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Abstract: The current study aims to develop a methodology for obtaining topology-optimal structures
made of short fiber-reinforced polymers. Each iteration of topology optimization involves two consec-
utive steps: the first is a simulation of the injection molding process for obtaining the fiber orientation
tensor, and the second is a structural analysis with anisotropic material properties. Accounting for the
molding process during the internal iterations of topology optimization makes it possible to enhance
the weight efficiency of structures—a crucial aspect, especially in aerospace. Anisotropy is considered
through the fiber orientation tensor, which is modeled by solving the plastic molding equations for
non-Newtonian fluids and then introduced as a variable in the stiffness matrix during the structural
analysis. Structural analysis using a linear anisotropic material model was employed within the
topology optimization. For verification, a non-linear elasto-plastic material model was used based on
an exponential-and-linear hardening law. The evaluation of weight efficiency in structures composed
of short-reinforced composite materials using a dimensionless criterion is addressed. Experimental
verification was performed to confirm the validity of the developed methodology. The evidence
illustrates that considering anisotropy leads to stiffer structures, and structural elements should be
oriented in the direction of maximal stiffness. The load-carrying factor is expressed in terms of failure
criteria. The presented multidisciplinary methodology can be used to improve the quality of the
design of structures made of short fiber-reinforced composites (SFRC), where high stiffness, high
strength, and minimum mass are the primary required structural characteristics.

Keywords: multidisciplinary analysis and optimization; topology optimization; anisotropy; short
fiber reinforced composites

1. Introduction

The aerospace and automotive industries have inherent requirements: high stiff-
ness, high strength, and minimum mass are the primary concerns when designing struc-
tures [1–4]. For instance, high stiffness and minimal mass are required to limit the natural
frequency of spacecraft to avoid resonance between the launch vehicle and itself [4–6], and
in automobiles to improve performance while satisfying safety requirements [7,8]. Minimal
mass is required for keeping the spacecraft structure lightweight to get to the desired
orbital altitude by increasing the useful load fraction [9], lowering aircraft engineering costs
by reducing airframe weight [10,11], and reducing aircraft and automobile operational
costs by increasing fuel efficiency [10–12]. High strength is linked to the minimal mass
requirement since materials with higher specific strength allow for keeping mass to a
minimum. The same applies to the high stiffness requirement when using materials with
high specific stiffness.

The strength of the structure depends on the structure’s shape and material. Regarding
materials, aluminum and titanium [13] are commonly used in the aerospace and automobile
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industries due to their high specific strength and stiffness. Moreover, new materials have
been researched for automobile [14] and aerospace applications [15–18], including ceram-
ics [19], composites [20], and nanocomposites [21]. Furthermore, nanocomposites [22,23],
shape memory polymers [24,25], and short fiber-reinforced composites (SFRC) have experi-
enced an increase in aerospace applications in recent years [19,26–32]. The principal metrics
for comparing materials, rather than Young’s modulus or the ultimate tensile strength, are
the specific stiffness and strength, as both mechanical characteristics are normalized by
material density. Current strategies for designing efficient structures can be categorized
into guidelines and recommendations [33], methods and methodologies [34–36], and even
parametric [37–39] and topology optimizations [38,40–45]. Topology optimization (TO)
has proven to be an excellent mathematical method for designing efficient structures and
optimizing material arrangement within a given design space for a set of loads, boundary
conditions, and constraints with the goal of minimizing a specific objective function. This
method, also known as the variable density model, was originally proposed in the work [46],
where it was applied to the optimal design of two-dimensional structures to overcome
the computational difficulties associated with stress analysis of variable-thickness plates.
Three-dimensional (3D) TO under strength and stiffness constraints, using material density
as a design variable, was later presented in the studies [47–49]. Another approach to repre-
senting variable density using materials at the microstructure level and its application to TO
problems can be found in the study [50], further explained in the work [51]. Designed struc-
tures are usually evaluated by considering maximum displacement, maximum strength,
failure criteria values [52–54], or minimum mass of the structure, which are not reliable
indicators since these values are local, except for mass, which is evaluated as an integral
characteristic and does not provide comprehensive information about the structure other
than its value. However, the load-carrying factor LCF G, proposed by Andrey Komarov in
1965 [46], allows us to relate both structural efficiency and weight requirements, facilitating
objective comparisons between structures with relatively low levels of computational and
modeling effort [55]. The fundamental physical meaning of the load-carrying factor is the
integral characteristic of the structure, reflecting the internal forces in its elements (the mode
of action of an external force on a structure up to its supports) and the extent of these inter-
nal forces (the extent of the external force transmission paths). A disadvantage of the LCF
is its dimensional dependence; if the geometrical dimensions of the structure and external
loads are changed, the magnitude of the LCF also changes, making it difficult to compare
different structural arrangements. Therefore, the usage of the LCF coefficient, as proposed
by Valery Komarov in the work [56], is more appropriate. In the accompanying article [57],
a proposal is made to employ the method of mixtures for assessing the weight efficiency
of composite structures, necessitating a detailed examination of composite materials at
the microstructure level. From a practical standpoint, the utilization of strength criteria at
the representative volume mesolevel appears to be more advantageous when evaluating
complex-shaped structures for weight efficiency. In the present work, the strength criterion
for homogenized composite material will be considered.

