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Abstract: The propagation of detonation waves (i.e., supersonic combustion waves) in non-uniform
gaseous mixtures has become a matter of interest over the past several years due to the development of
rotating detonation engines. It was shown in a number of recent theoretical studies of one-dimensional
pulsating detonation that perturbation of the parameters in front of the detonation wave can lead to a
resonant amplification of intrinsic pulsations for a certain range of perturbation wavelengths. This
work is dedicated to the clarification of the mechanism of this effect. One-dimensional reactive Euler
equations with single-step Arrhenius kinetics were solved. Detonation propagation in a gas with
sine waves in density was simulated in a shock-attached frame of reference. We carried out a series
of simulations, varying the wavelength of the disturbances. We obtained a non-linear dependence
of the amplitude of these pulsations on the wavelength of disturbances with resonant amplification
for a certain range of wavelengths. The gain in velocity was about 25% of the Chapman–Jouguet
velocity of the stable detonation wave. The effect is explained using the characteristic analysis in the
x-t diagram. For the resonant case, we correlated the pulsation period with the time it takes for the C+

and C− characteristics to travel through the effective reaction zone. A similar pulsation mechanism is
realized when a detonation wave propagates in a homogeneous medium.

Keywords: detonation wave; Euler equations; one-stage chemical kinetics; pulsation; non-uniform
medium; shock-attached frame of reference

1. Introduction

Depending on the initiating conditions, the geometry of the problem, and other factors,
the combustion of a gas mixture can occur in different modes. Subsonic, or deflagration, is
the most prevalent combustion mode in applications. In this case, the flame propagation
mechanism is determined mainly by the viscosity, diffusion, and heat transfer in the gas.
The opposite is the supersonic or detonation combustion mode, which occurs if energy
is released in a reacting gas mixture that exceeds a certain threshold value. In this case,
the propagation of the combustion wave is associated with the adiabatic compression of
the reacting mixture in the leading shock wave. Detonation waves have been studied for
many decades. Both the mechanism of detonation propagation and the practical aspects of
the initiation or suppression of detonation waves are of interest. It is hard to find a single
monograph covering the entire range of issues related to the mechanics of the detonation
phenomenon. We can mention one monograph [1] as one of the most famous books with
a modern view on the mechanics of detonation, and another monograph [2] as the most
recent example.

Most numerical simulations of flows of compressible media with detonation waves,
including, for example, those in [1,2], are carried out in a quiescent, uniform environment.
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However, for many practical applications, the gas mixture in front of a detonation wave
is non-uniform.

The dynamics of the propagation of a one-dimensional pulsating detonation wave in
a non-uniform medium were revealed in the following numerical studies [3–5]. Despite
some differences in mathematical models and numerical methods, the results obtained by
the authors are largely similar. At the same time, there is a lack of mechanical explanation
of the mechanisms of the observed effects from a detonation gas dynamics point of view.
This fact motivated our current study.

In [3], one-dimensional, unsteady gaseous detonation propagation in a non-homogeneous
medium was investigated using the reactive, compressible Navier–Stokes equations with
detailed chemistry. The effect of concentration inhomogeneity on the pulsating mode was
modeled by a sinusoidal distribution of the H2 mole fraction in the H2–O2 mixture. The
main finding in [3] is that small perturbations of parameters can lead not only to a chao-
tization of pulsations (although this is the most likely scenario) but also, on the contrary,
to a regularization of pulsations. This effect can be important for a number of practical
applications, in particular in the development of rotating detonation engines.

In [4], similar studies were performed for the case of a mixture with variable density.
Unlike [3], simulations were based on the solution of one-dimensional Euler equations
with an overall one-stage kinetic scheme [6]. In [4], the range of dimensionless activation
energies E from 28.5 to 30.0 was studied. Such activation energies qualitatively correspond
to mixtures with irregular detonations. It is shown in [4] that a small-amplitude sinusoidal
perturbation of the density of the medium can lead to different modes of pulsations,
depending on the wavelength of the perturbation λ. In particular, as in [3], it was shown that
the regularization of initially chaotic pulsations of parameters behind the detonation wave
was possible. Thus, due to the small-amplitude pulsations of the parameters, it is possible
to achieve more stable and therefore predictable dynamics of detonation propagation.

