
Citation: Khayrullaev, H.; Omle, I.;

Kovács, E. Systematic Investigation of

the Explicit, Dynamically Consistent

Methods for Fisher’s Equation.

Computation 2024, 12, 49. https://

doi.org/10.3390/computation12030049

Academic Editor: Ravi P. Agarwal

Received: 2 February 2024

Revised: 25 February 2024

Accepted: 1 March 2024

Published: 4 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

computation

Article

Systematic Investigation of the Explicit, Dynamically Consistent
Methods for Fisher’s Equation
Husniddin Khayrullaev 1, Issa Omle 1,2 and Endre Kovács 1,*

1 Institute of Physics and Electrical Engineering, University of Miskolc, 3515 Miskolc, Hungary;
issa.j.omle@gmail.com (I.O.)

2 Department of Fluid and Heat Engineering, University of Miskolc, 3515 Miskolc, Hungary
* Correspondence: kendre01@gmail.com or endre.kovacs@uni-miskolc.hu

Abstract: We systematically investigate the performance of numerical methods to solve Fisher’s
equation, which contains a linear diffusion term and a nonlinear logistic term. The usual explicit finite
difference algorithms are only conditionally stable for this equation, and they can yield concentrations
below zero or above one, even if they are stable. Here, we collect the stable and explicit algorithms,
most of which we invented recently. All of them are unconditionally dynamically consistent for
Fisher’s equation; thus, the concentration remains in the unit interval for arbitrary parameters. We
perform tests in the cases of 1D and 2D systems to explore how the errors depend on the coefficient
of the nonlinear term, the stiffness ratio, and the anisotropy of the system. We also measure running
times and recommend which algorithms should be used in specific circumstances.

Keywords: diffusion; Fisher’s equation; explicit time integration; stiff equations; anisotropic systems

1. Introduction

Fisher’s equation, sometimes also called the Fisher–Kolmogorov–Petrovsky–Piskunov
equation [1], includes an additional logistic reaction term in addition to the standard
diffusion term:

∂u
∂t

= α ∇2u + βu(1 − u). (1)

Here u is the unknown function, which usually represents the concentration. In this
case, the range of u is the unit interval [0, 1]. Without the logistic term, the equation is
the common heat equation, where u is the temperature, often measured in Kelvin units.
Equation (1) is proposed to model how gene-variants spread in space, how misfolded
proteins grow and spread in neurophysiology [2], and how fronts propagate in combustion
processes [3]. Some chemotaxis models [4,5] can be considered further generalizations of
Fisher’s equation.

It is worth mentioning that traveling wave analytical solutions for a kind of Kolmogorov–
Petrovsky–Piskunov equation (generalized Fisher’s equation) were achieved through
Cole–Hopf transformation in [6]. Solutions for time-dependent coefficients were con-
structed by Hammond and Bortz [7]. In our work, we will use another analytical solu-
tion [8,9] as a reference solution to calculate the numerical errors.

Fisher’s equation has been solved numerically by several research groups. For exam-
ple, a Petrov–Galerkin finite element method, including Gaussian elimination, was used
by Tang and Weber [10]. Chandraker et al. [11] designed a semi-implicit finite difference
scheme in one dimension with first-order accuracy in time and second-order accuracy in
space. An exponential B-spline collocation method was proposed by Dag and Ersoy [12]
that uses the exponential cubic B-spline in space and the Crank–Nicolson method in time.
Tamsir and Huntul suggested [13] a new hybrid method based on cubic uniform algebraic
trigonometric tension B-spline functions and the differential quadrature method.
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It is commonly known that the true solution of the diffusion or heat equation always
follows the minimum and maximum principles [14] (p. 87). The minimum principle implies
the so-called positivity-preserving property, i.e., that the equation does not yield negative
values if the initial and boundary values are non-negative. When a source or reaction
term exists in the diffusion equation, these rules generally do not apply. However, in the
case of Fisher’s equation, a similar phenomenon is present due to the logistic nature of
the reaction term. In the case of Equation (1), if the initial and boundary values of the u
variable are in the unit interval, then u remains in this interval for any non-negative values
of the parameter β. Therefore, the applied numerical schemes should also preserve this
property of the solution, which may be called dynamical consistency. We note that the
property ‘dynamical consistency’ of numerical algorithms can have several definitions [15],
formulating that the numerical solutions reflect important properties of the true solutions
of the original system. In this paper, in connection with Fisher’s equation, we will use
the above-mentioned meaning. In the case of standard finite difference or finite element
methods, dynamical consistency is not guaranteed. Thus, the solutions produced by these
algorithms can occasionally provide negative and non-physical numbers. Subsequently,
the solutions may begin to oscillate, resulting in numerical instabilities. This is especially
frequent in the case of the common explicit methods since they are mostly unstable for
the linear diffusion equation if the time step size is above the mesh Fourier number or,
in other terminology, the CFL limit. Implicit methods, on the other hand, have better
stability features, but they require solving a system of algebraic equations, which can be
very demanding if the size of the system is large.

