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Simple Summary: In this work, we explored computational methods for analyzing a color digital
image of a wound and predicting (from the analyzed image) the number of days it will take for the
wound to fully heal. We used a hybrid computational approach combining deep neural networks
and decision trees, and within this hybrid approach, we explored (and compared the accuracies of)
different types of models for predicting the time to heal. More specifically, we explored different
models for finding the outline of the wound within the wound image and we proposed a model for
computing the proportions of different types of tissues within the wound bed (e.g., fibrin slough,
granulation, or necrotic tissue). Our work clarifies what type of model should be used for the
computational prediction of wound time-to-healing and establishes that, in order to predict time-to-
healing accurately, it is important to incorporate (into the model) data on the proportions of different
types in the wound bed.

Abstract: Despite the societal burden of chronic wounds and despite advances in image processing,
automated image-based prediction of wound prognosis is not yet in routine clinical practice. While
specific tissue types are known to be positive or negative prognostic indicators, image-based wound
healing prediction systems that have been demonstrated to date do not (1) use information about
the proportions of tissue types within the wound and (2) predict time-to-healing (most predict
categorical clinical labels). In this work, we analyzed a unique dataset of time-series images of healing
wounds from a controlled study in dogs, as well as human wound images that are annotated for the
tissue type composition. In the context of a hybrid-learning approach (neural network segmentation
and decision tree regression) for the image-based prediction of time-to-healing, we tested whether
explicitly incorporating tissue type-derived features into the model would improve the accuracy for
time-to-healing prediction versus not including such features. We tested four deep convolutional
encoder–decoder neural network models for wound image segmentation and identified, in the
context of both original wound images and an augmented wound image-set, that a SegNet-type
network trained on an augmented image set has best segmentation performance. Furthermore, using
three different regression algorithms, we evaluated models for predicting wound time-to-healing
using features extracted from the four best-performing segmentation models. We found that XGBoost
regression using features that are (i) extracted from a SegNet-type network and (ii) reduced using
principal components analysis performed the best for time-to-healing prediction. We demonstrated
that a neural network model can classify the regions of a wound image as one of four tissue types, and
demonstrated that adding features derived from the superpixel classifier improves the performance
for healing-time prediction.

Keywords: wound monitoring; computer vision; hybrid learning; image segmentation; superpixel;
regression
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1. Introduction
1.1. Motivation

Chronic wounds affect 6.5 million Americans [1,2], reduce quality of life, and lead
to USD 25 billion per year in healthcare costs in the United States [3]. Proper care and
the clinical monitoring of the wound are critical to improving outcomes [4]. Clinicians
are trained to recognize the prognostically useful visual characteristics of the wound,
such as red granulation tissue, yellow fibrin slough, and black necrosis [5]. However, the
cost and distance limit the frequency with which patients can visit a clinic for wound
examination, necessitating self-monitoring and wound care in the home setting [6]. Many
patients lack the knowledge and tools to do so effectively, which increases the likelihood
of (1) delayed healing and (2) poor clinical outcomes [6]. Given the well-recognized
need for improved home wound monitoring [1], recent advances in informatics have
stimulated interest in developing smart in-home monitoring solutions that would analyze
a patient’s self-acquired image of the wound [7–9]. With the increasing availability of
the public-domain sets of wound images with useful metadata [10] as well as image
augmentation methods [11], the use of deep learning methods has become feasible for
developing computational systems for image-based wound assessment [12]. A critical
consideration in the development of wound image analysis methods is that the predicted
variable should be clinically useful. In the context of wound care, one of the key prediction
tasks that an image-based machine learning model (i.e., a computer vision model) can be
reasonably trained for is the regression problem of predicting the number of days it will take
for a wound to heal [13]. Conducting well-controlled studies of healing of standardized,
surgically induced wounds is very difficult in humans due to ethical challenges, difficulties
in obtaining cohorts with standardized and comparable wounds, and due to the varied
conditions that necessitate surgical intervention [14]. Dogs have therefore been used on
many occasions as an animal model for the controlled studies of wound healing (see
Ref. [15] and references therein).

1.2. Previous Efforts
1.2.1. Traditional Computer Vision Methods Using Wound Images

Prior to the extensive use of deep neural networks for semantic pixel-wise
segmentation—assigning a label to each pixel in an image [16]—traditional computer
vision methods utilized manually engineered image features. Notably, Gupta et al. [17]
used depth information for object boundary detection and hierarchical grouping for cate-
gory segmentation, and Silberman et al. [18] combined color- and depth-based cues. For
the specific application of machine-learning for image-based wound assessment, previous
advances include the following Song and Sacan [19], who (1) extracted features using
edge-detection, thresholding, and region growing, and (2) used a multilayer perceptron
neural network; Hettiarachchi et al. [20], who used active contour models for identify-
ing wound borders irrespective of coloration and shape; and Fauzi et al. [21], who used
a four-dimensional color probability map to guide the segmentation process, enabling
the handling of different tissue types observed in a wound. While the Fauzi et al. study
introduced tissue-type-specific segmentation in the context of image-based wound assess-
ment, the relatively simple region-growing segmentation method that was used limited the
resulting tissue-type classification accuracy to approximately 75%.