The study in [5] largely summarizes the results obtained in [3,4]. For the purpose
of numerically solving the governing equations, they were transformed into a shock-
attached frame of reference. The shock-fitting algorithm from [7] generalized to the non-
uniform media case was used. In order to bring the formulation closer to the real mixing
processes in a rotating detonation engine, both the temperature of the mixture and the mass
fraction of the reagent changed simultaneously. Studies were conducted for E = 25 (stable
detonation) and E = 26 (weakly unstable detonation). For each of the values of E, a wide
range of wave numbers of disturbance was studied. The authors highlighted two main
results. First, the detonation instability responds resonantly to the upstream perturbations
by significantly increasing the amplitude of its velocity pulsations for certain ranges of
perturbation wavelength. On the other hand, as in [3,4], it was found that the regularization
of pulsations was possible for some upstream perturbations of the medium. Although
the conclusions in [5] were made on the basis of a much larger number of simulations
compared with [3,4], the considered activation energies were lower and qualitatively worse
and corresponded to the realistic fuel–air mixtures common in practice.

This work continues our research [8–11]. The goal is to clarify the mechanism of
the resonant amplification of intrinsic pulsations behind the front of a one-dimensional
detonation wave.

2. Mathematical Model and Statement of the Problem

The mathematical model is based on the one-dimensional Euler equations written in
the shock-attached frame of references (x, t) with single-step Arrhenius kinetics:

∂u
∂t

+
∂

∂x
(f − Du) = s, x = ξ −

t∫
0

D(τ)dτ, (1)
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u =


ρ

ρv
e

ρZ

, f =


ρv

ρv2 + p
(p + e)v

ρvZ

, s =


0
0

−ρQω
ρω

, (2)

e = ρε +
1
2

ρv2, ε =
p

ρ(γ − 1)
, ω = −AZ exp

(
−Eρ

p

)
. (3)

Here, ρ is the density, v is the velocity in the laboratory frame (ξ, t), D is the leading
shock wave velocity, p is the pressure, Q is the heat release of the chemical reactions, Z
is the mass fraction of the reactive component of the mixture, ω is the rate of chemical
reactions, e is the total energy per unit of volume, ε is the specific internal energy of the gas,
A is the pre-exponential factor, and E is the activation energy. The gas was considered to
be ideal with the specific heat ratio γ. The defining equations were rescaled following the
traditional convention [6] using a half-reaction zone length l1/2 and parameters in front of
the detonation wave as characteristic scales.

The leading shock speed is obtained by integrating the governing equations along the
C+ characteristic near the shock [12], taking into account the varying gas density:

dp
dt + ρc dv

dt − (γ − 1)Qρω = 0,
dx
dt = v + c − D,

ρinit = ρinit

(
xinit +

t∫
0

D(τ)dτ

)
, pinit = const, vinit = 0.

(4)

Here, d/dt in the first equation is the material derivative along the C+ characteristic,
and c is the speed of sound. The index «init» is used for the parameters in front of the
leading shock wave. These parameters are considered to be known functions in space in
the laboratory frame. The initial coordinate of the detonation wave is denoted as xinit.

The defining system of equations was solved on a fixed interval [−H;0]. The right
boundary corresponded to the leading shock wave front. The Rankine–Hugoniot jump
conditions for the current velocity D, obtained from the system of Equation (4), were set as
boundary conditions. Zero-order extrapolation conditions were used for the left boundary.
The length of the computational domain H was chosen to be large enough so that the left
boundary did not affect the solution. The Zel’dovich–von Neumann–Döring solution was
used as the initial condition.

3. Numerical Algorithm

The computational domain was covered with a uniform grid with N cells. The compu-
tational algorithm was based on the Strang splitting principle. At the gas dynamics stage
of the algorithm, spatial discretization was carried out using the finite-volume method.
Time integration was carried out using an explicit Euler method. The numerical flux was
calculated using the Courant–Isaacson–Rees upwind scheme extended for the case of a
two-component mixture written in the shock-attached frame of reference. For the accuracy
increase, the minmod reconstruction of the grid functions was applied. In the second stage
of the algorithm, the system of ordinary differential equations of chemical kinetics for
Z and p/ρ in each computational cell of the grid was solved. The details can be found
elsewhere [8,9].