There are some researchers working with unconditionally positive methods [16–18] to
solve similar equations. The positivity of solutions has also been included in numerical tech-
niques for solving ordinary differential equations [19]. A positivity-preserving technique
for a system of advection–reaction–diffusion equations defining chemotaxis/haptotaxis
models was devised by Chertock and Kurganov [20]. However, their method is positivity-
maintaining only when the time step size is smaller than the CFL number, which is rather
low. The same can be said about those nonstandard finite difference schemes (NSFD) that
have been used to solve the Fisher and Nagumo problem by Agbavon et al. [9,21] and to
solve cross-diffusion equations by Songolo [22] and by Chapwanya et al. [23].

In this work, we deal only with methods that are unconditionally dynamically consis-
tent. This paper may be seen as a substantial extension of our earlier publication [24], where
we performed tests of some positivity-preserving methods with a first or second order of
convergence for the linear heat or diffusion equation. Since then, we have constructed
third- and fourth-order numerical methods [25] that can solve some nonlinear equations
as well, with the property of dynamical consistency. In this research paper, we involve
these methods as well and focus on Fisher’s equation. We conduct systematic testing by
sweeping specific parameters to investigate the performance of the various algorithms to
see which of them is optimal in various scenarios.

The paper’s outline is as follows. In Section 2, the spatial discretization of Fisher’s
equation is considered both in the simplest one-dimensional case as well as in a very
general case. In Section 3, we first briefly recall the 12 numerical schemes that can be
applied to the diffusion equation. Then, six different operator-splitting treatments of the
nonlinear term are presented with analytical results. In Section 4, we verify our code by
testing the 72 obtained algorithm combinations using an analytical reference solution and
keep only 24 of them for further tests. In Section 5, tests with running-time measurements
are performed for a stiff and for an anisotropic 2D system to select the top 10 methods.
Section 6 presents three further numerical tests with a parameter sweep for the stiffness
ratio, nonlinear coefficient β, and anisotropy ratio. Section 7 summarizes our conclusions
and recommendations about the numerical techniques used.
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2. The Studied Equation and Its Space Discretization

Let us discretize the time variable uniformly, which means t ∈
[
t0, tfin], and

tn = t0 + nh , n = 1, . . . , T , hT = tfin − t0.

First, an equidistant discretization of the interval x ∈ [x0 , xN = x0 + L] ⊂ R is
constructed:

xj = x0 + j∆x , j = 1, . . . , N , N∆x = L.

The application of the usual central difference approximation of the second space
derivatives yields a system of ordinary differential equations (ODEs) for nodes
i = 1, . . . , N − 1:

dui
dt

= α
ui−1 − 2ui + ui+1

∆x2 . (2)

In the case of Dirichlet boundary conditions, the time development of the first and last
node will be given. We define a matrix M with the following elements:

mii = − 2α

∆x2 (1 < i < N), mi,i+1 =
α

∆x2 (1 ≤ i < N), mi,i−1 =
α

∆x2 (1 < i ≤ N). (3)

This matrix is tridiagonal in the one-dimensional case. Now, equation system (2) can be
written in matrix form:

d
→
u

dt
= M

→
u . (4)

If the diffusivity of the media depends on space, the following PDE can be used:

∂u
∂t

=
∂

∂x

(
α(x)

∂u
∂x

)
. (5)

We discretize the function α and, simultaneously, ∂u/∂x in Equation (5) to obtain

∂u
∂t

∣∣∣∣
xi ,tn

=
1

∆x

[
α

(
xi +

∆x
2

, tn
)

u(xi + ∆x)− u(xi)

∆x
+ α

(
xi −

∆x
2

, tn
)

u(xi − ∆x)− u(xi)

∆x

]
.

If the diffusivity between cell i and its (right) neighbor is denoted by αi,i+1, then,
instead of (2), we obtain

dui
dt

=
1

∆x

(
αn

i,i+1
ui+1 − ui

∆x
+ αn

i,i−1
ui−1 − ui

∆x

)
.

Now, one can introduce a resistance–capacitance model by introducing cells instead
of nodes. One can define the capacity of the cell, which, in the simplest case, is the same
as the volume of the cell and can be given as Ci = Vi = ∆x. The resistances are calculated
as follows:

Ri, i+1 =
∆x

αi, i+1
, i = 1, . . . , N − 1.