1.2.2. Deep Learning Models Using Wound Images

The application of deep convolutional neural networks (CNNs) in computer vision
has led to significant advances in the area of semantic segmentation. By learning to decode
low-resolution image representations to pixel-wise predictions, CNNs eliminate the need
for manually engineered features and integrate feature extraction and decision making. For
example, Cui et al. [22] developed a CNN-based method for wound region segmentation
that outperformed traditional segmentation methods [21]. Fully convolutional networks
(FCNs) [23] are another example, allowing for arbitrary input sizes and preserving spatial
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information. Several FCN-based methods have been proposed for wound segmentation:
Wang et al. [7] used an FCN to estimate wound areas and predict the wound healing
progress using Gaussian process regression (GPR); Yuan et al. [24] used a deep convo-
lutional encoder–decoder neural network for skin lesion segmentation without relying
on prior data knowledge; Milletari et al. [25] proposed the “V-Net” model for 3D med-
ical image segmentation; Goyal et al. [26] applied a two-tier transfer learning approach
based on the FCN-16 architecture to segment wound images; Liu et al. [27] presented a
modified FCN model replacing the classic FCN decoder with a skip-layer concatenation
upsampled with bilinear interpolation; Wang et al. [28] proposed an efficient framework
based on MobileNetsV2 [29] to automatically segment wound regions; and, in a key foun-
dation for this paper (see Section 2.2.1), Blanco et al. [9] pioneered the use of the multiclass
superpixel [30] classification to map different tissue types within the wound bed. In sum-
mary, deep learning and CNNs have shown promising results in the field of semantic
segmentation, outperforming traditional methods and paving the way for applications in
wound monitoring.

1.3. Our Approach

In this study, using both unlabeled and time-series-labeled images from both hu-
mans and dogs (the dog data are from a controlled study with wound images taken every
48 h [31]), we investigated the utility of a hybrid model—using both deep artificial neu-
ral networks for feature extraction and using decision trees or Gaussian processes for
regression—for predicting how long it will take for a wound to fully heal based on a color
digital image of the wound. In the context of regression using features extracted from a deep
neural encoder–decoder network segmentation model, we investigated the performance
of three regression algorithms (Gaussian process regression (GPR) [32], random forest
regression (RFR) [33], and XGBoost regression [34]); two different types of segmentation
network architectures (SegNet [35] and U-Net [36]); and two different image sets (original
images and a geometrically augmented image-set). Furthermore, we investigated whether
the performance of the best such hybrid model could be improved by adding the features
derived from a multilayer network trained to categorize the sub-regions as one of four
tissue types relevant to wound healing (not wound, necrotic, granulation, or fibrin, a tissue
type classification originally proposed by Blanco et al. [9]). From these studies, we obtained
the best performance using a feature-set combining two different types of features, which
we call Phase 1 and Phase 2 features, as described below.

Principal Contribution of this Work

Our main aim in this work was to improve the prediction of time-to-healing from a
color image of the wound. Our work’s key contribution to the field of computer vision for
wound assessment and monitoring is that it demonstrates that (1) the decomposition of the
wound image into tissue type sub-regions (Section 2.1.2) provides features that substantially
improve the prediction of the wound time-to-healing; and (2) XGBoost regression provides
a superior performance for this regression task over alternative regression models. Our
work further clarifies the relative contributions of tissue sub-region proportion data (versus
image segmentation-derived features) and of the image augmentation and segmentation
model type to performance in predicting wound time-to-healing.

2. Materials and Methods
2.1. Overview of Our Computational Approach
2.1.1. Our Approach for Obtaining Phase 1 Features

In Phase 1 of our approach (Figure 1, bottom), we (1) segment the high-resolution wound
image at the pixel level (into “wound” and “not wound”); (2) extract high-dimensional feature
information from an inner layer of the encoder–decoder segmentation neural network. This
phase has two steps:
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Step 1: In this step, we use an encoder–decoder neural network model to carry out a
pixel-level binary segmentation (classifying pixels as inside or outside the wound bed) to
extract the inner layer’s states as a feature encoding of the wound image. Furthermore, we
use the segmentation model to extract the wound area and wound percentage area, which
are included as features in the regression model (and which are also used in computing
the dependent variable for the ground-truth-labeled image-set for the regression task; see
Section 2.9). For the neural network model for segmentation, we used deep convolutional
network approaches. Specifically, in this work, we evaluated the segmentation performance
of two network architectures each for two architecture classes, SegNet and U-Net, using the
pixel-level overlap between predicted and ground-truth-segmented images. For each of the
four network architectures (two SegNet and two U-Net architectures), we evaluated the
performance when the model is trained using original images and when it is trained using
an augmented image-set. From the eight models, we used independent labeled images (not
used in training and tuning) to select the four best-performing segmentation models and
used those to extract features to use in regression.

Step 2: In this step, for two of the network architectures whose inner layers were
high-dimensional, we used principal component analysis (PCA) to reduce the dimension
of the inner layer-level image encoding, to obtain suitable feature vectors for regression.

Figure 1. Overview of the two-phase approach that we developed for computationally predicting the
time-to-healing from a wound image. (In the Phase 1 section, the inset wound images are the courtesy
of Dr. Bryden J. Stanley (see Acknowledgements). In the Phase 2 section, the inset wound images
are reprinted from the Blanco et al. study [9], © 2020 with permission from Elsevier (Amsterdam,
The Netherlands)).