The numerical method in use differs from most CFD algorithms; see, for example, [13–15],
which imply that the defining system of equations is solved in a fixed laboratory frame of
reference. When building a computational algorithm, the main difficulty was in integrating
the system of Equation (4) due to the non-uniform distribution of density. The system was
discretized in the following way:
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[
pn+1

s − pn
∗
]
+ 1

2

[
(ρc)n

∗ + (ρc)n+1
s

]
·
[
vn+1

s − vn
∗
]
= (γ − 1)Qρn+1

s ωn+1
s τn,

−xn
∗ = (vn

∗ + cn
∗ − Dn) · τn,

ρn+1
init = ρinit

(
xinit + Ln +

√
γ

pinit
ρn+1

init
Mn+1τn

)
.

(5)

The subscript s denotes parameters behind the leading shock at xs = 0 (see Figure 1);
Ln is the distance traveled by the leading shock at τn. The star subscript denotes the point of
intersection of the C+ characteristic with the x-axis. Parameters at this point were computed
using the linear interpolation between the known parameters at xN = −∆x/2 and xs; see [10]
for details.
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The coordinate xn
∗ was found from the second equation of the system of Equation (5):

xn
∗ = − (cn

s + vn
s − Dn) · τn

1 + 2 ·
(
cn

s − cn
N + vn

s − vn
N
)
· τn/∆x

. (6)

Parameters at point xs at the time instant t = tn+1 were determined using the Rankine–
Hugoniot jump conditions:

pn+1
s = pinit ·

1 +
2γ
[(

Mn+1)2 − 1
]

γ + 1

, ρn+1
s = ρn+1

init ·
(γ + 1)

(
Mn+1)2

(γ − 1)(Mn+1)
2
+ 2

, (7)

vn+1
s = 2cn+1

s ·
(

Mn+1)2 − 1
(γ + 1)Mn+1 , cn+1

s =

√
γ

pn+1
s

ρn+1
s

. (8)

Substituting these equations into the first and third equations of the system of
Equation (5) leads to a system of two non-linear algebraic equations with respect to the
unknowns Mn+1 and ρn+1

init , which is solved numerically using Newton’s method.
It was shown in [11] that the computational algorithm has a first order of accuracy.

The on-practice estimation was conducted for the mild test case without internal shocklets.
Minmod reconstruction of the grid functions in computational cells was also applied. The
test case corresponded to the so-called surfing mode of detonation propagation in a non-
uniform medium [5]. The issue of the accuracy of the algorithm was also discussed earlier
in [8]. The overall accuracy of the algorithm is limited by the accuracy of the leading shock
wave velocity calculation (5)–(8). As was shown in [8] for the case of a homogeneous
mixture, if, instead of a linear approximation of the characteristic in the vicinity of the
leading shock wave (see Figure 1), a quadratic approximation is used, then the accuracy of
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the entire algorithm increases to a value approaching two in practice. For future work, the
increase in the accuracy order of the numerical algorithm should be carried out in the case
of an inhomogeneous mixture.

4. Verification

The computational algorithm for the inert case (s = 0 in (1)) was verified in [10] for the
linear gradient of density in front of the leading shock. The obtained results were compared
with the analytical Chisnell–Whitham theory [16]. Good agreement was obtained for the
decreasing density, and a discrepancy was obtained for the increasing density. The analytics
did not take into account the effect of re-reflected waves on the leading shock, and this
effect was stronger in the case of increasing density.

