalent interactions. The dissolu-
tion process entails the removal of intramolecular H-bonds in cellulose and the formation
of cellulose–acetate intermolecular H-bonds. The cooperation of H-bonds and van der
Waals interactions between cellobiose and the IL determines the IL’s dissolution ability.

Li and co-authors [126] provide an extensive review of experimental and computa-
tional investigations of the mechanism of the dissolution of cellulose in ILs, also high-
lighting the challenges. One of the problems is the fact that using glucose, cellobiose, or
polysaccharides as models for cellulose is not adequately informative because they are
too different from cellulose (polysaccharides with DP < 6 can dissolve in water). The
stability of natural cellulose in common solvents is due to its crystalline form. Several
scientists tried to study larger cellulose microfibrils. The same group used a 500 ns MD
simulation on a cellulose bunch consisting of seven glucan chains (DP = 8) in [Emim][OAc]
and [Emim][Cl] to investigate the dissolving process [127]. They found that complete disso-
lution happened in [Emim][OAc], with every single chain separated from each other. The
original H-bonding network was destroyed by ILs and replaced by a new anion–cellulose
H-bonding network. [OAc]− could form three different kinds of H-bonds within cellulose
chains, thus being able to separate them, while [Cl]− was not effective. The anions initially
form H-bonds with the closest hydroxyl groups of cellulose, thus inserting themselves into
the strand; as the number of anions bound to the cellulose chains increases, the cations start
intercalating between the strands, thanks to their electrostatic interactions with the anions
and the van der Waals interactions with the cellulose strands; this starts the dissolution
process (separation of the strands from each other). In addition, they found that cellulose
can only dissolve in ILs containing unsaturated cations [127].
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Some works investigated the effect of the addition of a co-solvent on the dissolution of
cellulose. Zhao and co-workers used MD simulations and quantum chemistry calculations
to study the effects of dimethylsulfoxide (DMSO), DMF, CH3OH, and water as co-solvents
in [Bmim][OAc] [128]. The presence of the co-solvent influences the H-bond interactions
between the anions and the OHs of cellulose, thus influencing its solubility. Protic solvents
(CH3OH and H2O) have a strong tendency to solvate [CH3COO]−: they compete with
the cellulose–[CH3COO]− H-bond interaction, leading to decreased cellulose solubility.
Aprotic solvents (DMSO and DMF) can solvate the cation and anion of the IL, weakening
the cation–anion interactions and therefore making the anions more available to form
H-bonds with the OHs of cellulose. Huo and co-workers obtained similar results through
MD simulations [129]; they also added a criterion termed “Pair Energy Distribution” (PED)
to the analysis of H-bond patterns and evaluated it between cellulose and cations, anions,
and co-solvent molecules near the interface. The results showed that the PEDs between
anions and cellulose are sensitive to the addition of co-solvents and to the type of anions,
and this can be used as an additional indicator of the ability of the “IL + co-solvent”
to dissolve cellulose. Veliogly and co-workers also used MD simulations to study the
dissolution of a cellulose Iβ microcrystal in a 1-butyl-3-methylimidazolium acetate IL and
in the same IL with the addition of DMSO as co-solvent [130]. They found that DMSO does
not interact strongly with cellulose and does not interfere with the interactions of cellulose
with the anions and cations; its presence increases the velocity of mass transport and
dissolution because it lowers the viscosity of the medium. Parthasarathi and co-workers
used MD simulations to study the dissolution of a cellulose Iβ microcrystal in the 1-ethyl-
3-methylimidazolium acetate ([C2C1Im][OAc]) IL, to which different amounts of water
(co-solvent) were added [131]. They found that a comparatively small proportion of water
favours the dissolution of cellulose, whereas higher proportions hamper it. Rabideau
and Ismail used MD simulations to study the dynamics of the formation of the H-bonds
between IL anions and cellulose and the effects of the presence of water in the IL [132].
They examined fifteen different ILs with 1-alkyl-3-methylimidazolium cations ([Cnmim],
n = 1, 2, 3, 4, 5) as cation and chloride, acetate, or dimethylphosphate (DMP) as anions,
for the study of cellulose–anion H-bonding, and [C2mim] in combination with each of
the three just-mentioned anions for the presence of water. They found that increased tail
length in the cation has only minor effects on the transition of the anions’ H-bonding to
cellulose into different bonding states but, by tending to slow the transitions’ dynamics, it
increases the H-bond lifetimes. Each anion can form up to four H-bonds with cellulose,
and the bonding lifetimes of multiply bonded anions are three to four times longer than
those of singly bonded anions. When water molecules are present together with the IL,
they surround the H-bond-accepting sites of the anions, hampering their interactions with
cellulose; if an already-formed H-bond between an anion and cellulose breaks, the anion too
becomes surrounded by water molecules and becomes unavailable for new H-bonds with
cellulose. A greater concentration of water corresponds to a greater drop in anion–cellulose
H-bonding [132].

3.6. Nanoparticles in Liquid Media
3.6.1. Nanoparticles and Their Properties

Nanoparticles (NPs) are aggregates of many atoms (metal atoms, metal oxides, or
carbon atoms), usually between 1 and 100 nm in size. Their applications (nanomaterials,
nanotechnology) are continuously expanding. By 2009, already more than 500 consumer
products on the market contained elements of nanoscience and nanotechnology [133]. NPs
are characterised by a large specific surface area. A comprehensive overview of the different
classes of NPs, their physicochemical properties (mechanical, thermal, magnetic, electronic,
optical, and catalytic), and their applications in medicine, electronics, water treatment,
energy storage, agriculture, and food production is offered in [134].

The increasing utilisation of NPs entails increasing presence in the environment,
prompting studies of their possible impacts, first of all toxicity. Because of their size, they



Computation 2024, 12, 78 19 of 49

are not stopped by the protective barriers in the upper airways (such as the cilia in the nose)
and can reach the lungs if present in the air; for instance, NPs with an aerodynamic diameter
of less than 100 nm are deposited mainly in the alveolar region, while NPs with a smaller
diameter can penetrate deeper into the lungs [135]. They can also contaminate media like
water and soil. An overview of their toxic effects is included in [136], and an overview
of their presence, interactions, transformation processes, possible toxicity forms, and the
factors affecting the toxicity in aquatic environment is offered in [137]. Computational
studies can examine or predict the interactions of NPs with biological systems and with
environmental media like water and are expected to help in the design of safer NPs, as
well as appropriate storage systems, to protect nanomaterials from the environment and
simultaneously protect the environment (and us) from NPs [138]. Gajewicz and co-workers
strongly recommend the use of computational modelling to evaluate the properties of each
NP and use the obtained information to conduct risk assessment [139].

Because of their size, NPs are considered more dispersed than dissolved in a liquid
medium, and the resulting suspension often has colloidal properties. Biological applications
require NPs to be water dispersible and to remain soluble, whereas many catalytic and/or
industrial applications require nanoparticles to be dispersed in organic solvents [140].
Understanding the dispersion and stability of NPs in liquid media is often crucial for
nanomaterial utilisation [141], also because many NPs are synthesised in a liquid and
the nature of the used solvent often governs the internal phase structure of the formed
NPs [142]. This requires understanding the molecular interactions between suspended
NPs and the surrounding solvent [143]. Leekumjor and co-workers used a coarse-grid
computational model to investigate the molecular interactions between oleate-capped NPs
and various solvents and found that the solvent polarity correlated better than other solvent
properties to both simulation and experimental results. Xu and co-workers developed an
improved coarse-grained MD simulation for NPs and applied it to the study of gel ink [141].
Electrostatic interactions and London–van der Waals interactions are the most frequently
considered interactions for NPs in an electrolytic medium [144]. The presence and nature
of a solvent play a significant role in the interactions between two NPs [145] and several
studies investigate these interactions. The development of specific computational models
to treat some properties typical of solutions can be important for better utilisations of NPs;
for instance, a theoretical or computational model to estimate the osmotic pressure created
by magnetic NPs and the water flux in the forward osmosis process would be important
for a more efficient utilisation of NPs in water treatment and desalinisation [146].

3.6.2. Carbon Nanotubes

Carbon nanotubes (CNTs) consist exclusively of carbon atoms arranged in a series of
condensed benzene rings rolled up into a tubular structure [139]. The toxicity of carbon-
based nanomaterials depends on several properties, such as structure, length, surface
area, surface charge, aggregation, oxidation, functional groups, manufacturing methods,
morphology, concentration, and dosage [133,135,147–151].

CNTs are not soluble in water. On the other hand, they need to be dispersed/dissolved
in water for biomedical applications, because water is the main medium in living organisms.
The problem may be partly overcome by chemical functionalisation of the CNT surface
with groups that increase their compatibility with water [152]. Sasidharan and co-workers
reported that CNTs functionalised with carboxylic groups showed excellent dispersion in an
aqueous medium, whereas the pristine (non-functionalised) CNTs do not disperse; this also
poses the challenge of additionally investigating potential toxicity effects of functionalised
CNTs [149]. Computational simulations and modelling are highly recommended for
objectives like improving the biodistribution, pharmacokinetics, and solubility of CNTs, as
well as diminishing their toxicity [152].