Now the time derivative of each cell-concentration is determined by the equation

dui
dt

=
ui−1 − ui
Ri,i−1Ci

+
ui+1 − ui
Ri,i+1Ci

,

which can be written in a similar matrix form as (4). This ODE system can be easily
generalized to two or three space dimensions:

dui
dt

= ∑
j ̸=i

uj − ui

Ri,jCi
. (6)
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In two space dimensions, the numbering of the cells is along the horizontal
(x-directional) rows from 1 to Nx and then from Nx + 1 to 2Nx, etc. We note that the
definitions of the resistances and capacitances of the cells are not so simple in complicated
cases, e.g., in porous materials, where the porosity and other factors must be taken into
account (see [26] and the references therein). Either way, the resistance–capacitance model
is very flexible and easy to adapt to various circumstances.

The eigenvalues of the system matrix M with the (nonzero) smallest and biggest
absolute values are denoted by λMIN and λMAX, respectively. The system’s stiffness ratio
can now be found using SR = λMAX/λMIN, and the maximum time step size that the
FTCS (explicit Euler) scheme can use for the pure diffusion problem is precisely provided
by hFTCS

MAX = |2/λMAX |, beyond which the solutions are predicted to diverge owing to
instability. Referred to the CFL limit or mesh Fourier number, this hFTCS

MAX threshold time
step size is also valid for second-order explicit Runge–Kutta (RK) algorithms. While we
emphasize once more that this constraint does not apply to any of the methods shown here,
these two numbers provide insight into the problem’s degree of difficulty.

3. The Tested Methods

We begin with the brief presentation of the numerical schemes for the linear diffusion
equation, and only after this, the treatments of the nonlinear term will be described. For a
one-space-dimensional equidistant mesh with constant diffusivity, r = αh

∆x2 = −miih
2 > 0,

0 < i < N − 1 is the widely used mesh ratio. The case of the general mesh can be simply
handled if one introduces the following notations:

ri = h∑
j ̸=i

1
CiRij

= hmii and Ai = h∑
j ̸=i

un
j

CiRij
= h∑

j ̸=i
mijun

j . (7)

The first quantity is the generalization of r (defined above) while the second one reflects
the state and the effect of the neighbors of cell i as well. Therefore, in this simple case,

ri = 2r and Ai = r
(
un

i−1 + un
i+1
)
, thus

Ai
ri

=
un

i−1 + un
i+1

2
. (8)

Keeping these in mind, it is enough to present the generalized formula of the numerical
schemes.

3.1. The Applied 12 Convex Combination Scheme for the Diffusion Equation

1. The UPFD method [16] is a simple one-stage algorithm with the formula

un+1
i =

un
i + Ai

1 + 2ri
. (9)

2. The constant neighbor (CNe) method for Equation (1) is

un+1
i = un

i ·e− ri +
Ai
ri

(
1 − e− ri

)
. (10)

3. The LH-CNe belongs to the family of odd–even hopscotch methods; thus, the space
must be discretized by a special, so-called bipartite grid. The cells are labelled as odd and
even, and all the nearest neighbors of the odd nodes are even and vice versa. In the case of
the leapfrog–hopscotch (LH) structure, one starts with a half time step, e.g., with the even
cells, then full time steps come strictly alternately for the odd and even cells until the end
of the last timestep, which should be halved for the even cells to reach at exactly the same
final time as the odd cells do. The main point is that when a new value of ui is calculated,
always the latest values of the neighbors ui±1 must be used, which ensures stability and
rather fast convergence at the same time. In the case of the LH-CNe method examined in
this work, the CNe formula is used in each stage with the appropriate time step size. A
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pseudocode of this method is presented in Appendix A that includes the treatment of the
nonlinear term.

4. The CpC algorithm calculates new predictor values of the variables with the CNe
formula, but with a ∆t1 = ∆t/2 time step:

upred
i = un

i e− ri/2 +
Ai
ri

(
1 − e− ri/2

)
. (11)

In the second stage, we can use (10) and take a full time-step-size corrector step using
the CNe formula again. Thus, the final values at the end of the time step are

un+1
i = un

i ·e− ri +
Apred

i
ri

(
1 − e− ri

)
, (12)

where, of course, the predictor values are used to obtain the Apred
i quantities.

5. The linear-neighbor (LNe or sometimes LNe2) method is also a kind of predictor-
corrector method. Its first stage uses the CNe method to calculate the new upred

i values for
the final time of the actual time step. Using these predictor values one can calculate

Apred
i = ∆t∑

j ̸=i

upred
j

CiRij
, (13)

and then the corrector values are obtained as follows:

un+1
i = un

i e− ri +

(
Ai −

Apred
i − Ai

ri

)
1 − e− ri

ri
+

Apred
i − Ai

ri
. (14)

6. The values provided by Equation (14) can be used to calculate Apred
i again; thus,

one can repeat (13) and (14) to refine the results. Since in this case, there are three stages
altogether, the algorithm is called LNe3.

7–8. The LNe4 (LNe5) method is a four (five)-stage algorithm that is obtained by
repeating the procedure explained in the previous point after the calculations of the LNe3
(LNe4) scheme. These iterations, unfortunately, do not improve the order, but increase the
accuracy of the results.