2.1.2. Approach for Obtaining Phase 2 Features

In this phase (Figure 1, top), our approach classifies the sub-regions of the wound
image into the four tissue-type categories (Section 1.3). To do this, we use a multilayer
perceptron (MLP) model (Section 2.4) that we trained on labeled 70 × 70 pixel (px) wound
sub-images (“superpixels”) from a public dataset [9]. Our approach splits the image into
superpixels and then generates a prediction score for each of the four classes, for each
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superpixel. Four features are then extracted from the superpixel predictions by summing
class-specific scores across all superpixels of the image.

2.1.3. Regression

In our approach, we use a regression model to predict, based on features extracted
from a wound image in Phase 1 and Phase 2, the number of days it will take for a wound to
heal. For the training image set, we used time-series wound images from a study of wound
healing in dogs [31]; these images were labeled for the number of days until the wound was
fully healed (Section 2.9). We explored the performance of the ensemble decision tree and
GPR models to predict wound the time-to-healing, first using the features derived from
segmentation alone (Phase 1) and then using the features derived from both the superpixel
classifier and from the segmentation model (i.e., Phase 1 and Phase 2 features combined).

For this work, we ran all analyses in Python version 3.5.5 under Ubuntu 16.04 on a Dell
XPS 8700 computer (x86_64 architecture) equipped with an NVIDIA Titan RTX GPU (24 GiB
GDDR6 memory). We implemented the classification (superpixel and segmentation) and
regression model pipelines, including cross-validation and performance evaluation, using
the Python software packages Tensorflow (ver. 2.9.1) and scikit-learn (ver. 1.0.2).

2.2. Wound Image Datasets
2.2.1. Ulcer Wound Superpixel Data Set

In Phase 2 of our approach (see Figure 1, top), in order to train a neural network
model that can classify the 70 × 70 “superpixel” sub-images of wound images into four
tissue types (not-wound, fibrin, granulation, and necrotic), we used the publicly available
ULCER_SET images from the Blanco et al. study [9] (see Data Availability Statement). This
set comprises 44,893 expert-labeled 70 × 70 px color (red-green-blue) superpixels derived
from 40 human lower-limb ulcerous wound images (82.8% not-wound, 8.9% fibrin, 7.3%
granulation, and 1.0% necrotic).

2.2.2. Dog Wound Healing Image Set

To train the regression model that predicts the time-to-healing from a digital wound
image, we used a previously published [31] set of 136 color images (4000 × 6000 px;
acquired every other day over 32 days and labeled by date) of ten 2 × 2 cm2 dog cutaneous
surgical wounds (full-thickness surgical wounds in the trunk; see Ref. [31] for details).
The ten dogs were male adult beagles (13–18 weeks of age). The wound images included
standard rulers which enabled conversion of mm2 to px2 (Section 2.9). Given the size of the
segmentation models (Sections 2.6 and 2.7), to fit a reasonably sized batch of training images
into the GPU memory, we resized and cropped the raw wound images to 224 × 224 px,
to prepare them for feature extraction using the previously trained binary segmentation
models. We augmented the 224 × 224 px wound-bed images as described in Section 2.3.1.
To enable the use of the dog wound images for training the segmentation model, we
manually segmented the images as described in Section 2.3.2 (Figure 2).



Computation 2024, 12, 42 6 of 17

Figure 2. Example wound images (top row) and corresponding human-segmented images (bottom
row) from the dog wound image dataset [31] used for training the healing-time model. Top-
row images are cropped from original images that were provided courtesy of Dr. B. Stanley
(see acknowledgments).

2.3. Image Augmentation and Annotation
2.3.1. Augmentor

To geometrically augment (e.g., rotate or flip) the sets of wound images used in this
study, we used the Augmentor [11] tool as described in the Supplementary Materials
Table S1, yielding four augmented images for each dog wound image. In this study,
we compared the performances of different wound segmentation algorithms trained on
original images (without augmentation) as well as algorithms trained on augmented image
sets (see Section 3.2).

2.3.2. Pixel Annotation

To binary-segment wound images at the pixel level as “in-wound” our “not in wound”
with human guidance, we used the PixelAnnotationTool software tool (ver. 0.14.0), which
uses the marker-based variant of the watershed segmentation algorithm [37] from the
OpenCV software library [38]. The manually annotated wound image masks were used as
labeled data for training the segmentation algorithms (Section 2.11.2).

2.4. Superpixel Classifier Model Architecture

To classify the wound image superpixels by tissue type (not wound, fibrin, granulation,
and necrotic), we implemented a six-layer perceptron [39] with rectified linear unit (ReLU)
activation in each intermediate hidden layer and softmax activation with four classes in the
output layer. For each of the four classes, we measured the model’s prediction performance
by computing the area under the receiver-operating characteristic (AUROC) curve for the
class’s prediction scores using the one vs. rest strategy [40] for comparison.

2.5. Segmentation

In our two-classe segmentation model architectures, SegNet (Section 2.6) and U-
Net (Section 2.7), we do not use recurrent edges, whose use in segmentation has been
advocated [41] in applications requiring multiscale object recognition (which is not an
issue in our application). The two main classes of segmentation model architectures are
described in the following two subsections.