CNTs can interact with DNA molecules in the presence of a solvent. Gao and co-
workers report the results of MD simulations of the dynamic processes of encapsulating
DNA inside a CNT in a water environment; the results indicate spontaneous insertion of
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single-strand DNA oligonucleotide thanks to the combined action of van der Waals and
hydrophobic interactions [153].

Single-walled carbon nanotubes (SWCNTs) are largely used in medical research,
for efficient drug delivery, and for biosensing methods for disease treatment and health
monitoring [154]. Mananghaya and co-workers used DFT calculations to investigate
how the SWCNT properties change following covalent functionalisation with selected
organic acid groups either on the walls or on the tips of SWCNTs. They found that the
functionalisation is thermodynamically favourable. Calculation of ∆Gsolv with the PCM
model showed that the solubility of the functionalised SWCNT improved. By enhancing
SWCNT biocompatibility, suitable functionalisation also reduces toxicity and the chance of
tissue accumulation [152].

Cisplatin (cis-PtCl2(NH3)2) is an anticancer drug which crosslinks DNA in several
different ways, interfering with cell division by mitosis. Monajjemi and Mollaamin used
Monte Carlo and DFT calculations, with the Onsager model of solvent (the first SCRF model,
initially proposed in [155]) to investigate the thermodynamic properties (Gibbs free energy,
enthalpy, energy, and entropy) and dielectric effects of a cisplatin–SWCNT combination in
different solvents, and found that the combination has more effective action on DNA, thus
supporting the suitability of SWCNTs for drug delivery in different media [154].

The use of surfactants is one of the options to favour CNTs’ dispersion. Obata and
Honda used MD simulations to study the effect of surfactants on CNTs in an aqueous
environment [156]. They used a biosurfactant (dipalmitoyl phosphatidylcoline, DPPC, a
primary component of human lung surfactants) and an artificial surfactant that is often used
to disperse CNTs (polysorbate 80, Tween 80). The CNT–DPPC complex was energetically
more stable than the CNT–Tween 80 complex. The MD simulations also indicated that the
adsorption and desorption of surfactants on the CNT surface occurred on a millisecond
timescale in an aqueous environment; this suggests that CNT–surfactant complexes can
change into more energetically stable complexes within biological systems through a
surfactant exchange in which biosurfactants present in a greater concentration replace
the initial one through adsorption and desorption on the CNT surface. They also suggest
that the biological effects of CNTs (including toxicity) are related more to the surface
properties of the CNT–surfactant complexes than to the intrinsic surface properties of
pristine CNTs [156].

3.6.3. Silica Nanoparticles

NPs may also be built from silica (SiO2). Carmofur (HCFU), an antineoplastic drug
used in cancer treatment, exhibited promising activity against the SARS-CoV-2 (COVID-19)
virus. Nivetha and co-workers used theoretical methods to understand the absorption
mechanism and interaction between the HCFU molecule and noble metal (Ag/Au/Pt)-
loaded silica nanocomposites (HCFU + Ag/Au/Pt···SiO2) [157]. They used DFT calcu-
lations with the LANL2DZ pseudopotential to obtain optimised geometries, vibrational
frequencies, and interactions of the HCFU molecule and its complexes. They also used the-
oretical methods such as HOMO–LUMO analysis, molecular electrostatic potential (MEP)
mapping, electron localised function (ELF), and localised orbital locator (LOL) to assess
chemical reactivity, charge distribution, and other molecular properties. They investigated
UV–visible spectra in polar protic and aprotic solvents (ethanol, methanol, water, and
DMSO) using time-dependent DFT (TD-DFT) and added molecular docking predictions to
analyse the interactions between HCFU and its complexes with relevant selected proteins.

3.6.4. Multiscale Modelling Options

As already mentioned, many NPs are formed in solution, and the nature of the medium
(one solvent, or a solvent with a co-solvent) and the conditions of the process influence the
nature, shape, and properties of the NPs (e.g., their catalytic function [158]). Modelling all
this is a complex task and may require multiscale options. Multiscale modelling investi-
gates the behaviour of a system, or the properties of a material, at a selected level, using
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information from a different level, where the “level” may refer to computational approaches
(e.g., QM and MM, discrete and continuum) or to size range (e.g., atomic/molecular level,
nanolevel, macroscopic level) [159]. As already seen for the hybrid levels (Section 2.3),
the most challenging task is the design of the connection between the two levels con-
cerned. Multiscale modelling may be particularly suitable to relate the properties of the
resulting NPs to the features of their preparation. For instance, Lavino and co-workers
proposed a multiscale model which accounts for kinetic effects during the NP formation
process and can address the relevant length scales (molecular, nano, and macro) and used
poly-e-caprolactone nanoparticles in acetone–water mixture to validate the model [160].

3.7. Representative Examples of Other Types of Investigation Topics
3.7.1. Organometallic Catalysis

Organometallic catalysis has been attracting considerable interest because of the broad
range of possible applications in academia and industry [161]. Computational methods
can help predict the stability of complexes of organic molecules with transition metals, e.g.,
by predicting the ligand dissociation reaction enthalpies.

Sperger and co-workers provide an extensive review of the computational studies
of Pd-, Ni-, Rh-, and Ir-mediated transformations conducted between 2008 and 2014;
they consider different types of organic synthesis reactions, explaining the details of the
computational approaches and the comparisons with experimental results [161]. They
analysed the performance of DFT with different functionals, without and with the inclusion
of Grimme’s dispersion correction D3 [162], coupled with CPCM (or, in some cases, with
COSMO-RS or SMD) for solvent modelling. DFT-D3 generally performed better than
DFT. In their conclusions, they observe that most calculations reviewed in their work
were conducted post-experimentally to rationalise the observed chemical reactivities, but
the reviewed results encourage the possibility of using computational studies also for
predictive roles.

Jacobsen and Cavallo [163] had used DFT-D3 combined with CPCM to study the
ligand dissociation reaction enthalpies of several catalysts containing Fe and Ru, in-
cluding (CO)3Fe(benzylideneacetone), (Cp)Ru–(Cl)(cyclooctadiene), (CO)3Fe(PMe3), and
(CO)3Fe(PPh3). They observed good agreement of DFT-D3 results with experimental re-
sults for (CO)3Fe(benzylideneacetone) and (Cp)Ru–(Cl)(cyclooctadiene). However, for the
ligand exchange reactions of phosphine ligands of different sizes (e.g., PMe3 and PPh3),
the agreement was not good, possibly because DFT-D3 may overestimate the binding
energy of large ligands and organometallic complexes containing them. Grimme obtained
better agreement by using a larger basis set and COSMO-RS for the solvent [61]. This
also suggests that some caution may be advisable when interpreting dispersion-corrected
dissociation energies.

3.7.2. The Medium in Lithium-Ion Batteries

Lithium-ion batteries are rechargeable batteries with metallic lithium at the anode and
Li+ ions in the electrolyte. Their performance depends on the efficiency with which the ions
move through the material in which the electrolytic solution is dispersed; therefore, the
lithium-ion solvation and diffusion are the important properties to consider on evaluating
the suitability of a solvent. The search for new materials with improved efficiency to
solvate and transport Li+ is quite active [164]. Organic carbonates are commonly used as
solvents in lithium-ion batteries because of their capacity to dissolve lithium salts. Rempe
and co-workers studied the solvation and diffusion of Li+ in ethylene carbonate (EC) and
propylene carbonate (PC), with lithium hexafluorophosphate as lithium salt, using both
molecular simulations and experiments [164]. The simulations used standard force field
MD (FFMD) to evaluate ∆Gsolv and the solvation structure of the ion, as well as the solvent
properties, and ab initio MD (AIMD, which is more costly) to investigate the solvation
structure of a single Li+ ion. The results showed that electrostatic forces dominate Li+

solvation in carbonate-based solvents and in water. The results for the free energy of the
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transfer of Li+ to the carbonate solvents from water, obtained from simulations using scaled
partial charges (by 80% for EC and 90% for PC) for the solvent, were also in agreement with
experimental data, suggesting that such scaling may be convenient for analogous systems.

Dimethyl carbonate (DMC) has low volatility and is non-flammable, non-toxic, and
biodegradable; because of this, it has been used for several chemical reactions as well as for
electrochemical and extractive applications [165]. Reddy and Balasubramanian’s extensive
MD simulations found that most molecules in liquid DMC in ambient conditions are in the
cis–cis conformation, and only about 2% are in the cis–trans conformation, with the former
having around a 1.0 D dipole moment and the latter around 4.5 D [165]. DMC is a suitable
solvent for lithium salts, but it crystallises at 2 ◦C, restraining its use in low-temperature
applications. To prevent crystallisation, it is often mixed with ethylene carbonate (EC).