We also considered the challenging problem of an inert, moving, strong shock wave
interacting with sine waves in density. We call it the Shu–Osher problem [17]. At the
initial time moment, the whole computational domain is filled with air with the parameters
behind the shock wave with a Mach number of 3.0 for the background parameters p0 = 1.0,
v0 = 0.0, and ρ0 = 1.0. The length of the domain H is equal to 20, and the cell number N is
equal to 4000. The density changes according to the following law:

ρinit = 1 + 0.2 · sin

−20 + 5 ·
t∫

0

D(τ)dτ

. (9)

The interaction of the leading shock wave with sine waves leads to the oscillating
solution (see Figure 2a). Due to fluctuations in the density of the gas, compression and
rarefaction waves in series propagate in the direction back from the leading wave in the
shock-attached frame of reference. At the same time, fluctuations in the velocity of the
leading wave and the density of the gas in front of the wave are in antiphase (see Figure 2b).
Eventually, each compression wave front becomes steeper, and a shock train is formed
behind the leading shock wave front. However, for earlier moments, the solution behind
the shock remains smooth. We can imagine a step function that approximates the smooth
sinusoid. Then, the oscillating part of the curve in Figure 2 is associated with a series of
contact discontinuities at density jumps, which are constantly generated as the leading
wave moves. It can be seen from Figure 2a that the density profiles calculated by the
authors and profiles from [17] coincide except for several peak amplitudes in the region of
contact surfaces.
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5. Results and Discussion
5.1. Variation in the Disturbance’s Wavelength

The following parameters of the mixture were considered:

γ = 1.2, Q = 50, E = 25. (10)

The linear theory predicts that the Zel’dovich–von Neumann–Döring solution is stable
for this set of parameters [6]. In this case, detonation propagates at a constant Chapman–
Jouguet speed:

DCJ =

√
γ +

1
2
(γ2 − 1)Q +

√
1
2
(γ2 − 1)Q ≈ 6.8095. (11)

The parameters (10) are canonical and were used in the study of the mechanisms of
detonation propagation in [5,7,8,12,18] and many other works.

Up to the time instant t1 = 500, a detonation wave propagated in the uniform mixture
to obtain a fully developed, self-sustaining regime. Then, the density of the mixture varied
according to the sine law:

ρinit = 1.0 + k · sin
(

2π

λ
·
∫ t

t1

D(τ)dτ

)
, k = 0.1. (12)

The relatively small amplitude of the disturbances k was chosen based on the results
from [3–5]. Next, we carried out a series of simulations varying the wavelength of the
disturbances λ from several tens to several hundred units.

The length of the computational domain was equal to H = 20. For the case λ = 100,
which is discussed below, simulations were also carried out for the domain lengths H = 60
and H = 100, as was performed in [9]. The simulation results for the lengths of domains
20, 60, and 100 are very similar, so all simulations were conducted for the domain length
H = 20. The total cell number was equal to 2000. So, the grid resolution was 100 cells per
half-reaction zone length l1/2. The grid convergence study was carried out in our previous
paper [11] for the case λ = 25, along with the estimation of the accuracy order of the
numerical method.

Several different modes of pulsations of the detonation wave speed were obtained
depending on λ (see Figure 3). As in [5], we obtained a non-linear dependence of the
amplitude of these pulsations on λ with resonant amplification of pulsations for a certain
range of λ. For example, the amplitude of leading shock velocity oscillations for λ = 100
is obviously greater than for λ = 25, 50, and 190. At λ = 25, we obtained a regime that
corresponded to the “surfing” mode from [5]. It means that the detonation wave follows the
ambient state oscillations; see Figure 3a. We studied this regime in our previous paper [11].
It was shown that the phase shift between the oscillations of the velocity of the detonation
wave and the density of the gas before the wave can be estimated as the maximum time of
passage of the characteristic C+ through the “induction zone”.

A detonation wave has a complex structure consisting of an induction zone with
almost no heat release due to active radicals that absorb energy to form and a reaction
zone with heat release due to recombination of the radicals to form the final products of
combustion. The significant drawback of the use of single-stage Arrhenius kinetics is that
the induction and reaction zones are not well defined. Heat release, although at a small but
finite rate, starts immediately behind the leading shock wave front and stops at infinity.
Nevertheless, we preferred the single-step Arrhenius kinetics model since a number of
reliable results about the stability of one-dimensional pulsating detonations have already
been obtained for this model, including those for the non-uniform medium. At each instant,
the induction zone length can be estimated as a distance behind the leading shock at which
|ω|, where ω is defined by (3), reaches the maximal value. This distance also correlates
well with the half-reaction zone length l1/2.
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The obtained mechanism of detonation propagation for λ = 25 was very similar to
that described in [19] for the so-called high-frequency mode. The numerical study in [19]
was conducted within the framework of the two-stage kinetics of chemical reactions. The
basic element was also a characteristic triangle formed by the characteristics C0 and C+.
The high-frequency mode in [19] was characterized by a period of oscillations of the
detonation parameters exceeding but comparable with the induction time. Now, we would
like to analyze the detonation propagation mechanism for the resonant amplification case
λ = 100; see Figure 3c.