9. The first two stages of the three-stage Constant-Linear-Quadratic-neighbor (CLQ)
method [25] are the same as those of the LNe method, with the exception that the second
LNe stage has to be made with not only a full but also a half time step size using (16). If

we denote these results using uL
i and uL 1

2
i , respectively, then one can use these to calculate

Apred, L
i and Apred, L 1

2
i , such as in Equation (13), and then Si = 4Apred, L 1

2
i − Apred, L

i − 3Ai

and Wi = 2
(

Apred, L
i − 2Apred, L 1

2
i + Ai

)
, where Ai is calculated at the beginning of the

first stage. The final concentration values at the end of the time step are given by

uQ
i = e− ri un

i +
1 − e− ri

ri

(
2Wi

r2
i

− Si
ri

+ Ai

)
+

Wi(1 − 2/ri) + Si
ri

. (15)

10. One can use the CLQ function values obtained above to add one more stage, with
which we will have a four-stage scheme called the CLQ2 method. For this, the midpoint
values must be calculated after the third stage as follows:

uQ1/2
i = e− ri/2un

i +
1 − e− ri/2

ri

(
2Wi

r2
i

− Si
ri

+ Ai

)
+

Wi
4ri

− Wi
ri

2 +
Si
2ri

. (16)
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Then, in Stage 4, we repeat the calculations of the third stage, but we use Apred, Q
i and

Apred, Q1/2

i to obtain the new values of S and W, etc.
11–12. This iteration can be further repeated in the very same way as in point 10 above.

In this way, one can obtain the CLQ3 algorithm (five stages altogether) and the CLQ4
algorithm (six stages altogether) [25].

The UPFD and the CNe algorithms are first-order; the LH-CNe, CpC, and LNe-LNe5
algorithms are second-order; the CLQ is third-order; and the CLQ2-4 is fourth-order in
time. Their exceptional stability is the consequence of the following property:

Theorem 1. If Schemes 1–8 are applied to the spatially discretized linear diffusion in Equation (2)
or (6), then the new un

i values are the convex combinations of the initial values u0
j . The same is true

when the CLQ–CLQ4 schemes are applied to Equation (2).

The proof of the theorem, as well as some more detailed descriptions of the dis-
cretization and the methods can be found in our earlier publications, e.g., [24,25], and the
references therein.

According to all of our numerical experiments, the statement in Theorem 1 holds for
the CLQ-CLQ4 algorithms in the case of the generalized Equation (6), but this has not been
proved analytically yet.

Due to Theorem 1, all the methods used are unconditionally stable for the linear heat
conduction equation, implying that the above-mentioned mesh Fourier number or CFL
limit does not affect their stability. However, as we will observe, it does affect their accuracy.
The price one must pay for unconditional stability is conditional consistency in the sense
that the refinement of the spatial mesh without decreasing the time step size does not yield
better accuracy. This is due to some extra terms in the truncation error that contain the
combination of the space and time step sizes. This phenomenon has been investigated
analytically and numerically in our previous works (e.g., [25,27]), and it has nothing to
do with the dynamical consistency of the methods. It must be underlined again that only
a small portion of the explicit methods are unconditionally stable, and only a few of the
unconditionally stable schemes have the convex combination property.

3.2. The Numerical Treatments of the Nonlinear Term

The nonlinear logistic term is implemented via operator splitting, whereby we address
the effect of the diffusion term and the nonlinear term independently. The diffusion term is
handled in the 12 above-listed ways. The outcome of those algorithms can be denoted by
udiff

i , which represents the concentration value when the diffusion term is fully considered.
The effect of the reaction term, which has the form

βu(1 − u) = βu − βuu, (17)

is calculated in two ways. The first way is called “pseudo-implicit” treatment [25] and
involves a selective replacement of u in the right-hand side of (17) with the udiff

i values and
the new, unknown value un+1

i to obtain

un+1
i − udiff

i
h

= βudiff
i − βudiff

i un+1
i . (18)

This can be simply rearranged to take on a completely explicit form:

un+1
i =

1 + βh
1 + βhudiff

i
udiff

i . (19)

Note that no negative terms appear on the right-hand side of this formula.
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The other way is obtained if we solve the ODE

du
dt

= βu(1 − u) (20)

analytically. To be more exact, the appropriate initial value problem is solved in which the
initial time is the first point of the actual time step and the udiff

i values are the initial values
of u for each cell. This yields the formula

un+1
i =

1
udiff

i +
(
1 − udiff

i
)
e−βh udiff

i . (21)

The advantage of this so-called quasi-exact way is that it avoids approximation and
linearization, aside from the operator splitting itself. However, for some more complicated
nonlinear terms, e.g., in the Nagumo equation, the analytical solution does not exist, but the
pseudo-implicit treatment can be used without difficulties [25]. We note that Ramos [28]
used linearization techniques slightly similar to our pseudo-implicit treatment, which,
however, are not dynamically consistent.