A central challenge in the refinement of lithium-ion batteries is to control cathode-
induced oxidative decomposition of the solvent. Miller and co-workers investigated the
electrochemical stability of EC, DMC, and a 1:1 EC–DMC mixture [166]. They used a
wavefunction-in-DFT embedding approach, calculating the vertical ionisation energy of
individual molecules at the coupled cluster with full treatment singles and doubles and
perturbation theory treatment of triples (CCSD(T)) level of theory and explicitly accounting
for the solvent using a combination of DFT and MM interactions. They found 1.2 eV for the
solvent reorganisation energies of both EC and DMC. They verified that simple dielectric
continuum models accurately reproduce the reorganisation energy of EC, but significantly
underestimate that of DMC, because of the important role of quadrupolar interactions in
DMC solvation, which are not taken into account by standard dielectric continuum models.
The quadrupolar interactions may also favour the coordination of Li+ cations by DMC in
EC–DMC mixtures [166].

3.7.3. The Behaviour of Liquid Mixtures

Understanding and predicting the behaviour of liquid mixtures is important both in
research and for practical applications, including process design for the chemical indus-
try [167]. Atilhan and Aparicio used MD simulations of dialkylcarbonates and 1-alkanol
mixtures with different proportions and at different temperatures, with particular attention
to their behaviour at the liquid/gas or liquid/vacuum interfaces because of its relevance
for industrial operations involving phase equilibria, gas adsorption or absorption, and heat
or mass transfer. They found that the situation at the interface is completely different than
in the bulk liquid, as the 1-alkanol molecules tend to develop a highly dense layer in the
vicinity of the vacuum region, while the dialkylcarbonate molecules remain closer to the
bulk liquid [167].

3.7.4. Solvents Influencing Chemical Reactions

Solvents influence many aspects of the chemical reactions occurring in them, including
thermodynamics, kinetics, and product selectivity. The effects have been studied for a
long time (e.g., [168,169]), and substantial information has been accumulated throughout
the years. Computational methods may play key roles to elucidate whether an observed
effect is due to the solvent. For instance, Kostal and Jorgensen used QM and statistical
mechanics calculations to investigate the experimentally observed rate enhancements for
the base-initiated cyclisation reactions of 2-chloroethoxide derivatives in aqueous solution
when the methylation on C1 is increased [170]. Gas-phase QM calculations at the MP2 and
CBS-Q levels indicated little intrinsic reactivity difference. On the other hand, continuum
solvation calculations, or MC/FEP calculations in explicit water molecules, showed that
the reactivity changes were due to the solvent effect [170].

Varghese and Mushrif analyse the pathways and outcomes of these influences to
suggest routes for optimal solvent selection in relation to the desired outcomes [171]. They
consider the main computational techniques for the investigation of solvent effects (implicit
models, MD, QM/MM, approaches combining DFT calculations and MD) and provide a
review of examples to illustrate the application of these methods, the types of information
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that they provide, and their relevance to catalytic reactions. They envisage that further
development of effective combinations of two or more computational techniques can
enhance the investigation of the solid–liquid interface, thus enabling better computational
investigation of heterogeneous catalysis [171].

Making production processes greener by recycling anthropogenic CO2 into fuels and
chemicals, as well as making the production of ammonia and hydrogen more sustain-
able, still present major selectivity and energy efficiency challenges [172]. Basdogan and
co-workers suggest that computational quantum chemistry can help interpret and guide
experimental work by providing insights into key aspects of reaction mechanisms. They
review applications of implicit, mixed implicit/explicit (QM/continuum), and explicit
solvation models for the identification of steps that might make these processes (hydrogena-
tion of CO2, oxidation of N2, reduction of H2, and others) more efficient and sustainable by
identifying solvent usage that can produce the desirable effects [172]. They recommend
the integration of solvation energy contributions and other environmental parameters
into future high-throughput screening approaches and consider further improvements
of the solvation models as crucial for the design of sustainable processes [172]. Zhu and
co-workers investigated the electrocatalytic reduction of CO2 (one of the promising op-
tions to convert excess CO2 in the atmosphere to industrial feedstocks), aiming at better
understanding of how alkali cations increase the selectivity and activity of the process [173].
They found that the CO2 reduction kinetics is closely correlated with the strength of the
Onsager reaction field [155,174], which is induced by polarisation of the electrolyte by the
solute dipole. They conclude that it is important to develop models capable of handling
solvation-mediated Onsager reaction fields and interfacial solvation structure with the
same relevance as the electric field produced by the electrochemical double layer [173].

3.7.5. Ions in Solution

Understanding the solvation structure of cations in solution is crucial for a variety of
purposes. The hydration structures of Na+ and K+ in liquid water are assumed to play
important roles within living organisms, from selectivity to their motion through their
respective channels. Rowley and Roux used a QM/MM simulation, where the ion and
a selected number of closer water molecules constituted a dynamical and flexible inner
region treated at the QM level, while the outer-region water molecules were treated with
a polarisable MM force field [175]. The results indicated coordination number ranges of
5.7–5.8 for Na+ and 6.9–7.0 for K+ [175].

Similarly, the hydration structure of Ca2+ and Mg2+ with the presence of OH− ions in
water is crucial for understanding their roles in biochemical and chemical processes [176].
Liu and co-workers used AIMD simulations to investigate the solvation structures of these
three ions (Ca2+, Mg2+, and OH−) and found that the water molecules in the first solvation
shell of Ca2+ change their preferred orientation faster than those of Mg2+ and that, if the
cation reaches the first solvation layer of OH−, the bonds of OH− are altered and the water
molecules adjacent to OH− are squeezed [176].

Taking into account the solvation structure of cations in the solvent of interest is impor-
tant for the applications in which cations play key roles. Battery technology is one such area,
linked to the search for sustainable and affordable energy sources and storage [177,178].
The solvation structures and networks of the cations (such as Li+ or Na+) in the electrolyte
have significant influence on the formation and properties of the solid electrolyte inter-
phases which, in turn, condition battery performance; understanding them is crucial for
the design of more efficient batteries [177]. The concerns about the sustainability, as well
as production and extraction costs, of lithium are prompting active search for alternative
batteries based on abundant elements, such as calcium and magnesium, and, therefore, also
for the study of their solvation structures [178]. A review of the roles of the elucidation of
solvation structures for the rational design of electrolytes is offered in [179]. Computational
chemistry modelling is expected to play crucial roles in the elucidations.
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Silicate condensation reactions to produce zeolites—aluminosilicates with nanoporous
structures, widely used for their catalytic and separation properties—are another category
of processes in which cations play key roles. The initial stages of their synthesis involve
the formation of silicate oligomers in aqueous gel solutions, in which inorganic or organic
cations act as structure-directing agents and determine the types of oligomers that are
preferentially formed [180]. The role of different cations as organic structure-directing
agents (OSDAs) has been the object of several experimental and computational studies.
For instance, Trinh and co-workers [181] used AIMD simulations and thermodynamic
integration to investigate the role of tetrapropylammonium under basic conditions, and
also an implicit continuum model for the solvent (water); they concluded that an explicit
and dynamical treatment of water is important to elucidate relevant aspects of its key
role in assisting the reaction. Mai and co-workers [182] used AIMD simulations to inves-
tigate the role of the tetraethylammonium ion as organic structure-directing agent and
found that it favours the formation of smaller oligomers such as dimer, trimer, and 3-ring;
they concluded that organic structure-directing agents are important for the host–guest
interaction and also contribute to controlling the reactivity of different silicate oligomers
during the initial stage of zeolite formation. While cations have been given extensive
attention for a variety of contexts and processes, attention to anions is more recent. For
instance, Ho and co-workers [180] used MD simulations with explicit water molecules to
investigate the effects of the presence of [Cl]− anions in the early stages of the synthesis of
zeolites and showed that it increases the free energy barriers of all reactions, suppresses
the formation of 3-ring structures, and promotes the formation of larger oligomers, with
greater preference for 4-ring structures. Do and co-workers [183] used AIMD simulations
with explicit water molecules to investigate the effects of an excess presence of [OH]−

anions in the water solution in which the synthesis takes place and found that it favours the
formation of linear tetramers and 4-ring structures; on the other hand, the 4-ring structures
are the most difficult to dissolve in the backward reaction, consistently with the experi-
mental observation that silicate growth in zeolite synthesis is slower in solutions with very
high pH.

3.7.6. Studies in Solution to Understand the Properties of Natural Materials

Materials of natural origin encounter a vast variety of industrial utilisations. Their
interactions with solvents often play crucial roles in the understanding of their properties
and the design of applications. For instance, computational modelling has proven a
powerful instrument to elucidate the causes of the outstanding mechanical properties of
silk (a natural material made exclusively of proteins), to predict the properties of other
biomaterials that can be derived from it, and to assist in design of new manufacturing
strategies; the modelling included studies in water solution, both with implicit solvation
models and with MD simulations [184,185].

4. Computational Studies Concerning the Solvent Role in the Interactions and Activities
of Biologically Active Molecules and Biomolecules
4.1. The Complexity of Biomolecules and Biochemical Processes

As mentioned at the beginning, all processes occurring within living organisms occur
in a medium; water is the dominant component of living organisms and, therefore, also the
main medium within which processes occur. Biologically active molecules are molecules
that can cause a response when introduced into a living organism by exerting some action;
a typical example is offered by drugs, which are used to treat diseases. Biomolecules are
molecules that are part of living organisms and have specific roles in the functioning of the
organism; some of them—like proteins or DNA—consist of thousands of atoms.