5.2. The Resonant Amplification Case

First of all, note that λ = 100 is not an exact extremum that provides the strongest
amplification of the detonation wave. The value was chosen as a typical representative that
clearly shows the amplification effect. This value is consistent with the order of magnitude
with the value of 80l1/2 reported in [5] as an optimal wavelength for disturbances. The
detonation velocity oscillation period in Figure 3c is ∆T = T2 − T1 ≈ 14.7 and coincides
with the period of density perturbations. The situation is the same as in Figure 3a, but the
mechanics of the processes totally differ. Figure 3c qualitatively looks like Figure 2b for
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the inert Shu–Osher test. There are no additional secondary peaks, like in Figure 3b,d. So,
in the resonant mode, the detonation wave propagates over sine waves in density like a
strong inert shock wave with a constant piston support.

Figure 4 demonstrates wave dynamics in the x-t diagram. Details of the process
of building the characteristics can be found elsewhere [10]. We analyzed one period of
pulsations between time instants T1 and T2; see Figure 3c. The leading shock dynamics
is determined by the disturbances propagating along the C+ characteristic; see the black
lines in Figure 4. The limiting C+ characteristics for the considered circle end at points N
and P. The green line in Figure 4 is the C− characteristic. Point O at the intersection of the
C− and C+ characteristics conditionally corresponds to the end of the effective “reaction
zone”. The noticeable change in the C+ characteristic’s inclination takes place in the vicinity
of point O. For earlier time instants, it propagated parallel to the left C+ characteristic,
which propagates almost parallel to the leading shock wave and thus does not affect it
at the considered times. However, after time instant t ≈ 614, the C+ characteristic OP
starts moving in the direction of the leading shock. The oscillation period ∆T is mainly
determined by the time of passage of the C+ characteristic through the reaction zone, while
the time interval tO − tN is much smaller than ∆T.
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Figure 4. Predicted spatial distribution of |ω| and characteristic lines, λ = 100. The orange solid line
corresponds to |ω|max.

To understand the resonant amplification mechanism, let us also consider the case of
detonation propagation in a homogeneous medium, i.e., k = 0 in (12). As we mentioned
above, from a theoretical point of view, for the parameters (10), the detonation should
propagate with the velocity (11) without oscillations. So, we cannot indicate a natural
frequency of the internal pulsation of the detonation wave for the parameters (10). How-
ever, in all simulations, see, for example [5,7,12,18], the numerical solution demonstrates
decaying low-frequency and low-amplitude oscillations of parameters behind the leading
front; see Figure 5a. Usually, this effect is attributed to the fact that the exact theoretical
steady-state solution (used as an initial condition) is not the exact solution of the numeri-
cal discretization [5]. For this reason, the amplitude and some features of this pulsation
evolution can differ from paper to paper depending on the method or resolution in use.
However, in all studies, oscillations have the same period ∆t within the accuracy of their
measurements, for example, 11.68 in [7] (averaged over several oscillations), 11.61 in [18],
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and 11.66 in Figure 5a. So, in simulations, the period of oscillations of even a theoretically
stable detonation wave is determined by some intrinsic factors of the model.
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As in the resonant case, the characteristic analysis in the x-t diagram was carried
out. Figure 5b illustrates the wave dynamics within one oscillation period between time
moments t1 = 43.43 and t2 = 55.0. So, we plotted the limiting C+ characteristic that comes to
the point M, which corresponds to the time instant t2, and traced it back. For the estimation
of the backward signal that propagates back from the leading shock, we plotted the limiting
C− characteristic starting from point K. Point L of the intersection of these characteristics
provides the spatial scale of the effective “reaction zone” of about 5l1/2 responsible for
the pulsations of the detonation wave front. The real reaction zone for the single-stage
Arrhenius kinetics in use is infinitely long, and all C+ characteristics sooner or later will
affect the leading front. We can suggest that the period of pulsations is mainly determined
by the time it takes for a C+ characteristic to travel between points L and M. The same
observation was made in [19] for the low-frequency mode. The conclusion is also consistent
with the mechanism for the resonant amplification case. The time of wave propagation
along the C− characteristic between points K and L is much smaller.