2.6. SegNet Model Architecture

Of the two classes of neural network architectures that we used for image segmentation,
the first is SegNet [35], a ten-layer convolutional network. SegNet is built on the FCN [23]
architecture, which consists of an encoder network that computes a set of compact feature
maps on high-resolution images, a decoder network that upsamples the feature maps,
and a pixel-wise classification layer that outputs the full-size segmentation masks. The
main difference separating a SegNet model from a common FCN model is that the decoder
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layers of a SegNet model directly use the pooling indices computed in the corresponding
encoder layers’ max-pooling step. In this way, when a decoder layer performs the nonlinear
upsampling of its lower-resolution input feature map from the previous layer, there is no
need to learn the weights of the decoder part to upsample again. The advantages of reusing
max-pooling indices include drastically reducing the number of parameters needed in the
training process, improved on boundary delineation, and minimal modification required to
implement upsampling. The encoder network is constructed by stacking basic computation
blocks like convolution, nonlinear transformation using ReLU activation function, spatial
pooling, and local response normalization [42]. To produce probability maps, a softmax
layer is appended to the end of the network. To mitigate the downscaling effects of the
convolution and pooling layers, the decoder network of the SegNet model is constructed by
a stack of layers with upsampling operations. From the pixel-level probabilities, a threshold
of 0.5 is used to produce the segmentation mask.

2.7. U-Net Model Architecture

The second class of the segmentation network architecture that we evaluated is U-
Net [36], a U-shaped, 23-layer FCN. To localize, high-resolution features from the con-
tracting path are combined with the upsampled output; a successive convolution layer
can then learn to assemble a more precise output based on this more detailed information.
U-Net has many feature channels in the upsampling part, which allow the network to
propagate context information to higher resolution layers. U-Net does not have any fully
connected layers and only uses the valid part of each convolution, allowing the segmenta-
tion of arbitrarily large images by an overlap-tile strategy (which also enables training on
high-resolution images). For border region prediction, the missing context is extrapolated
by mirroring the input image. At each downsampling step, the number of feature filters
is doubled. The contracting path has repeated two 3 × 3 convolution layers (unpadded
convolutions), each followed by a ReLU activation layer and a 2 × 2 max pooling operation
with stride 2 for downsampling. The expanding path has an upsampling of the feature
map followed by a 2 × 2 convolution layer (“up-convolution”) that halves the number of
feature filters, a concatenation with the correspondingly cropped feature map from the
contracting path, and two 3 × 3 convolutions, each followed by a ReLU activation layer.
A 1 × 1 convolution is used to map each 64-component feature vector (each component
is a feature filter) to the desired number of classes at the final layer. The U-Net has been
reported to work well for segmentation applications with small training sets [28].

2.8. Feature Engineering and Extraction

We extracted features from both the Phase 2 (superpixel tissue-type classifier) model
and from the Phase 1, Step 1 (pixel-level binary segmentation) models, as described below.

2.8.1. Feature Extraction from a Superpixel Model

For each of the four wound-tissue types (Section 2.2.1), we estimated the proportion
of the wound image of that type adding up the prediction value for that type’s softmax
class output across all superpixels. This procedure generated four features per image.

2.8.2. Feature Extraction from Segmentation Models

We extracted features from the segmentation models (Sections 2.6 and 2.7) in
two ways—using the network’s inner layer states as a vector encoding of the image,
and by calculating summary statistics on the pixel-level binary segmentation (which
were appended to the encoding vector).

Inner Layer Encoding

For the SegNet architecture (Section 2.6), we used the output of the intermediate layer
“Conv5” as a feature vector. For the SegNet-1 network, the “Conv5” layer’s dimension is
6272, and thus, we reduced it using PCA (see Section 2.8.3) to 404 principal components.
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For the SegNet-2 network, the “Conv5” layer’s dimension is 1568 and we directly used that
layer’s values as the feature vector. For the U-Net architecture in Section 2.7, we used the
output of intermediate layer “Conv5” as a feature vector. For the U-Net-1 network, the
“Conv5” layer’s dimension is 50,176, and thus, we reduced it using PCA to 342 principal
components. From the U-Net-2 network, the “Conv5” layer’s dimension is 3136 and we
used that layer’s values directly as the feature vector.

Wound Area Calculation

For each segmented wound image, from the pixel-level segmentation mask, we com-
puted two summary-level features, the overall pixel wound area (see also Section 2.9), and
the percentage of pixels of the image that are in the wound area. These two features were
added to the “Conv5”-derived features to generate the complete Phase 1 feature-set for use
in the regression.

2.8.3. PCA Reduction in Segmentation Feature Vectors

We carried out PCA using the function “PCA” from the sklearn.decomposition pack-
age, with parameter svd_solver set to “full” and parameter n_components set to 0.95 (which
selects the number of principal components so that it explains at least 95% of the variance
in the feature vector).

2.9. How We Obtained the Dependent Variable for Regression Training

Using the output from the segmentation models (Section 2.8.2), we first determined
the length scale “ratio” of each image by calculating the pixel length of 1 cm space on
the ruler in the image (manually counted by visual image inspection). We obtained the
predicted wound area by counting the pixel area on the segmentation mask annotations
and converted it to area in cm2 using the empirically determined linear pixel density per cm
of each image. With the predicted wound area for each image, we obtained the remaining
proportion of wound area as a feature for each image by dividing the predicted wound
area of the current day with the predicted wound area of day zero. In the healing status
prediction task, we did not use the number of days post-injury as a feature; this is because
we used the image date to determine the dependent variable (i.e., the number of days to
full healing) for the regression.