Remark 1. Suppose that 0 ≤ udiff
i ≤ 1. Now, it is clear from looking at the coefficient of udiff

i that
both the numerators as well as the denominators in Equations (19) and (21) are always positive, and
the denominators cannot be greater than the numerators. Additionally, the right-hand sides never
exceed one. These immediately imply that the new value un+1

i cannot be negative or less than the
value udiff

i , and therefore, 0 ≤ udiff
i ≤ un+1

i ≤ 1.

In the case of the simple operator splitting, a time step starts with one of the algorithms
listed in Section 3.1, and then the operation (19) or (21) is performed as an extra step. We
also apply Strang splitting, where operations (19) and (21) are performed twice in one
time step: before and after the calculation of the effect of diffusion. In these cases, the
substitution h → h/2 must be performed in (19) and (21). Strang splitting also allows us to
mix (hybridize) the pseudo-implicit and the quasi-exact treatments, e.g., perform (19) with
halved h before and (21) after the scheme (1–12) for the diffusion equation.

Theorem 2. (The methods’ dynamical consistency.) Assume one solves Fisher’s Equation (1) using
Schemes 1–12 with treatments (19) or (21) with or without Strang splitting. If the starting values
of the concentration fall within the unit interval u0

i ∈ [0, 1], then the values of u stay within
this interval for any non-negative β and time step size h for the whole duration of the calculation.
Furthermore, the existence of the Fisher term (increasing β from zero to arbitrary positive value) can
cause only an increase, and never the decrease, in the u values, which faithfully reflects a dynamical
property of PDE (1).

Proof of Theorem 2. The statement is immediately yielded by Theorem 1 and Remark 1. □

Theorem 2 inherently implies unconditional stability and is comparable to the max-
imum and minimum principles valid for the pure diffusion equation. The statements of
Theorem 2 were published in our paper [25] for only a few of the 12 schemes listed above
and without mentioning Strang splitting.

4. Verification in 1D
Experiment 1: One Space Dimension Using an Exact Solution

The analytical solution [8,9], valid for α = 1, is presented below:

uexact(x, t) =
(

1 + e
√

β
6 x− 5

6 βt
)−2

. (22)



Computation 2024, 12, 49 8 of 19

This is used as the reference solution for PDE (1). The initial condition is obtained simply
by substituting the initial time into Equation (22). The appropriate Dirichlet boundary
conditions are prescribed by the substitution of the left- and right-side coordinates of the
examined interval, which are x ∈ [0 , 2 ].This is discretized by dividing the interval into
100 equal parts: xj = x0 + j∆x , j = 1, . . . , 100 , ∆x = 0.02. The initial and the final times
are t0 = 0 and tfin = 0.1. The nonlinear coefficient is quite large: β = 29.

The maximum numerical errors are calculated by comparing the numerical solutions
unum

j produced using the examined method with the analytical reference solution uref
j at

the final time tfin using the formula

Error(L∞) = max
0≤j≤N

∣∣∣uref
j (tfin)− unum

j (tfin)
∣∣∣. (23)

In our experiments, we calculated the error for S = 13 different time step sizes for all
the examined methods. The results for three different kinds of treatment are presented in
Figures 1–3. Very similar plots have been obtained for the three other treatments and for
other values of parameters such as β, tfin, etc. The algorithms exhibit smooth convergence
and show no signs of instability. However, as noted above, the inconsistent terms in the
truncation error cause this convergence to be slow for larger time step sizes.
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In order to compare the overall accuracy of the 72 different combinations, we introduce
the so-called aggregated errors (AgE). In the case of the maximum errors, they are given by
the following formula:

AgE(L∞) =
1
S

S

∑
s=1

log(Error(L∞)). (24)

A similar aggregated error can be calculated using the average absolute error:

Error(L1) =
1
N ∑

0≤j≤N

∣∣∣uref
j

(
tfin
)
− unum

j

(
tfin
)∣∣∣. (25)

The third possibility provides the energy error in the case of the heat equation; thus,
we traditionally refer to it as the energy error:

Error(Energy) = ∑
1≤j≤N

Cj

∣∣∣uref
j

(
tfin
)
− unum

j

(
tfin
)∣∣∣. (26)

Lastly, it is also possible to compute the three types of the errors’ simple average:

AgE =
1
3
(AgE(L∞) + AgE(L1) + AgE(Energy)). (27)

It is obvious that algorithm combinations with larger absolute values of AgE are more
accurate. The AgE values are tabulated in Table 1 and visualized in Figure 4. One can
observe that the quasi-exact treatment is almost always more accurate than the pseudo-
implicit one. Strang splitting yields significantly larger accuracy, usually for the higher-
order, more accurate methods, e.g., for the CLQ3 and CLQ4 schemes. The mixed treatments
are rarely competitive, and since they are more complicated to code, we omit them from
future investigations. Only the QE and QE-Strang treatments for all the 12 methods,
comprising 24 combinations altogether, will be carried forward to further examinations.