As Finney recalled already in 1996, “Water has been recognised . . . as one of the
major structuring factors of biomolecules” and “As the natural solvent of biological macro-
molecules, water influences many aspects of biological functions” [186]. A number of
aspects concerning the behaviour of these molecules in solution can be objects of in-
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vestigation: how individual molecules interact with the solvent and the effects of these
interactions on the molecule and its behaviour; the possible roles of the solvent in the inter-
actions between two biomolecules; and the possible roles of the solvent in the interactions
between a biologically active molecule and the biomolecule that is its biological target.
Given the size and complexity of proteins and DNA, it becomes important to select the
portion of greatest interest for high-accuracy computational treatment, while the rest is
treated at a less costly level; therefore, hybrid approaches are often the most suitable and
affordable options.

4.2. Solvents and the Structure of Proteins
4.2.1. Water Molecules in and around Proteins’ Structures

The importance of water for proteins’ structure and behaviour has been recognised for
several decades: “The water-protein interaction has long been recognised as a major deter-
minant of chain folding, conformational stability, internal dynamics, and binding specificity
of globular protein” [186]; “In general, a protein molecule is surrounded by layers of solvent
which mediate its functional conformation as well as its chemical characteristics” [187];
“Water in close proximity to the protein surface is fundamental to protein folding, stability,
recognition and activity” [187]; “Water plays many roles on the surface of proteins, filling in
gaps and cavities, fulfilling unsatisfied H-bonds and mediating interactions” [188]; “Most
of the decisive molecular events in biology take place at the protein-water interface”.

The hydration layer surrounding a protein plays key roles for protein folding and
membrane stability [189]. Schoenborn and co-workers provide a review of experimental
(spectroscopic) and computational (MD) results available by 1995 on the water molecules’
layer surrounding a protein [187]. The water molecules bind to the polar or partially
charged site of the protein; those that bind to the protein’s surface through H-bonds,
and those bridging them, may form complex H-bond networks, often further stabilised
through cooperativity [190]; those that bind to the protein surface with sufficiently strong
H-bonds also remain in the protein’s crystal structure as well [187,190]. Both experimental
and computational studies show the presence of these water molecules. For instance,
both experimental and computational studies indicate that some non-polar cavities may be
hydrated in the crystal structure of the bovine pancreatic trypsin inhibitor and barnase [191].

The water molecules that remain bonded to a certain part of the protein can be
considered spatially fixed “structural” water molecules constituting an integral part of the
protein’s structure [189]. They play a crucial role in the stabilisation of secondary structure,
protein activity, flexibility, and ligand binding [192]. Thermal stability, including resistance
to higher temperatures (thermophilicity, which might be relevant in industrial processes)
depends, directly or indirectly, on the coupling between the protein and surrounding
water [193]; suitably modulating the presence of structural water can be relevant to the
design of thermophilic enzymes with the desired stability range [194].

Understanding the nature of the hydration layer is crucial to understand the protein’s
biological functions: the layer must interact sufficiently strongly with the protein to stabilise
it, but not so strongly as to block surface sites or inhibit structural change [189]. Ebbinghaus
and co-workers investigated the extent of the hydration layer and found that both experi-
ments and MD simulations indicated a long-range dynamical hydration shell [195]. Mattea
and co-workers investigated the dynamical properties of proteins’ hydration layer [196].
Teixeira investigated the stability of the protein–water H-bonds [197] and Born investigated
the solvation dynamics of ubiquitin [198]. Wallnoefer and co-workers used MD to investi-
gate the effect of water molecules on factor Xa—a key enzyme in the blood coagulation
process—and highlight the importance of a well-determined set of internal water clusters
in the protein’s initials structure for the quality of the MD simulation [199]; the study also
showed that appropriate internal water clustering is integral to the protein’s initial structure
required for stable and realistic MD simulations [199].
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4.2.2. Water Molecules and Proteins’ Folding

Within the cell, proteins are synthesised as linear strings of amino acids as the ribo-
some “reads” the corresponding DNA strand. For most proteins, this linear chain must
fold into a unique three-dimensional structure (native structure of the protein) which is
responsible for the protein’s function. Correct folding is a prerequisite for proper function-
ing [200]. Incorrectly folded (misfolded) proteins may aggregate into so-called amyloid
fibrils, thus becoming responsible for neurodegenerative diseases such as Alzheimer’s
disease, Parkinson’s disease, Huntington’s disease, and others [200–210]. Explicit solvent
all-atom MD simulations of amyloid aggregation have revealed valuable information about
this phenomenon; however, some challenges (as analysed in [208]) need further refine-
ment of the approaches—the most impacting being the following: insufficient accuracy of
current force field modelling of amyloid aggregation; the fact that protein concentrations
in MD simulations are usually orders of magnitude higher than those used in vitro or
found in vivo; and the time-scale limit of MD simulations (mostly in the nanosecond scale,
whereas protein folding and unfolding occur in the microsecond to second timescale) [208].

The solvent plays a critical role in protein folding, as most of the free energy for the
folding process comes from the maximisation of solvent entropy. When two non-polar side
chain residues come together, some of the water molecules are expelled from the hydration
layer of that portion of the protein and become part of the bulk solvent; this entails an
increase in the net disorder of the water molecules, i.e., an increase in the entropy of the
water (which, in turn, makes the total ∆G more negative); thus, the hydrophobic effect is the
driving factor for protein folding [202,211,212]. Given the importance of the solvent, many
studies experimentally investigated what happens in one or more solvents (e.g., [213–215]).
Computational studies started to compare the performance of explicit and implicit solvent
models for the analysis of protein folding. Zhou and Berne compared explicit solvent
models with the generalised Born continuum model (GB) and found that the free energy
landscapes were very different, that the GB lowest free energy state did not correspond
to the native state, and that the minimum-energy structure was different in the two cases;
on the other hand, GB had mostly provided the native β-hairpin structure [216,217]. In
other cases, implicit models had recognised the folded state of peptides as the lowest free
energy state [218]. Some works coupled implicit solvent models with MD (e.g., [219]).
Although implicit models are less costly, explicit solvent models were viewed as the
most suitable [220] and their popularity has kept increasing (with MD simulations as the
frequently preferred option) because they provide a clearer picture of what happens at the
molecular level, above all for the structural water molecules and the water molecules in the
hydration layer [221–223], thus being more informative for the investigation of issues such
as the involvement of water molecules in the folding kinetics and mechanism.

A number of works chose to study the 76-amino-acid (HP35) compact f-actin-binding
terminal domain (“headpiece”) of the villin protein [224] because its small size and fast
folding made it particularly suitable for pilot investigation of the folding mechanism. Their
consideration can suitably illustrate the approaches in the first decade of the current century.
The solvent was treated differently in different works: with implicit models [225–227], the
GB implicit model combined with MD [219,228,229], explicit models [230–234], and both
implicit and explicit models [235]. Results show that simulations with explicit and implicit
solvent models can produce different ensembles of structures, and even simulations with
different implicit solvent models may lead to different ensembles of structures [226]; that
the use of implicit models may be related to some incorrect predictions because, when
water is implicit, unsatisfied H-bonds cannot be compensated for via H-bonding to water
molecules [229], or may lead to incorrect properties for folding intermediates [233]; that the
explicit representation of water is ideally suitable to explore the influence of solvent at the
molecular level [232]; and that the use of unbiased, explicit solvent atomistic simulations of
folding can provide detailed information on the nature of intermediate structures occurring
during folding, which might be obscured within non-explicit approximations [233].
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The fast increase in computers’ power and the continuous refinement of computa-
tional models have continued opening new possibilities for the investigation of relevant
aspects and questions. A few illustrative examples are recalled here. Oshima and Ki-
noshita investigated the components contributing to the solvent-entropy change upon
protein folding [235]. Wang analysed a variety of physical and geometrical properties
of the solvent-excluded surfaces to explore their contributions to protein–solvent interac-
tion [236,237]. Besides the studies in an aqueous medium, increasing attention has been
given to the effects of non-aqueous solvents, which might be present as co-solvents in
the biological medium in the cell. Yu and co-workers investigated the effects of several
organic solvents on protein folding [238]. Van der Vegt and Nayar investigated the role
of co-solvents known to be present within living cells, where they modulate aqueous
solubility, hydrophobic interactions, and the stability and function of many proteins; they
found that direct interactions of co-solvents with non-polar solutes can strengthen hy-
drophobic interactions [239]. Davis and co-workers considered the composition of the
cell’s internal solution and how it can affect protein folding and binding [240]. Mishra and
co-workers investigated the solvent accessibility of aggregation patches and found that it
is low for native crystal structures, as protein folding minimises the solvent accessibility
of aggregation-prone residues [241]. Hayashi and co-workers investigated the effects of
the specificities of different solvents on the stability of a protein’s native structure from
the point of view of the free energy involved and the enthalpy and entropy contributions
to it [242]. Co-solvents (including salts, sugars, polyols, amino acids, and amines) are
known to enhance the folding and stability of proteins and the assembly of macromolecules
such as microtubules [243]. Arakawa investigated their roles in protein folding and found
that the co-solvents exert considerable effects at high concentrations, indicating that their
interactions with proteins are weak; the co-solvents that enhance protein folding and
macromolecular interactions get excluded from the protein surface [243]. Bucciarelli and
co-workers studied α-lactalbumin and showed that protein self-assembly pathways are
determined by a subtle balance between H-bonds’ formation and hydrophobic interactions.
Hydrophobic co-solvents modulate these two factors through a combination of direct
solvent–protein and solvent-mediated interactions [244]. Dispersion interactions play an
essential role in intraprotein and protein–water interactions. Stöhr and Tkatchenko used
an explicit QM approach combining density functional tight binding with the many-body
dispersion formalism and demonstrated the relevance of many-body van der Waals forces
both for protein energetics and for protein–water interactions; they inferred that many-body
effects substantially decrease the relative stability of native states in the absence of water
whereas, in the presence of water, protein–water dispersion interactions counteract this
effect and stabilise native conformations and transition states [245].