2.10. Regression Model Training

We evaluated three general-purpose regression algorithms (which are well described in
the literature and highly versatile) that are well suited to our problem from the standpoints
of sample-size of our labeled image-set, the high dimensionality of the feature-space,
and the fact that the features are continuous: random forest regression, Gaussian process
regression, and XGBoost.

2.11. Model Training, Tuning, and Evaluation

We implemented cross-validation using RandomizedSearchCV and GridSearchCV
from the package sklearn.model_selection, as described below. For all prediction evaluation
metrics, we used functions from the sklearn.metrics package as described below.

2.11.1. Superpixel Classifier

For the Phase 2 classifier (Sections 2.1.2 and 2.4), we used stratified ten-fold cross-
validation (25 epochs) to obtain performance measurements (sample-averaged categorical
cross-entropy loss) on the training-set images for hyperparameter tuning. We calculated
the sample-averaged categorical cross-entropy loss as follows:

L = − 1
N ∑

i,j
yij log ŷij,
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where j ranges over the four possible class labels, i ranges over the N samples, yij is the
ground-truth (one-hot encoded) class label for class label j for sample i, and ŷij is the
prediction score for the class label j for sample i. We ultimately trained the model with a
batch size of 1024 and for 25 epochs to using stochastic gradient descent [43] with a learning
rate of 0.005, to minimize the categorical cross-entropy loss. For measuring AUROC on the
test set of superpixels, we used the function “roc_auc_score” with the parameter “average”
set to “weighted”.

2.11.2. Binary Pixel-Level Segmentation

For the image segmentation models (Sections 2.6 and 2.7), we used five-fold cross-
validation to obtain unbiased performance measures (precision, recall, and Dice overlap)
on the training images for hyperparameter tuning. The hyperparameters were the number
of epochs, batch size, and learning rate. We ultimately trained both SegNet models and
both U-Net models with a batch size of two and for 2000 epochs (with early stopping) using
stochastic gradient descent with a learning rate of 10−4 to minimize cross-entropy loss.

2.11.3. Regression Using Decision Trees or Gaussian Process

For Gaussian process regression, we used the class GaussianProcessRegressor from
the package sklearn.gaussian_process; for random forest regression, we used the class
RandomForestRegressor from the sklearn.ensemble package; and for XGBoost regression,
we used the class XGBoostRegressor from the same package. For Random Forest and
XGBoost, we first tuned model hyperparameters using RandomizedSearchCV using a
larger set and range of hyperparameters (six for random forest, and four for XGBoost); for
the Gaussian process model, we did not use the random-search hyperparameter tuning.
Then, for all three models, we carried out exhaustive grid search hyperparameter tuning
using the GridSearchCV function from sklearn.model_selection (four hyperparameters
for Gaussian process, six for random forest, and four for XGBoost); for both, we used
five-fold cross-validation (see Ref. [42] for details). For XGBoost regression model with
the Phase 2 features only, to avoid overfitting, the hyperparameter grid-search space was
reduced as follows: max_depth ∈ {1, 2, 3}, learning_rate ∈ {0.0005, 0.001, 0.005, 0.01, 0.05},
and n_estimators ∈ {10, 20, 30}.

2.11.4. Regression Using a Deep Neural Network

Using the Phase 1 (Section 2.1.1) and Phase 2 (Section 2.1.2) features as inputs and
days until healing as the dependent variable (Section 2.9), we trained a five-layer fully
connected deep neural network with ReLU activation functions and with the following
numbers of neurons at each layer: 256, 128, 64, 32, and 1.

2.11.5. Confidence Interval Estimation

For the regression task, we estimated ±1 σ confidence intervals for the test-set coeffi-
cient of variation (R2) using bootstrap resampling [44] with 1000 iterations.

3. Results
3.1. Superpixel Tissue-Type Classification Performance

Under the premise that for predicting time-to-healing, the utility of features ex-
tracted from a tissue-type multiclass superpixel classifier depends on the classifier’s per-
formance, we investigated (Section 2.4) the MLP model’s performance for annotating
non-overlapping 70 × 70 px wound image superpixels. For this analysis, we used the
ULCER_SET (44,893 superpixels; see Section 2.2.1) in which each superpixel was expert-
labeled with one of four tissue types [42].

We randomly separated the superpixels into training/validation and test sets (80%
and 20%, respectively), tuned the classifier hyperparameters as described in Section 2.11.1,
and obtained categorical cross-entropy loss on both the training/validate and test sets of
superpixels and AUROC model performance (each class against all others) on the test set of
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superpixels. The prediction error on the test set was comparable to the training set (Figure 3),
indicating that the model was not overfitted. The single-class-versus-others AUROC
prediction performance exceeded 0.8 for all classes except class 3 (necrotic) (Figure 4);
performance was best for discriminating class 2 (granulation) superpixels from the other
superpixel classes (AUROC 0.94). The overall accuracy of the model for superpixel type
prediction was 86.4% (which is comparable to the MLP results in Blanco et al. [9]).