Table 1. Aggregated error (AgE) values for each method combined with each different treatment in
Experiment 1.

Numerical
Method

Treatment of the Nonlinear Term

PI QE PI-St QE-St PI-QE-St QE-PI-St

UPFD −9.93 −10.74 −10.25 −10.74 −10.48 −10.48
CNe −11.46 −12.32 −11.80 −12.31 −12.043 −12.04

LH-CNe −18.92 −21.685 −21.27 −20.11 −22.34 −22.41
CpC −18.03 −20.15 −18.72 −19.96 −19.29 −19.32
LNe −17.67 −19.64 −18.37 −19.50 −18.90 −18.89
LNe3 −20.57 −24.47 −21.84 −24.74 −22.99 −23.03
LNe4 −21.82 −26.33 −23.38 −27.30 −24.90 −24.98
LNe5 −23.28 −27.56 −25.28 −28.99 −27.71 −27.81
CLQ −20.90 −25.07 −22.18 −25.47 −23.42 −23.42
CLQ2 −22.33 −27.19 −23.92 −29.07 −25.61 −25.61
CLQ3 −23.16 −28.47 −24.94 −31.34 −26.91 −26.91
CLQ4 −23.71 −29.34 −25.63 −32.94 −27.81 −27.79
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5. Testing of Performance with Running Time Measurements

From this point, we will have two space dimensions and we will use the capacity–
resistivity model explained in Section 2. We generate random values for the capacities and
the resistances with a log-uniform distribution as follows:

Ci = 10(aC−bC×rand), Rx,i = 10(aRx−bRx×rand) , Rz,i = 10(aRz−bRz×rand). (28)

By varying the a and b parameters, we are able to produce highly different test problems.
Here rand comprises random numbers generated using MATLAB in the unit interval. The
running times are measured using the tic-toc function of MATLAB. In order to minimize the
effects of the random fluctuations, the calculations are performed 100 times subsequently,
and then the average running times are calculated. From this point, the reference solution
is provided by the MATLAB R2020b ode15 solver with a very stringent tolerance.

5.1. Experiment 2: Stiff System

Now, PDE (1) with α = 1 is going to be solved using 24 algorithm combinations.
The used system size and final time are Nx = 25, Nz = 50, tfin = 0.4 , while β = 6,
and aC = 3, bC = 6, aRx = 1, bRx = 2, aRz = 2, bRz = 4. These parameters yield
SR = 1.92·109 hFTCS

MAX = 1.83·10−5, which means that the system is rather stiff. The initial
concentrations are random numbers: u0

i = rand. We present the obtained errors as a
function of the running times. Since the curves are very close to one another, we separately
display the low-accuracy and the high-accuracy parts in Figures 5 and 6, respectively. One
can see that the methods behave well in these cases as well.
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5.2. Experiment 2: Anysotropic System

In this case, the used system size and final time are Nx = 15, Nz = 80, tfin = 0.4, the
coefficient of the Fisher term is β = 9, and the exponents are aC = 1, bC = 2 and aRx = 2,
bRx = 2, aRz = 0, bRz = 2. These parameters give SR = 5.66·105 and hFTCS

MAX = 10−4, which
means that the system is only moderately stiff. However, the resistances in the x direction
are two orders of magnitude larger than in the z direction; therefore, the system is quite
anisotropic. The initial concentrations are random numbers in the left half of the unit
interval u0

i = rand/2. We present the maximum error as a function of the running time in
Figure 7.
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One can see that all of the examined 24 combinations behave well in this case as well. In
Experiments 2 and 3, the LH method is the most efficient with and without Strang splitting
when only low accuracy is required. The LNe and CpC methods also have acceptable
performance. For high accuracy, the CLQ family with Strang splitting clearly outperforms
the other methods. Based on the results of Experiments 1, 2, and 3, we choose LH-CNE-Qe,
LH-CNe-QE-St, CpC-QE, LNe3-QE-St, LNe4-QE-St, LNe5-QE-St, CLQ-QE-St, CLQ2-QE-St,
CLQ3-QE-St, and CLQ4-QE-St as the top 10 methods for further investigation.

We note that we performed these running time measurements in the case of the PI
treatments just to check whether this treatment type is not significantly faster than the QE
treatment. We found that choosing QE or PI does not noticeably influence the running times,
which is logical since the exponential expression e−βh does not depend on time or space
and thus has to be calculated only once. However, in cases where the coefficient β depends
on both space and time, calling the exponential function could significantly slow down the
calculations when they use the QE treatment, and thus, the PI could become competitive.
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6. Testing of Performance with Parameter Sweep for the Top 10 Methods
6.1. Comparison of the AgE Errors as Functions of the Stiffness Ratios

Test problems with different stiffness ratios have been constructed using the exponents
of the mesh-cell data distribution. To be more specific, we have made use of the factors
listed in Table 2. The nonlinear coefficient is β = 5, the sizes of the grid are fixed to
Nx = 21 and Nz = 20, the initial values are u0

i = rand, and the final time is tfin = 0.4.
We have applied S = 15 different time step sizes and then applied Formula (27) for the
aggregated error.