In summary, current modern materials such as SFRC, TO, metrics for assessing the
structure shape as failure criteria, and LCF have contributed to increasing stiffness and
strength while reducing the mass of structures. However, the interaction between them is
often not carefully considered. The fiber orientation tensor is obtained by means of solving
Folgar–Tucker’s continuity equation, which is developed based on the fiber orientation
kinetic theory of fiber suspensions [58–61]. SFRC is modeled as a transversely isotropic
material, even though its stiffness depends not only on the material’s mechanical character-
istics but also on the fiber orientation tensor [62]; TO is typically performed in an isotropic
medium [63,64], and LCF accounts for the equivalent stress of structures made of isotropic
materials. In other words, anisotropy is either partially or completely ignored at various
stages of the design process.

This work aims to develop a methodology for obtaining topology-optimal structures
made of SFRC. The objectives of this work are as follows: to make the stiffness matrix de-
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pendent on the fiber orientation tensor, to obtain the fiber orientation tensor by performing
injection molding simulations, to formulate a metric for assessing SFRC structures that
simultaneously evaluates the shape and material of the structure, and to experimentally
verify the developed methodology. It is assumed that by considering the anisotropy during
TO, the resulting topology will perform better than a topology obtained in an isotropic
medium. Moreover, the anisotropy is directly related to the arrangement of fibers within
the structure, specifically to the fiber orientation tensor, which is obtained by solving Folgar–
Tucker’s continuity equation [65] through modeling the injection molding process within
the designated design region in Autodesk Moldflow. The consideration of anisotropy in-
duced by the fiber arrangement is achieved by implementing the Advani-Tucker orientation
averaging procedure on the material stiffness matrix [66] and attaching the resultant tensor
to each mesh element. This procedure was realized with AnisoTopo [67]. The attachment
of the stiffness matrix was accomplished by interpolating the meshes of the injection and
structural models with Digimat MAP. Finally, TO was performed without altering the
stiffness arrangement within the design region. The resultant topology can be assessed
using a metric such as a modified LCF, which is described in terms of failure criteria for
composite materials, such as the Tsai–Hill failure criterion.

The numerical and experimental results of this study confirm that considering the
anisotropy during TO increases the stiffness of the resultant topologies. This is achieved
by obtaining the fiber orientation tensor by solving the plastic molding equations for
non-Newtonian fluids and making the stiffness matrix dependent on the obtained fiber
orientation tensor.

2. Materials and Methods
2.1. Materials and Material Models

Three different materials and their non-linear models were considered (see Figure 1
and Table 1). These materials include two anisotropic materials: a 50% glass fiber reinforced
polyamide 6, denoted as PA6 50GF [68], along with its associated model as presented
in [69], and a 30% carbon fiber reinforced polyamide 6, referred to as PA6 30CF [70], with
its corresponding model [71]. Additionally, an isotropic material, the D16T aluminum
alloy [72], shares similarities with the 2024-T4 aluminum alloy [73]. It is worth noting that
no specific preparation steps or treatments were applied to these materials before testing.
The mechanical characteristics of these materials were determined through tensile tests con-
ducted on samples cut from injected-molded plates with dimensions of 200 × 150 × 4 mm,
following the ISO 527-2:2012(en) standard [74]. While the primary mechanical characteris-
tics relevant to this study are summarized in Table 1, more comprehensive details on the
material characteristics can be found in their respective documentation.
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Table 1. Material characteristics and mechanical properties.