4.2.3. Proteins in Non-Aqueous Solvent

The increasing use of enzymes in organic syntheses, as a greener option than traditional
approaches, has prompted the need to understand the catalytic activity of enzymes in non-
aqueous media. The use of enzymes in non-aqueous media can provide a number of
synthetic and processing advantages [246]. Raccatano used MD simulations to investigate
the effects of various organic solvents on protein folding and found that the simulations
started to clarify several aspects of non-aqueous enzymology related to the peptide and
protein dynamics and preferential solvation [247].

MM and MD simulations of proteins in non-aqueous solvents provide insights into
what happens in those solvents to the water molecules on the protein surface. In non-
aqueous media, the water molecules form clusters preferentially hydrating charged or
polar residues; these clusters populate identical enzyme surface regions in different organic
solvents; their number and size increase as water is added [248,249]. In non-polar solvents,
large water clusters remain tightly bound to the protein surface whereas, in polar solvents,
the clusters are smaller and loosely bound [248]. These water molecules are crucial for the
efficacy of enzymes’ catalytic activities in non-polar solvents. Natural enzymes exhibit
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very low activities in organic solvents, often four or five orders of magnitude lower than
in aqueous solutions, and this restricts their potential industrial applications. Proteins
require the presence of a certain number of water molecules bound to them (essential
water) to retain their activity in non-aqueous solvents. It is difficult to elucidate the
details of the organic solvent–enzyme–essential water interactions experimentally. MD
simulations had been able to provide some insights into the molecular level of these
interactions; the QM/MD combination proved considerably more efficient to enable more
complete insights [246]. Zhu and co-workers studied γ-chymotrypsin both in acetonitrile
with inclusion of 151 crystal water molecules and in water, using MD simulations, and
QM modelling with the PCM solvent model. The results showed that acetonitrile causes
deviations from the native enzyme structure and flexibility loss and that the structure
changes occurring in the active pocket weaken the catalytic H-bond network and increase
the proton transfer barriers, leading to a decrease in the enzymatic activity [249]. Meng and
co-workers used MD simulations to study trypsin in water, acetonitrile, and hexane and
found that it is more compact and less native-like in non-polar hexane than in the other
two (polar) solvents [250].

4.3. Solvents and the Structure of DNA

Nucleic acids have been objects of intensive investigation because of their roles in
life. The study of their interactions with solvents started quite early, initially only at the
experimental level and progressively also with computational modelling. Early experimen-
tal and spectroscopic studies on DNA dehydration showed that water can be removed
from sugars and bases, while the phosphate groups remain hydrated [251–256]. As with
proteins, the aqueous solution is critical to the conformation and function of nucleic acids,
and dehydration causes a transition from B-DNA to A-DNA [257].

H-bonds pair the bases of the two DNA strands, holding them together. Stacking
interactions between consecutive base pairs play important roles for the stabilisation of
the 3-dimensional structure of DNA and RNA [257,258]. They are sequence dependent
and have been attributed to electrostatic interactions, hydrophobic effects, and dispersion
interactions. Norberg and Nilsson investigated base stacking in aqueous solution and
in organic solvents using nanosecond MD simulations [258]. The results show that base
stacking is mostly favoured in the high-dielectric aqueous solution, followed by methanol
and dimethyl sulfoxide (with intermediate dielectric constants), and chloroform (with a
low dielectric constant) [258]. The DNA interior is mainly hydrophobic; its surface is rich
with hydrophilic groups from the phosphates and sugars, promoting a tight hydration
shell, whose characteristics depend on the DNA conformation and sequence; the water
molecules of this shell shield the electrostatic repulsions between phosphate groups, thus
stabilising the double-helix structure [257].

The “natural” medium for the double-helix structure of DNA is the high-dielectric
aqueous medium present in the cells, and DNA has evolved to be stable in this environ-
ment. Studies on the stability of DNA in different solvents have rapidly grown with the
development of biotechnologies (utilising genetic engineering) because of the industrial
significance associated with them; new applications are also envisaged, including a new
generation of biocatalysts or chiral scaffolds for metal catalysts [259]. Bonner and Klibanov
investigated the structural stability of DNA in non-aqueous solvents and found results
recalling those for the proteins’ structure and folding, first of all the importance of hy-
drophobic interactions [260]. Shen and co-workers used MD simulations to assess the
effects of different metal ions present in an aqueous medium on the conformation of a
dodecamer DNA segment, at varying temperatures, and found that the light ions (Li+

or Na+) prefer to interact with the free phosphate oxygen atoms while the heavier ions
(Rb+ and Cs+) strongly interact with the base pairs [261]. Arcella and co-workers used
an atomistic molecular simulation to compare the situation of DNA in a highly apolar
environment and in an aqueous medium and found that even the neutral form (predicted
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to be the dominant one in apolar solvents) would surround itself with a small number of
highly stable water molecules when moving from water to an apolar environment [262].

Given the size of a DNA molecule, some effects are conveniently investigated on
smaller-size models (oligonucleotides). Nakano and Sugimoto present a review of studies
of the structural stability and catalytic activity of DNA and RNA oligonucleotides in organic
solvents, also in view of practical utilisations [263]. Still keeping practical utilisations in
view, Zhao investigated the stability of DNA in ILs and in DES as possible alternative
solvents for DNA preservation and stabilisation; however, organic cations may intrude
into the DNA minor grooves, and their interaction with the DNA phosphate backbone
may become predominant, while anions may form H-bonds with the cytosine, adenine,
and guanine bases [259]. Nan and co-workers used MD simulations to investigate DNA
in ethylene glycol solution and found that its double helix is similar to the structure of
DNA in the aqueous solutions but more compact; the similarity may be related to the fact
that both solvents can form H-bonds with DNA and that ethylene glycol molecules have
greater capacity than water molecules to H-bond to the partially negative oxygen atoms in
the DNA’s phosphate groups [264].

4.4. Solvent Roles in Protein–Protein Interactions

Protein–protein interactions (PPIs) are crucial for the proper functioning of the molec-
ular mechanisms underlying cellular life and are often perturbed in disease states [265,266].
The number of PPIs occurring in a living organism at a certain time is huge. Proteins can
interact with each other through hydrophobic interactions, dispersion interactions, and salt
bridges. An overview of the molecular bases of PPIs is offered in [267] and an overview
of the characteristics of PPI interfaces in [268]. Solvent molecules mediate PPIs as well as
the interactions between proteins and other biomolecules in living organisms. Co-solvents
present in the system may strengthen or weaken PPIs, depending on the nature of the
co-solvent and of the proteins; changes in the nature or concentration of co-solvents can
induce changes in the PPIs and, consequently, in the processes within a cell [269,270].

Levy and co-workers consider that the binding between two proteins is governed
primarily by the proteins’ native topology and depends on the network of non-covalent
residue–residue interactions that can establish between them [271]. They investigated
in detail the binding mechanisms of selected protein pairs. They suggested that solvent-
mediated H-bond formation and, in general, solvent-mediated contacts may facilitate
the interaction between two proteins, including antigen–antibody association; they also
recall the relevance of MD simulations, including for scopes such as clarifying the extent
and characteristics of the desolvation accompanying the coming together of two solvated
proteins [271]. Water molecules are more abundant at the interfaces between proteins
and, therefore, they play an important role in binding and recognition [257]. In some
complexes, the water molecules are only at the interface rim, whereas in others they cover
the entire interface area. Levy and Onuchic suggest that simulations of antibody–antigen
complexes using the topology-based model do not reproduce the transition state energy
adequately if water is not included in the model; they infer that water molecules assist the
initial stage leading to protein–protein binding and, therefore, water has to be included in
computational simulations of the process. In addition, they suggest that water molecules
assist two proteins in the identification of the appropriate binding sites among the potential
ones, thus contributing to molecular recognition [257]. Ahmad and co-workers used
extensive unbiased MD simulations and found that the water molecules in the interfacial
gap forms an adhesive H-bonds’ network between the interfaces, thus stabilising early
intermediates before native contacts are formed [272].