So, the detonation velocity oscillation period ∆T for λ = 100 is close to ∆t = 11.7 for
the non-disturbance case, which is in fact the necessary condition for the occurrence of
amplification.

6. Conclusions

The current work is largely motivated by research in the field of rotating detonation
engines, which is currently being intensively conducted around the world. Issues of
detonation propagation in non-uniform media and, most importantly, of the control of the
stability of this process are of great interest today.

We conducted simulations of one-dimensional pulsating detonations in a non-uniform
medium with sine waves in density. For that, we solved Euler equations with single-
step Arrhenius kinetics in the shock-attached frame. The numerical algorithm for such
simulations has been developed over the past few years in our previous work. In [8], we
proposed the quadratic approximation of the C+ characteristic near the leading shock to
obtain the second accuracy order of the algorithm. In [9], we proposed the shock-attached
frame approach for a two-stage model of kinetics. In [10], we developed the algorithm
for the simulation of inert shock wave propagation in a medium with a non-uniform
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distribution of density. Recently, the numerical algorithm has been further developed for
the case of a non-uniform distribution of the parameters of the medium [11].

Shock-attached frame simulations work well for stability studies and characteristics
analyses of pulsating detonation waves. The computational burden in shock-attached
frame simulations is significantly less than that for simulations in the laboratory frame of
reference. In shock-attached frame simulations, the computational domain is always only
a small area behind the detonation wave front. In addition, they provide exact (i.e., with-
out numerical smearing) parameters behind the leading shock wave. The quantitative
effect when simulating different detonation modes (stable, weakly unstable, irregular, and
strongly unstable) in a homogeneous medium in the shock-attached frame of reference and
in the laboratory frame was described in [8].

Different wavelengths of density perturbation were considered. We obtained a non-
linear dependence of the amplitude of pulsations on the wavelength of disturbances λ
with resonant amplification of pulsations for a certain range of wavelengths. For λ = 100,
the mechanism of the amplification was studied using the x-t diagram. This value of λ
is consistent with the paper [5], in which the problem was studied using the methods of
non-linear dynamics. It was figured out that the mechanism of pulsations in this case is very
close to that in the simulation of stable detonation wave propagation without perturbations
of the medium’s parameters. The period of oscillation is roughly correlated with the time it
takes for the C+ characteristic to travel across the effective “reaction zone”. At the same
time, the time scale for a C− characteristic to traverse the “reaction zone” is, by comparison,
very small. The same tendencies were observed in [19] for the low-frequency regime of
pulsations of chain-branching detonations.

The main novelty of the paper that makes it different from [3–5] is the usage of
characteristic analysis for revealing the underlying mechanisms of the process. In [4],
the authors investigated the spectra of pressure pulsations behind the detonation wave.
For E = 28.5, a bifurcation diagram was plotted. It demonstrated the presence of two
wavelength ranges of density perturbation, at which a mode with detonation stabilization
was realized. In [5], Fourier spectral analysis was applied to the resulting time series to
extract dominating frequencies. The power spectra for all wavenumbers in consideration
were combined together in a color map with pulsation frequencies plotted on the horizontal
axis and perturbation wavenumbers plotted on the vertical axis. In other words, in [4,5],
the problem was studied using the methods of dynamical systems. Such an approach alone
is not sufficient to gain insight into the gas dynamics of the process. In contrast to [4,5],
the authors in [3] used the analysis of spatial distributions of pressure, temperature, and
mass fraction of the reagent. However, no clear explanation of the mechanisms of the
observed effects was given. The main results were established using the analysis of curves
of maximal pressure in the computational domain over time.

The use of a single-step Arrhenius kinetics model in the current research makes it
difficult to analyze the wave dynamics in the x-t diagram. We are planning to address this
issue by using kinetic models with a finite reaction zone [12] or with an induction zone and
a reaction zone clearly separated from each other [9,19].
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