Table 2. The exponents of the capacities and resistances.

Number Type ac bc aRX bRx aRz bRz Stiffness Ratios hMax

1
Non Stiff

0 0 0 0 0 0 356 0.251
2 −1 1 0 0 0 0 4806.8 0.048
3

Mildly Stiff
−1 1 −1 1 0 0 1.64 × 104 0.012

4 −1 1 −1 1 −1 1 2.36 × 104 0.007
5

Moderately Stiff
−2 2 −1 1 −1 1 1.11 × 106 0.001

6 −2 2 −2 2 −1 1 3.92 × 106 2.98 × 10−4

7 −2 2 −2 2 −2 2 9.74 × 106 1.45 × 10−4

8
Very Stiff

−3 3 −2 2 −2 2 8.97 × 108 2.04 × 10−5

9 −3 3 −3 3 −2 2 1.34 × 1010 1.48 × 10−6

10 −3 3 −3 3 −3 3 8.56 × 1010 1.48 × 10−6

The AgE error as a function of the stiffness ratio is displayed in Figure 8 and Table 3. We
see that the methods’ accuracy values decrease with rising stiffness ratios and decreasing
CFL limits as expected. For low stiffness, the Strang splitting treatment has a substantial
advantage, which is diminishing with increasing stiffness. The relative advantage of the
high-order CLQ family is large for medium stiffness, but starts to vanish for very high
values of the stiffness ratio due to the so-called order reduction.
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Table 3. Aggregated error (AgE) values for positivity-preserving methods of different treatments.

Algorithms

The Stiffness Values

356 4806.8 1.6 × 104 2.4 × 104 1.1 × 106 3.9 × 106 9.7 × 106 8.9 × 108 1.3 × 1010 8.5 × 1010

AgE Errors

LH-CNe-QE −50.18 −48.94 −48.20 −48.36 −45.42 −42.39 −39.90 −35.03 −25.41 −22.08

LH-CNe-QE-St −93.60 −84.68 −76.80 −74.15 −61.08 −51.02 −46.17 −37.83 −25.72 −22.21

CpC-QE −46.11 −45.52 −45.55 −45.63 −42.61 −39.25 −38.87 −33.33 −26.64 −21.05

LNe3-QE-St −89.78 −88.97 −79.07 −75.70 −61.40 −51.58 −49.43 −39.96 −26.50 −23.40

LNe4-QE-St −89.80 −89.34 −79.31 −75.96 −61.82 −51.99 −49.97 −40.76 −27.05 −24.01

LNe5-QE-St −89.80 −89.41 −79.35 −76.00 −61.90 −52.19 −50.14 −41.28 −28.14 −24.28

CLQ-QE-St −89.76 −89.99 −85.79 −84.86 −73.93 −64.14 −58.19 −47.9 −29.52 −26.51

CLQ2-QE-St −89.77 −89.86 −86.03 −85.36 −76.92 −69.28 −65.11 −52.04 −31.52 −29.27

CLQ3-QE-St −89.77 −89.81 −86.03 −85.57 −78.15 −70.77 −67.88 −53.59 −33.56 −31.76

CLQ4-QE-St −89.77 −89.80 −86.04 −85.59 −78.48 −71.23 −68.40 −54.16 −34.50 −32.08

6.2. Comparison of the AgE Errors as Functions of the β Parameter

Here, we have used the β ∈ {0, 1, 2, 4, 6, 10, 15, 20, 25, 30} values of the nonlinear
coefficient to calculate the AgE values. All a and b exponents are zero, which means
C = 1, Rx = Rz = 1 for all cells. The sizes of the grid are fixed to Nx = 101 and Nz = 2,
and the final time is tfin = 0.1. The initial values are u0

i = 1/i.
The AgE error as a function of the β parameter is displayed in Figure 9. We see that the

accuracy of the methods becomes worse when the value of the β parameter is increasing.
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6.3. Comparison of the AgE Errors as Functions of the Anisotropy Coefficients (ACs)

Here, the sizes of the grid have been fixed to Nx = 11 and Nz = 30, and the final
time is tfin = 0.4. We have used the β = 4, Ci = 1, and u0

i = rand parameters. To
perform the parameter sweep for the anisotropy, the following anisotropy coefficient has
been introduced:

AC =
Rx
Rz

(29)

The horizontal and vertical resistances have been adjusted to obtain an increasing series
for this AC parameter as displayed in Table 4. The aggregated error as a function of the
anisotropy coefficient AC is also tabulated in Table 4, as well as in Figure 10.