Vagenende and co-workers investigated the molecular origins of the co-solvents’
effects on PPIs, using MD simulations to characterise local protein solvation [270]. They
found that changes in preferential solvent interactions at the protein–protein interface
account for the effect type of the co-solvent; the solvation changes, in turn, depend on the
dehydration extent of the protein–protein contact region and also on structural changes
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that alter cooperative solvent–protein interactions at the margins of the protein–protein
interface [270].

PPIs may become additional drug targets for the treatment of diseases. The design
of such drugs is challenging because PPI sites are shallow protein surfaces. The design
requires good understanding of the characteristics of the given PPI interface. Ghanakota
and co-workers evaluate the ability of mixed-solvent MD (MSMD) simulations to detect
spots at PPI interfaces, which could become suitable targets, by considering 21 PPI targets
which had already been validated experimentally. They showed that MSMD simulations
comprising explicit solvent and full protein flexibility provide more complete information
than simulations which do not include these features [273]. Mayol and co-workers also
used MSMD simulations to predict protein–drug and PPIs in different solvents [274].

An increasing number of diseases appear to be linked to aggregation of proteins and
peptides, including cancer, the previously mentioned neurodegenerative diseases, and
amyotrophic lateral sclerosis (ALS). An overview of classical MD studies of both the protein
and the solvent involved in protein aggregation and fibril formation, utilising atomistic and
coarse-grained models, is offered in [275]. A description of explicit solvent all-atom MD
simulations and their applications for the study of the early stages of aggregation processes
is offered in [276].

Klimov and co-workers used MD simulations to investigate the stability of oligomers
of Aβ16–22 (KLVFFAE) peptides in aqueous urea solution and found that high urea concen-
tration promotes the formation of β-strand structures, whereas largely compact random
coil structures are preferred in water; in other words, urea opposes aggregation [277].
Matubayasi and co-workers investigated the co-solvent effect on peptide aggregation with
all-atom MD simulation and free energy calculation and found that the stability of a flexible
solute is modulated by a co-solvent through the solvation free energy; they also found that
urea and DMSO inhibit the aggregation because they stabilise the monomer more strongly
than the aggregates [278].

A simulation of the association of strongly aggregating proteins (like the amyloid-b
(Ab) peptide) using explicit solvent MD is unaffordable because of the size of the “proteins +
water molecules” system that should be used (such a system would contain a huge number
of water molecules). Emperador opted for an implicit solvent approach, using a highly
detailed coarse-grained representation of the amino acid side chains, while keeping an
atomistic representation of the backbone in order to maintain adequate accuracy for the
description of secondary structure elements [279]. He coupled this model with the discrete
MD (DMD) approach to study both molecular recognition and protein aggregation and
obtained results in complete agreement with the experimental evidence [279]. Stephens and
co-workers used both ab initio MD (AIMD) and classical MD simulations to investigate the
differences in the aggregation rate of α-synuclein (αSyn, which plays relevant roles in the
development of Parkinson’s disease and other diseases) in different ionic solutions [280].
They showed that the addition of NaCl (which consists of two small ions with high charge
density) reduced the H-bond dynamics of water and increased the aggregation propensity
of αSyn, whereas the addition of CsI (which consists of two large ions with low charge
density) increases water mobility, thus contributing to an increase in the protein mobility
and, consequently, reducing the proclivity of αSyn to aggregate [280].

4.5. Solvent Roles in Protein–DNA Interactions

The characteristics of DNA and its association with other molecules in solution have
been the object of early exploration of the PCM’s applicability to the study of biological
systems [281,282]. An example is the study of the energetics of the wrapping of DNA
around a histone octamer (nucleosome), where the octamer and the portion of the DNA
molecule wrapping around it take the role of solute and the cavity surface is built around
it [282].

The recognition between two biomolecules requires both geometric and chemical
complementarity and leads to the formation of a thermodynamically stable and specific
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complex [283]. Recognition is crucial for many functions within biological systems, in-
cluding the binding of enzymes and substrates, the mediation of signal transduction via
networks of specific protein pairs, and the regulation of protein expression by nucleic
acids [283]. Site-specific associations between DNA and proteins regulate many biological
events [283], with key involvement in transcription, replication, and recombination. The
analysis of the first-obtained protein–DNA crystal structure showed that several contri-
butions lead to formation of the complex, including H-bonds, electrostatic interactions,
direct and indirect contacts between amino acids and phosphate, sugars, and bases, water-
mediated contacts, hydrophobic effects, and others [283].

Understanding the interactions stabilising biomolecular complexes in aqueous solu-
tion, and how small changes can influence properties and behaviours, is essential for the
design of drugs or other simple molecules that can influence cellular processes in a desired
way [284]. DNA–protein interactions are ideal for such studies [284]. The DNA hydration
shell is tight and closely associated to the DNA conformation and sequence, and therefore
the water molecules of this shell can be viewed as an integral part of DNA [257]. The crystal
structure of a complex between the Trp repressor and DNA showed three ordered water
molecules at the protein–DNA interface, H-bonding both to the base pairs of DNA and
to the protein side chains; this suggested that water molecules mediate contacts between
residues and base pairs, which would not interact without the water mediation [285]; such
contacts are important for sequence recognition. MD calculations in a simulated water
bath confirmed the presence of water molecules at the protein–DNA interface, in positions
consistent with this mediation role [285]. Crystallographic and NMR studies confirmed this
role [286]. However, it is not always possible to characterise the localisation and dynamics
of the water molecules through X-ray or NMR techniques; MD simulations can complement
experimental studies and provide insights about structure, dynamics, interactions, and the
roles of water molecules [284]. Simulations of various protein–DNA systems showed the
presence of both direct protein–DNA H-bonds and water-mediated H-bonds [284,287–292];
this also suggests the importance of water-mediated interactions in the recognition of DNA
by many proteins and in the stabilisation of the protein–DNA complexes [288,292]. Jayaram
and Jain summarise the binding-facilitating roles of water molecules at the protein–DNA
interface in the following terms: forming mediated H-bonds or H-bond networks which
compensate for the lack of direct H-bonds in certain positions; shielding electrostatic re-
pulsions between electronegative atoms or like charges of the protein and the DNA; and
maintaining packing densities at the interface by filling spaces that would otherwise not be
filled [293].

Single water molecules often constitute determining factors ruling the specificity
and selectivity in molecular recognition and enzymatic reactions [294]. Protein–DNA
complexes are particularly suitable for illustration purposes: direct interactions between
protein side chains and DNA bases often remain scarce; bridging water molecules are
present in the protein–DNA interface, and their occurrence and positions appear to be
crucial for specificity and selectivity [294]. Although water-mediated interactions often
contribute significantly to the affinity and specificity of molecular interactions, most current
protein design programmes do not predict the location and contribution of bridging water
molecules because of the high computational costs involved [294]. This has prompted
the design of software whose algorithm aims at identifying physically ideal positions for
explicit water molecules [294].

4.6. Solvent Roles in the Ligand–Protein Interactions
4.6.1. Interactions of Proteins with Small Molecules

Proteins may have active sites that can interact with small molecules (ligands). Partic-
ularly important are the cases in which the small molecules can act as drugs, producing
effects that lead to diseases’ treatment. A protein active site is mostly a “pocket” into which
the drug molecule inserts itself to a greater or lesser extent, according to the “depth” of the
pocket. If the pocket contains hydration water molecules, some or most of these molecules
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are expelled in the process (they are “displaceable” [187,295]); simultaneously, the water
molecules surrounding the ligand’s portion that enters the pocket are left out (remain in the
bulk solvent), and the ligand gets partially desolvated (basic illustration in [296]). Some wa-
ter molecules may remain in the pocket (are “conserved”) and mediate the ligand–protein
interactions (LPIs), thus enhancing specificity and affinity; they may facilitate the formation
of H-bond networks, which can be further stabilised through cooperativity effects and can
play roles both in the biomolecular structure and for functions such as recognition and
specificity [190]. The first realisations of these effects suggested that including a suitable
presence of LPI-mediating water molecules could make drug design more efficient by
enabling more accurate predictions of the ligand-protein binding mode [297].

In order to consider water molecules within drug design, it is necessary to identify
those that can effectively mediate LPIs. Two subclasses can be identified among the water
molecules that are conserved: those that are not displaced by any of the ligands, and those
that are displaced by some ligands [298]. Techniques entailing the explicit inclusion of
tightly bound water molecules have been developed for the molecular modelling of hydra-
tion effects within computational structure-based drug design [299]; examples have been
codes like WaterDock, WaterScore, and PyWATER [190,192,300]. MD simulations—which
also consider water molecules explicitly—increasingly became the preferred computational
option [299].