Having measured the accuracy of the wound image superpixel classifier, we calculated,
for each image, four summary features representing the total sum (across all superpixels of
the image) of the class-specific prediction scores (Section 2.1.2); these four features are the
“Phase 2” features, whose relative utility for the healing-time prediction regression task we
evaluate in Section 3.4.

Figure 3. Average categorical cross-entropy loss of the MLP model for each of 25 training epochs,
evaluated on the train/validate superpixels and on the test-set superpixels.

Figure 4. Test-set performance for classifying superpixels as class 0 (not-wound), class 1 (fibrin), class 2
(granulation), or class 3 (necrotic). Each receiver operating characteristic (ROC) curve represents
the test-set performance on the binary task of predicting whether a superpixel is of the indicated
class or not. The class sample counts as follows: Class 0, 7437 samples; Class 1, 794 samples; Class 2,
656 samples; and Class 3, 89 samples. “Area” denotes AUROC. Each ROC curve shows a relationship
between sensitivity (the vertical axis) and the false positive error rate (the horizontal axis), for correctly
recognizing superpixels that are members of one class versus mis-predictions of the other three class
types. Each ROC curve rises steeply as easy cases are discriminated and then saturates as more
borderline cases require increasingly permissive thresholds for making a positive prediction.

3.2. Binary Segmentation (Phase 1, Step 2) Model Performance to Find the Best Four Models

Under the premise that, for predicting wound time-to-healing, the utility of features
derived from the pixel-level segmentation model will depend on the segmentation model’s
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performance, we investigated (Sections 2.6 and 2.7) the performance of four neural network
architectures (SegNet-1, SegNet-2, U-Net-1, and U-Net-2) for binary pixel-level segmenta-
tion. For this model-selection task, used a set of 136 high-resolution dog wound images [31]
that had been pixel-wise labeled (Section 2.2.2) by human annotators as “within wound”
or “outside wound”. Of the 136 dog wound images, we set aside 26 images (images from
two wounds every 48 h) as a test-set of labeled images for evaluating the performance of
the trained regression models (Section 3.3); we used the other 110 images for both segmen-
tation model selection and for training the regression models. Given previous reports that
image-set geometric augmentation improves the learning performance in some computer-
vision tasks [45] and does not improve performance in others [46], we investigated the
performance of the four network architectures using the original dog wound image set
(“OIS”: 74 images) and using an augmented (Section 2.3.1) image set (“AIS”: 945 images).

We randomly partitioned the 110 images into 74 “OIS” images (images from five
wounds) for training/validation and 36 images (images from three wounds) for model
testing; we augmented 945 “AIS” images from 74 “OIS” images for training/validation and
the same 36 original (unaugmented) images for testing. Using the training/validation set,
we tuned the hyperparameters as described in Section 2.11.2. Then, for each of the eight
combinations of the network architecture and image set (“AIS” or “OIS”), we trained on
the 74 images of “OIS” and 945 images of “AIS” and measured the average performance
on the test image-set by precision, recall, and Dice overlap. SegNet-1/AIS has the highest
recall (0.953) and Dice coefficient (0.921) values (Table 1), whereas U-Net-1/AIS had the
highest average precision (0.962).

Table 1. Test-set performance (averaged over 36 images) of each of eight combinations of network
architecture and training-set performance (original, i.e., OIS; or augmented, i.e., AIS) on the segmen-
tation task of classifying the wound image pixels as “within wound” or “not within wound”. OIS:
original image set (without augmentation); AIS: augmented image set.

Architecture Set Precision Recall Dice

SegNet-1 AIS 0.955 0.953 0.921
SegNet-1 OIS 0.962 0.710 0.773
SegNet-2 AIS 0.933 0.906 0.887
SegNet-2 OIS 0.740 0.920 0.787
U-Net-1 AIS 0.962 0.950 0.916
U-Net-1 OIS 0.946 0.883 0.878
U-Net-2 AIS 0.930 0.937 0.890
U-Net-2 OIS 0.952 0.948 0.919

For all architectures except U-Net-2, the performance was higher when trained on AIS
than when trained on OIS; on average, augmentation improved performance by 7.7%. We
selected the best model within each architecture type, to take forward to use for extracting
segmentation-based features for time-to-healing prediction: SegNet-1/AIS, SegNet-2/OIS,
U-Net-1/AIS, and U-Net-2/OIS. We then extracted image-level features from each of
the four models using intermediate-layer neuron values (Section 2.8); due to the high
dimensionality of these layers in SegNet-1 and U-Net-1, we reduced the dimensions for
the SegNet-1 (Section 2.6) and U-Net-1 (Section 2.7) derived features using PCA. We
combined the segmentation-derived features with the superpixel classification-derived
features (Section 2.1.2)

3.3. Time-to-Healing Prediction Performance without Phase 2 Features

Next, we turned to the regression task of predicting, from features extracted from
the wound image segmentation (i.e., not including the superpixel-based features), the
number of days remaining for the wound to heal. We used the features extracted from one
of the four binary segmentation models in Phase 1, Step 2 (with PCA used to reduce the
dimension of the segmentation vectors extracted from SegNet-1 and U-Net-1, as described