Table 4. The different anisotropy coefficients (AC) used in the simulation.

Rx 1 2 4 8 16 32 64 128

Rz 1 1/2 1/4 1/8 1/16 1/32 1/64 1/128

A.C. 1 4 16 64 256 1024 4096 16,384

Algorithms AgE Errors

LH-CNe-QE −40.594 −40.858 −40.511 −41.287 −39.53 −37.822 −34.651 −30.609

LH-CNe-QE-St −73.404 −71.645 −64.797 −58.332 −50.699 −46.178 −39.455 −31.602

CpC-QE −37.551 −37.922 −37.662 −38.833 −38.085 −36.896 −34.363 −32.209

LNe3-QE-St −71.916 −71.156 −66.913 −63.708 −60.004 −54.236 −48.351 −43.201

LNe4-QE-St −71.933 −71.163 −66.973 −63.82 −60.507 −55.078 −49.844 −44.516

LNe5-QE-St −71.933 −71.163 −66.988 −63.818 −60.624 −55.251 −50.331 −44.917

CLQ-QE-St −71.706 −70.835 −67.107 −63.826 −60.625 −56.201 −51.046 −46.136

CLQ2-QE-St −71.717 −70.833 −67.125 −63.936 −61.068 −57.393 −53.127 −48.703

CLQ3-QE-St −71.717 −70.832 −67.125 −63.95 −61.163 −57.778 −53.932 −49.774

CLQ4-QE-St −71.717 −70.832 −67.125 −63.954 −61.195 −57.968 −54.356 −50.324
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For large values of the anisotropy coefficient, we notice that the relative advantage
of the CLQ3-QE-St and CLQ4-QE-St methods increases compared to the LNe group and
the CLQ-QE-St method, but decreases compared to the methods without Strang splitting.
Even more remarkable is the decreasing advantage of the LH-CNe-QE-St algorithm for an
increasing AC value.

7. Discussion and Conclusions

We have studied numerical methods about which it has analytically proven that they
keep the values of the concentration function in the unit interval for arbitrary time step
sizes and arbitrary values of the nonlinear parameter β when they are applied to Fisher’s
equation. The numerical case studies have confirmed these results since all methods have
behaved well without the slightest sign of instability.

According to the running time measurements, generally, the LH-CNe is the most
efficient among the methods since it serves rather accurate results in a very short time.
However, if stiffness or anisotropy increases, its advantage vanishes. In those cases, the
CLQ or the CLQ2 methods constitute the optimal choice.

When the nonlinearity is strong, i.e., the β coefficient is large, the quasi-exact treatment
of the nonlinear term combined with Strang splitting is recommended, especially when
the method for the diffusion part is relatively accurate, usually due to a higher order of
convergence. However, if the accuracy is limited by the anisotropy or, more importantly,
by the stiffness of the problem, Strang splitting can be a waste of time and the time step
size should be decreased instead.
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manuscript.
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Appendix A

We present a pseudocode to help understand the most sophisticated combinations,
labelled with LH-CNe-St. We note that for the sake of simplicity and speed, the num-
ber of cells in the x (horizontal) direction is always odd. This ensures that the vertical
(z-directional) neighbors of odd cells are automatically even and vice versa. Otherwise, the
parity of each cell should be checked in each stage, which would be more difficult to code
and also would increase running times.

ULH(:)=U0(:); % Initialization
ES=exp(-beta*h/2);
ESh=exp(-beta*h/4);

ULH=ULH./(ULH+(1-ULH).*ESh); % Formula (21) with quarter time step size
for i=2:2:N % zeroth time step for the even nodes

A(i) is calculated using the initial conditions
CNe Formula (13) is calculated % half time step

end
ULH=ULH./(ULH+(1-ULH).*ESh); % Formula (21) with quarter time step size

for t=1:1:T-1 % BIG LOOP FOR TIME STARTS
for i=1:2:N % odd nodes

A(i) is calculated using the latest values of the even nodes
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CNe Formula (12) is calculated % full time step
end

if (taxis(t+1)<tf-0.9*h)
ULH=ULH./(ULH+(1-ULH).*ES); % Formula (21) with half time step size
for i=2:2:N %%% even

A(i) is calculated using the latest values of the odd nodes
CNe Formula (12) is calculated % full time step

end
ULH=ULH./(ULH+(1-ULH).*ES); % Formula (21) with half time step size

else
ULH=ULH./(ULH+(1-ULH).*ESh); % Formula (21) with quarter time step size

for i=2:2:N %% even
A(i) is calculated using the latest values of the even nodes
CNe Formula (13) is calculated % half time step

end
ULH=ULH./(ULH+(1-ULH).*ESh); % Formula (21) with quarter time step size

end
end
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