A crucial question in the study of proteins and their action is the identification of their
active sites. The presence and behaviour of solvent molecules can provide valuable infor-
mation, and computational approaches (e.g., WaterMap) have been designed to identify
active sites on the basis of the differences in thermodynamic and hydration free energies
profiles relative to bulk solvent [301]. In many cases, the binding sites are well-defined
regions, easily identifiable in the crystal structure as suitable to host substrates and partially
enclosed within the 3D fold of the protein [302]. However, some binding sites (sometimes
termed “cryptic sites”) can be identified only upon ligand binding (the “pockets” may be
too shallow to be evident if a ligand is not attached to them). These sites may have great
biological relevance, e.g., for protein–protein recognition processes. Identifying them and
understanding their structure can be interesting for the design of drugs that can target
them. The addition of organic co-solvents to water proved expedient to reveal cryptic sites
by binding to them (creating a greater concentration of solvent molecules near a specific
site than in the bulk solvent) [303] or through the conformational changes that they induce
on the protein surface [304]. Multiple solvent crystal structure (MSCS) methods have been
used to complement computational information for the determination of these binding
sites [305]. MD simulations can provide a realistic assessment of the complex kinetics and
thermodynamics by integrating the consideration of protein flexibility and of the role of
water [302,303,306,307].

The role of water in modulating the stability of drug–receptor complexes has been
recognised for several decades. Water-mediated interactions between a ligand and a protein
play a key role in biomolecular assembly processes, such as protein–ligand recognition, the
binding of the HIV or the dengue viruses to human cells, the inhibition of influenza viruses’
infectivity, or the binding of a synthetic drug to a biomolecular guest [308]. Already in 1997,
Bohm and Klebe presented a review of works focusing on the physical nature of molecular
recognition in protein–ligand complexes and the application of existing computational tools
enabling the utilisation of available knowledge on LPIs in the design of novel ligands [309].
A number of subsequent works aimed at elucidating the details of the “binding event” [310].
Setny and co-workers combined explicit water MD simulations and the variational implicit
solvent model (VISM) to investigate a generic pocket–ligand model and found that the
approaching ligand initially stabilises the wet state in the weakly hydrated pocket, while a
closer approach induces pocket dewetting [308]. Schmidtke and co-workers showed that,
when a ligand and a receptor form interactions via H-bonds that are shielded from water by
adjacent hydrophobic regions, the resulting complex tends to exhibit higher kinetic stability
compared to situations where these H-bonds are less shielded [311]. Dror and co-workers
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used unbiased MD simulations to study the event and concluded that several β-blockers or
β-agonists initially make contact with a vestibule on each receptor’s extracellular surface;
this stage often entails the largest energy barrier to binding because it involves substantial
dehydration of the pocket; in the subsequent stage, the ligand enters the binding pocket by
squeezing through a narrow passage [312]. Setny and co-workers used explicit water MD
simulations to investigate the role of water in the mechanisms with which a ligand binds
to a prototypical hydrophobic pocket and confirmed the existence of a dewetting barrier
for the first step [313]. Young and co-workers used MD simulations and a solvent analysis
technique based on inhomogenous solvation theory to investigate the properties of water
molecules that solvate the confined regions of protein active sites, with particular attention
to molecular recognition patterns in which the displacement of the solvent by the ligand
leads to exceptional binding affinities [314]; they concluded that that the hydrophobic
enclosures aid molecular recognition by perturbing the solvation of the binding cavity, and
this leads to a relative stabilisation of the bound complex [314]. In general, biomolecular
recognition is influenced as much by rearrangements in the water molecules that solvate
interacting species as it is by the interactions between those species [315].

Molecular docking is a modelling technique which starts from structural information
and searches for the best (minimal energy) way in which two molecules can fit to each other
to form a complex. At least one of the molecules is a biomolecule. The interaction may entail
DNA–ligand, protein–DNA, protein–protein, ligand–protein, substrate–enzyme, and so
on [316]. Given the importance of the roles of water molecules to shape the form of LPIs (or
other interactions involving biomolecules), docking or virtual screening software packages
increasingly incorporate the possibility of considering explicit water molecules. Hu and
co-workers present a review of questions and approaches used in computational drug
discovery and drug development for which the effect of a single water molecule, or of a
small network of interacting waters molecules, needs to be considered [317]. They consider
issues such as the selection or prediction of hydration sites before starting the simulation,
the computational methods that can best predict water positions, the ensuing incorporation
of explicit water molecules into the docking procedure, and the methods adopted by various
software packages [317]. Several works provide information about the development of
specific approaches to the identification of the physically ideal positions for explicit water
molecules in a simulation and their utilisation in computational software [294,316,318–326].

4.6.2. Enzymes: Proteins That Are Catalysts

Enzymes are proteins that act as catalysts for reactions occurring within living organ-
isms. As catalysts, they bind a specific reactant molecule (substrate) in such a way that the
reaction activation energy is lowered, and are released when the transition state gives way
to the products. The structural complementarity of the substrate and the enzyme’s binding
site prompted the widely used key-and-lock image. It is possible to design molecules with
greater affinity than the “natural” substrate for a given enzyme, which bind to the enzyme
permanently, thus inhibiting further catalytic activity [327]. Such molecules can act as
drugs to inhibit vital processes of pathogens.

From a biochemical point of view, the correct structure of an enzyme can be simply
defined as the conformation that enables good catalytic activity. Protein hydration is
essential for enzyme catalysis to occur; dry enzymes are inactive, and there is a minimum
water proportion for the activity to begin [191,328,329]. Verma and Mitchell-Koch provide
a review of computational studies (primarily MD simulations) exploring the dynamics and
thermodynamics of the participation of the relevant small molecules (solvent, substrate,
and co-factor molecules) in enzyme catalytic processes (molecular recognition, substrate
binding, catalysis, and product release), as well as the role of protein flexibility, and include
information on the development of the relevant theoretical approaches [330].

What happens to the water molecules involved in the catalytic process may be different
for different types of enzymes. Glycoside hydrolases conserve internal water molecules;
MD simulations for Thermus thermophilus β-glycosidase suggested the involvement of
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two water channels, while another chain of highly conserved water molecules (going from
the protein surface to the bottom of the active site cleft) is able to exchange with the bulk
at the nanosecond timescale [331]. MD simulations showed that it may also happen that
the collective enzyme–substrate–water-coupled motions persist beyond the steady state,
indicating that the long-lasting water dynamics contribute to the net enzyme reactivity,
impacting substrate binding, positional catalysis, and product release [332].

The human immunodeficiency virus (HIV) attacks the body’s immune system and,
if not treated, can lead to acquired immunodeficiency syndrome (AIDS), owing to which
the body loses the ability to fight infections and the patient dies from illnesses that would
not have been acquired or not been deadly in the absence of AIDS. Around 40 million
people have died from AIDS-related illnesses since the start of the epidemic [333]. Three
enzymes are fundamental for the life cycle of the virus: protease (PR), reverse transcrip-
tase (RT), and integrase (INT) [334]. The search for molecules that can inhibit these en-
zymes has been intensive. Rungrotmongkol and co-workers investigated the structure
and dynamics of the RT active site by modelling the active conformation of the HIV-1
RT/DNA/deoxythymidine triphosphate (dTTP) ternary complex; they used both MD
simulations with the CHARMM27 force field and QM/MM approaches and examined
potentially important H-bonding interactions with amino acids and with water molecules
bound to the system [335]. INT is vital for the integration of the viral DNA into the host
DNA, and its inhibition had proved capable of slowing down the progression of AIDS [334].
Ribeiro and co-workers built a model of the holo-integrase:DNA complex comprising an
entire central core domain, an ssDNA GCAGT substrate, and two magnesium ions; then,
they used a combination of MD, thermodynamic integration, and high-level QM/MM
calculations to investigate the possible pathways for the mechanism of the process catalysed
by INT [334]. They found that the only viable mechanism to hydrolyse the DNA substrate
is a nucleophilic attack by an active site water molecule to the phosphorus atom of the
scissile phosphoester bond, with the attacking water being simultaneously deprotonated
by an Mg2+-bound hydroxide ion [334].

A broad variety of questions have been investigated in the last decade. Fox and
co-workers studied mutants of human carbonic anhydrase (HCAII, a metalloenzyme)
to investigate how changes in the organisation of the water molecules filling a binding
pocket can alter the thermodynamics of the ligand–protein association [315]. They used
a combination of calorimetry, crystallography, and computational methods and found
that, within the confines of the HCAII binding pocket, binding events associated with
enthalpically favourable rearrangements of the water molecules are stronger than those as-
sociated with entropically favourable rearrangements of water [315]. Gopal and co-workers
used isothermal titration calorimetry (ITC) and MD simulations to investigate the effect
of solvent composition on the thermodynamics of protein–ligand binding, selecting the
binding of p-aminobenzamidine (PAB) to trypsin in various water/methanol mixtures
as a case study [336]. They found that the MD and free energy simulations reproduced
the experimental binding free energies and also provided atomic-level insights into the
mechanisms underpinning the thermodynamic observations [336]. Achieving full under-
standing of plant polysaccharide biosynthesis remains arduous because of the challenges
in the characterisation of the structure of glycosyltransferase (GT) enzymes. Urbanovicz
and co-workers investigated the mechanistic basis for fucosylation in Arabidopsis thaliana,
where a glycosyltransferase (fucosyltransferase 1, AtFUT1) catalyses the regiospecific trans-
fer of terminal 1,2-fucosyl residues to xyloglucan side chains [337]. QM/MM and MD
calculations suggest that AtFUT1 may use an atypical water-mediated mechanism with the
potential contribution of an H-bonding network for acceptor nucleophile activation [337].