Computation 2024, 12, 42 12 of 17

in Section 3.2), yielding a total of 404 features per image for SegNet-1 and 342 features
per image for U-Net-1. We then added two summary-level features derived from the
segmentation, consisting of the wound area and wound percentage area (see Section 2.8.2).
Next, for the labeled training examples, we used a collection of 544 augmented time-series
images of ten dog wounds (Section 2.2.2) from a controlled study of wound healing [31],
for which we estimated (Section 2.8) the time-until-complete-healing (i.e., the dependent
variable for the regression) for each of the images. We sought to evaluate three different
regression algorithms, (Gaussian process regression, random forest regression, and XG-
Boost regression) separately against the feature-sets from the four different segmentation
models for a set of 12 models. Using the set of 440 augmented (110 unaugmented images)
dog images (images of eight different wounds), we tuned (Section 2.11.3) the regression
algorithms’ hyperparameters and then trained each of the 12 models. Using either the
104 augmented (or 26 original) dog images (from two wounds) that were withheld as a
test set, we obtained the average coefficient of variation (R2) performance measurements,
for each of the 12 models. The combination of XGBoost with the SegNet-1/AIS-derived
features had the best regression performance, with R2 = 0.839 (Table 2) (SegNet-1/AIS also
yielded the best segmentation performance; Table 1).

Table 2. Average prediction performance of three regression models—each with input features
from one of four different segmentation models—on a test set of 104 images (26 original images of
two dog wounds; four-fold augmented as described in Section 2.3.1), as measured by R2 coefficient
of variation. The models shown here were trained with Phase 1 features only; they did not include
any superpixel-derived (i.e., Phase 2) features. Column abbreviations as follows: Arch., segmentation
network architecture; PCA, indicates whether or not that segmentation model’s image encoding was
PCA-reduced; CV R2, cross-validation average R2 on the set of 440 images used for training the
regression model; Test R2, average R2 on the test set of images; L.C.I., lower confidence interval (1 σ)
on the test R2; U.C.I., upper confidence interval (1 σ) on test R2.

Model Arch. PCA? Feat. CV R2 Test R2 L.C.I. U.C.I.

GPR U-Net-1 Yes 344 0.916 0.773 0.751 0.799
GPR U-Net-2 No 3138 0.791 0.762 0.739 0.781
GPR SegNet-1 Yes 406 0.904 0.778 0.749 0.797

XGBoost U-Net-1 Yes 344 0.919 0.766 0.749 0.775
XGBoost U-Net-2 No 3138 0.867 0.795 0.774 0.821
XGBoost SegNet-1 Yes 406 0.922 0.839 0.825 0.852
XGBoost SegNet-2 no 1570 0.890 0.811 0.799 0.826

RFR U-Net-1 yes 344 0.914 0.770 0.765 0.785
RFR U-Net-2 no 3138 0.848 0.782 0.769 0.803
RFR SegNet-1 yes 406 0.916 0.831 0.817 0.851
RFR SegNet-2 no 1570 0.893 0.797 0.781 0.818

While the SegNet-1/AIS/XGBoost performance is only slightly better (0.839 vs. 0.831)
than SegNet-1/AIS/Random-Forest, XGBoost trained faster than Random Forest (63 min
vs. 118 min) than the RFR model when using the SegNet-1-PCA feature vector. Overall,
across the four feature sets, XGBoost regression models had a 3.8% better performance than
GPR models and 1.1% better than the random forest.

3.4. Time-to-Healing Prediction Performance Including Phase 2 Features

Having established (Section 3.3) that the combination of using the SegNet-1 model
(Section 2.6) for segmentation (trained with image augmentation) and using XGBoost for
regression has the best performance among models tested for predicting wound time-to-
healing, we next investigated whether adding four features derived (Section 2.8.1) from
the superpixel tissue-type classifier (Section 2.4; i.e., Phase 2 of our method, as shown
in Figure 1), which would improve the performance for the time-to-healing prediction.
On the same train/validation and test sets of images as used for the regression model
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using only the segmentation (Phase 1) features (Section 3.3), we measured the average R2

performance on the training/validation and test image sets, for two XGBoost regression
models: a “Phase 1 model” trained with only the 406 SegNet-1 segmentation-derived
features, and a “Phase 1 + 2 model” trained with all of those features plus four superpixel
tissue type classifier-derived features (for a total of 410 features). We found that the test-set
performance was higher for the “Phase 1 + 2 model” (0.863) than for the “Phase 1” model
(0.839) (Table 3).

Finally, to compare the performance of the hybrid approach (consisting of deep
learning-derived features and decision tree-based regression, as shown in Figure 1) with a
fully neural network approach, we implemented an alternative fully neural-network-based
approach in which the same Phase 1 and Phase 2 features were used as inputs to a deep
neural network regression model (see Section 2.11.4 for details). The fully neural network
approach’s R2 performance (0.823 on CV, and 0.813 on the test set) was significantly lower
than with the XGBoost-based hybrid approach (0.966 on CV, and 0.863 on the test set).

Table 3. Average prediction performance of XGBoost regression on a test set of 104 images (images
from two different dog wounds; 4× augmented from 26 original wound images), as measured
by R2 coefficient of variation, for models trained with 406 features (from SegNet-1 segmentation
only) and/or with the four superpixel-derived tissue classification features (Section 2.8.1). Column
abbreviations are as follows: Arch., segmentation network architecture; Phase, indicates which
feature-sets were included; CV R2, cross-validation average R2 on the augmented set of 440 images
used for regression training; Test R2, average R2 on the test set of images; L.C.I., lower-confidence
interval (1 σ) on test R2; U.C.I., upper-confidence interval (1 σ) on test R2. Performance on the Phase 2
only feature-set was sufficiently low that no C.I. permutation analysis was performed.