Enzymes are widely used in industrial processes to accelerate chemical reactions and
obtain high selectivity and specificity under ambient conditions (ambient conditions being
recommended within green chemistry perspectives). However, naturally occurring en-
zymes cannot meet the increasing demands of catalysts for green processes’ development,
as they are not always suitable to act as catalysts for non-natural substrates. To address this
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problem, native enzymes have been adapted to catalyse non-natural chemical transforma-
tions on the basis of information obtained through high-throughput screening or through
structure-based computational enzyme design approaches [338]. The latter may entail de
novo design of new active sites or the redesign of existing active sites. Model accuracy
relies on QM/MM and MD simulations to account for the details of LPIs, including the role
of the solvent. Xue and co-workers quantitatively assessed the computationally designed
variants of a Rhodococcus sp. cocaine esterase for the hydrolysis of cephradine, using
MM/Poisson–Boltzmann surface area (MM/PBSA) and MM/generalised Born surface area
(MM/GBSA) methods; the way in which explicit water molecules around the substrate
were considered was based on MD simulations [338].

QM/MM methods are among the most widely used for the computational study of
enzymes and their activities. Sousa and co-workers outline relevant applications [339].
Magalhães and co-workers provide a review in which they list the main tasks for which
QM/MM is used in the study of enzymes (to validate or disprove different mechanistic
hypotheses regarding the catalytic pathway of a specific enzymatic reaction; to obtain
an atomic-level analysis of the main interactions formed in the reactants, transition state,
and products; to identify new scaffolds suitable for drug discovery) as well as the main
modelling choices (preparation of the initial structure, choice of the QM/MM boundary,
choice of the QM level, choice of the MM level, use of link atoms, inclusion of solvent,
use of constraints in the MM region) [340]. Specifically for the solvent, they recommend
that the water molecules that are assumed to directly participate in the reaction, or to
play an important role in directly stabilising a specific group or interaction, should be
included explicitly in the QM region; the other water molecules can be included in the
MM region. The surrounding aqueous environment can be treated with the IEF-PCM or
C-PCM models or, alternatively, a 5–10 Å cap of water molecules included in the MM
region can be added to the enzyme [340]. Jędrzejewsk and co-workers used a combination
of bioinformatics analysis, molecular docking, MD simulations, and QM calculations to
investigate the mechanism through which methyltransferase Nep1 catalyses the N1 methy-
lation of pseudouridine during rRNA processing [341]. The MD simulations identified the
active site arrangements with a water molecule bridging the N1 of pseudouridine and the
putative aspartate proton acceptor through two consecutive H-bonds. The QM calculations
established that the energy barrier for the methylation is lower when water molecules
mediate the proton transfer than in pathways in which the OH group of serine/threonine
acts as a proton shuttle [341].

4.7. Solvent Roles in the Interactions between DNA and Other Molecules

Interactions between DNA and proteins are fundamental for many biological pro-
cesses; the role of solvents has already been considered in Section 4.5. The current section
considers the interactions between DNA and small molecules, more often having the role
of drugs.

DNA was the first target of anticancer drugs, acting on cancer cells with various
mechanisms: antimetabolites, which deplete nucleotides; alkylation agents, which cause
direct DNA damage; and intercalators (mostly containing a rigid planar part, such as
anthracyclines), which bind to DNA in a way that prevents it from unravelling and,
therefore, from duplicating, or damage it in other ways; and other drugs that can damage
it [342]. In a similar way, the DNA of pathogens (e.g., Plasmodium falciparum, causing
the most dangerous form of malaria, or DNA-based viruses) is a biological target in the
treatment of the corresponding diseases, and RNA becomes a target for RNA-based viruses.
The importance of considering the role of water has been acknowledged since early studies
of the binding of a drug with DNA (e.g., [343–345]).

Sheng and co-workers list the major components of the interactions between DNA
and ligands as hydrophobic packing, direct H-bonding of the ligand to the groove floor
before and after the turn, water-mediated H-bonding of the ligand to the groove floor, and
conformational puckers that minimise steric interactions of the ligand [346]. They also
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list the main strategies through which cancer DNA can be targeted by small molecules:
Pt-containing compounds forming covalent bonds with DNA (e.g., cisplatin, or some
organic compounds); minor or major groove binders; intercalators; multifunctionalised
ligands; targeting the DNA quadruplex; targeting unmatched bulge, DNA junctions, and
the phosphate backbone. Understanding the details of the ligand–DNA interaction is
important for the design of new drugs, or the design of modified drugs with reduced side
effects with respect to the current ones [346].

Experimental studies on DNA–ligand interactions in the cellular environment have
remained problematic due to the scarcity of suitable biophysical tools [347]. Already in
2009, Ricci and Netz noted the scarcity of ligand–DNA docking studies in comparison with
the abundance of ligand–protein docking studies [348]. A major challenge for the design of
small molecules that can target DNA stems from the absence, in DNA molecules, of the
clearly identifiable binding sites (pockets) present in proteins. The design could focus on
molecules that can selectively bind DNA in specific areas and also meet criteria such as
water solubility, cellular and nuclear uptake, and absence of off-site activities [349]. Carter
and co-workers used long-timescale MD simulations to analyse the sequence-specific DNA
association of a synthetic small molecule; what happened to water (displacement from the
DNA minor groove involved in the binding) was a major focus of attention because of its
recognition-related role [349].

Schuurs and co-workers consider an approach in which small molecules target a
protein (human single-stranded-DNA-binding protein 1) that binds to DNA and plays
an important role in the ability of cancerous cells to survive traditional treatments; they
discovered three small molecules that appear to prevent that protein from binding to DNA
by binding to the protein’s site that would bind to DNA, and they used MD simulations
with co-solvent simulation in the study of the interactions between the small molecules
and the protein [350].

The other nucleic acid, RNA, can also become a target for drug action, including
against RNA-based viruses. Lang and co-workers compiled a test set of RNA–ligand
complexes to validate the ability of the DOCK suite of programmes to recreate experimen-
tally determined binding poses; they noted that the success rate increases to 80% when
docking-obtained conformations are rescored with the PBSA and GBSA implicit solvent
models in combination with explicit water molecules and sodium counterions [351]. Panei
and co-workers designed a computational technique to identify potential binding sites for
small molecules in RNA structural ensembles and included the solvent consideration in
the corresponding software [352].

The extensive industrial uses of DNAs in biotechnologies have made it important to
evaluate the interactions with other solvents, besides those present in living organisms.
Yusof and co-workers used spectroscopic analysis and MD simulations to investigate the
binding characteristics of calf thymus DNA in a tetrabutylammonium-bromide-based
DES [353]. DNA-templated silver clusters with up to about 30 silver atoms have proven to
be bright emitters in the visible to near-infrared range, with the phenomenon controlled by
the selected DNA sequence [352]. Malola and co-workers studied the DNA-stabilised silver
cluster Ag16Cl2 in aqueous solution at the DFT level, using an implicit solvent model, and
inferred that the consideration of explicit solvent molecules at the DNA–water interface
would be important for the study of transitions in the high-UV region [354].

Knowing how small molecules interact with DNA is important also to prevent damage
to DNA. Molecules that are identified as being toxic to DNA need to be removed from
industrial wastes or any material that reaches the environment or comes in contact with
human beings. Li and co-workers investigate the ability of a series of DESs to remove
traces of substances that are toxic to DNA and used the information from MD simulations
to improve aspects of the practical procedure [355].
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5. Discussion and Conclusions

The examples considered in the previous sections illustrate the importance of taking
into account the properties of solvents, the interactions between solvent and solute and
the effects of these interactions on the properties and behaviour of the solute, and—quite
often—also the importance of following individual solvent molecules that are particularly
relevant for the interactions or for a process. Computational chemistry offers a variety of
approaches to investigate these aspects; it can help validate and interpret experimental in-
formation; it can also predict properties and behaviours, thus guiding further experiments,
or find information that is not easily detectable experimentally. The possible applications
cover a broad range, from the selection or design of green solvents and production pro-
cesses that can utilise them efficiently to the design of new materials and to continuous
advancements in our understanding of biological processes and of the possibilities of
treating diseases. Continuous improvement in the computational modelling power can be
expected, ensuing from both the envisaged theoretical refinements on which the models are
based and the incessant and fast technological growth of computers’ technology. Therefore,
the extent and quality of the contributions that computational chemistry can bring to
the crucial problems concerning solutions and the phenomena occurring in them can be
expected to increase steadily.
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