Model Arch. Phase Feat. CV R2 Test R2 L.C.I. U.C.I.

XGBoost SegNet-1 1 and 2 410 0.966 0.863 0.851 0.875
XGBoost SegNet-1 1 406 0.922 0.839 0.825 0.852
XGBoost SegNet-1 2 4 0.603 0.042

4. Discussion

Our the first point of discussion concerns the biological rationale for including image-
wide tissue type (superpixel)-derived features in the regression model. The results of
Section 3.1 indicate that the MLP model can accurately predict wound image superpixels’
tissue types among four classes (Section 2.2.1). Biologically, at the hemostasis (blood
clotting) stage, platelets in the blood adhere to the injured site [47]. Platelet activation
leads to the activation of fibrin, which autopolymerizes and further promotes platelet
aggregation. Thus, a high proportion of “fibrin”-labeled tissue in the wound would be
expected to indicate the healing process is in the early stage. Similarly, at the proliferative
stage, granulation tissue can be noted from the healthy wound buds that protrude from the
wound base [5]; thus, the proportion of “granulation”-labeled tissue would be expected
to correlate with the healthy healing process, whereas the proportion of “necrosis”—(i.e.,
tissue death)-labeled tissue would be expected to be anti-correlated with time-to-healing.
The size of superpixels represents a balance between the potential resolution for mapping
tissue types in the wound-bed and accuracy for detecting tissue types based on color and
texture patterns within the superpixel; in our case, in the dataset of labeled superpixels
that we had access to, the superpixel size was chosen to be 70 × 70 px to balance those
two priorities.

A second point of discussion concerns the (currently manual) step of counting pix-
els per cm in order to assess the wound area (which was necessary in order to estimate
the days until healing, as explained in Section 2.9). Approaches toward automating this
step could include (1) using the Hough transform [48] for detecting the ruler line; (2) us-
ing a separate neural network specifically for ruler detection and length calculation; or
(3) using image metadata regarding image distance and field size to calculate the field’s
physical dimensions.
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While the results of Table 3 represent a significant new finding in terms of the types
of features that are useful for predicting the wound time-to-healing, the context of the
dataset is relevant to interpreting the model’s absolute performance. The ground-truth
set of labeled images used for the regression model in this work are from a series of
controlled images (acquired with a single digital camera at fixed distance) from a controlled
study [31] of surgical wounds. Thus, we would expect that attaining equivalent absolute
predictive performance on wound images from uncontrolled data acquisition settings and
from a broader array of wound conditions (e.g., burns, ulcers, etc.) would likely require
retraining the regression model with a substantially larger and more diverse set of images.
However, the key findings from this work (Tables 1–3) are based on the relative regression
performance on a feature set including superpixel tissue-derived features vs. without
them. Although the superpixel tissue-derived features (Phase 2 features) by themselves
have relatively poor performance on the regression task (see Table 3), when combined
with the segmentation-derived features (Phase 1 features) they significantly improve the
regression performance.

As far as we are aware, this work represents the first effort to leverage wound images
from a controlled study of surgical wound healing for the purpose of regression model
selection and feature-set selection for computationally predicting wound time-to-healing.
Our long-term goal is to apply these results to develop models for predicting healing time
in humans. Furthermore, a natural progression of the work would be to integrate wound
images with other measurements such as C-reactive protein (CRP) [49] and immunoglob-
ulin G [50], as well as relevant clinical comorbidities and demographic/anthropometric
parameters (e.g., diabetes, nutritional status, age, body mass index, and smoking status) [13]
to accurately predict the time-to-healing in human clinical settings and to flag wounds re-
quiring intervention. While these types of demographic, anthropometric, and comorbidity
data were not needed for the specific questions that we focused on in this controlled study
of canine wound healing (i.e., Can a tissue type-augmented hybrid approach improve
time-to-healing prediction? and Which regression model leveraging a hybrid tissue-type
and segmentation-derived feature-set gives best performance for time-to-healing predic-
tion?), it is expected that such data would be required in order to maximize accuracy in
clinical settings.

5. Conclusions

For three of the four image segmentation models, using the augmented wound image
set led to a better image segmentation performance than the models learned using original
images without augmentation. Among the four segmentation models, the SegNet-1-PCA
model using augmented images had the highest test-set Dice performance (0.921). Using
the segmentation-derived features, out of the three different regression models that we
studied, XGBoost regression outperformed both Gaussian process regression and random
forest regression, reaching a test-set R2 of 0.839 (95% confidence range of 0.825–0.852). We
further found that, given the high-resolution wound images without tissue type labels,
the SegNet-PCA model is a powerful tool for extracting low-dimensional feature vectors
while generating reasonable wound segmentation masks; this yields a mask that retains
the wound area information and features that retain biological patterns that enable the
improved image-based prediction of wound time-to-healing. Finally, we demonstrated
that incorporating tissue-type superpixel-derived features into the regression model signifi-
cantly improves the prediction of wound time-to-healing, versus using features derived
only from the image segmentation model.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/computation12030042/s1, Table S1: Dog wound image augmen-
tation transformations used.
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