Characteristics
Material

PA 50GF PA 30CF D16T

Matrix phase

Matrix density, kg/m3 1148 2770
Young’s modulus, Em (MPa) 4911 3994 66,059

Poisson’s coefficient, υm 0.372 0.372 0.330
Yield stress, σy (MPa) 17.21 14.5 294.48

Hardening modulus, R∞ (MPa) 37.1 37.00 109.51
Hardening exponent, m 371.21 458.30 75.72

Linear hardening modulus, k (MPa) 313.02 188.40 1107.60

Reinforcement phase

Fiber density, kg/m3 2550 1780 -
Young’s modulus, Ef (MPa) 72,000 230,000 -

Poisson’s coefficient, υf 0.22 0.20 -
Fibers’, AR 13.58 16.54 -

Wt. % 30 50 -

Material’s ultimate tensile strength

Longitudinal, X (MPa) 153.31 169.35 476
Transverse, Y (MPa) 97.82 85.07 -

Transverse shear strength, S (MPa) 83.90 66.33 -

The material models for PA6 50GF and PA6 30GF were calibrated with experimental
data as described in [71]. In summary, this calibration method involves modeling the
material microstructure as a two-phase material and taking into account the fiber orien-
tation in the calculation of mechanical properties. The material’s mechanical properties
were obtained by homogenizing the fibers and matrix using a second-order Mori–Tanaka
homogenization scheme in Digimat MF. As the mechanical properties correspond to a
unidirectional fiber-reinforced composite, it is modeled as a transversely isotropic mate-
rial. Accounting for the fiber orientation was achieved by applying Tucker’s averaging
procedure. The matrix stress–strain state is described using the J2 plasticity model based
on von Mises’ equivalent stress. When the equivalent stress σeq exceeds the yield stress σy,
the stress–strain response becomes nonlinear, and plastic deformation occurs. The plastic’s
strength is then defined as follows:

σplastic = σy + R(εp), (1)

where σy is the yield stress; R(εp)=kεp + R∞[1 − e−mεp] represents the isotropic strain
exponential and linear hardening law; and εp is the accumulated plastic strain. Here,
k is the linear hardening modulus in MPa; m is the hardening exponent; and R∞ is the
hardening modulus in MPa. The material model parameters were adjusted by minimizing
the difference between the tensile strain-stress curves of the composite material and the
experimental results.

2.2. Methods
2.2.1. Topology Optimization

Topology optimization (TO) represents an effective approach for optimizing material
distribution within a structure to enhance the transfer of internal forces from areas of
load-carrying areas to support regions. Since the strain energy quantifies the energy stored
in a body due to deformation, minimizing this response leads to a reduction in the body’s
compliance [49]. Strain energy is mathematically defined as W = 0.5 Fu, where F = Ku is the
force expressed as the product of stiffness K and deformation u. The stiffness is influenced
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by anisotropy resulting from the arrangement of fibers within the body, specifically the
fiber orientation tensor.

In this study, the objective function of TO was to minimize the structure compliance
by reducing the total strain energy of an anisotropic composite material. This was achieved
by adjusting the topology density ρ within the design region Ω while adhering to the given
design region volume constraint g1(x) and constraints such as the “minimum member
size” g2(x) and the “pull-out direction” g3(x). The formulation was defined as follows:

minimize f(x) = 0.5uTK(ρ(x), A(x))u,

by varying ρ(x) ∈ (0, 1], x ∈ Ω,

subject to h(x) = K(ρ(x), A(x))u − F = 0,

g1(x) =
∫
ρ(x)dΩ − Vret ≤ 0,

g2(x) =
∫

|∇ρ(x)|dΩ − δ ≤ 0,

g3(x) = ρi − ρk ≤ 0 ∀ xi = xk, yi = yk, |zi| ≥ |zk|,

Here, K represents the global stiffness matrix, u denotes the nodal displacement vector,
F is the nodal force vector, and x is the vector containing design domain elements with
coordinates x, y, and z. “Minimum member size” constraint g2(x) limits the change of the
gradient of the density field with respect to spatial coordinates over the design domain.
Thus, the minimum width of structural members on average becomes limited to a specified
value. In addition, it is known [51] that the minimum member size constraint acts as
a mesh independence filter for topology optimization. “Pull-out direction” constraint
g3(x) provides a monotone decreasing of density ρ(x) when moving away from a parting
plane. A represents the fiber orientation tensor, and δ is related to the minimum structural
member size. TO, in this work, was performed using the “Sequential Convex Programming”
solver within the Ansys Mechanical Workbench 18.2 software. The relationship between
topological density and finite element stiffness matrix is carried out by the SIMP (Solid
Isotropic Material with Penalization) interpolation scheme [51] as follows:

k(ρ) = k0 ρp.

Here, k0 is the stiffness of the solid material, and p = 3 is the penalty factor, which is
used for penalizing intermediate densities.

For manufacturing purposes, elements with a density below the specified threshold
value were removed from the model, and retained elements with a density above the
threshold value are considered parts.

There are two manufacturing methods for composite part production. The first method
is related to cutting a part from a molded workpiece, which can, for example, be in the form
of a rectangular plate. This case is named “constant molding”, where material anisotropy
exists but does not depend on the part shape. The second method is injection molding
of the designed part. The second case is named “variable molding”, where a coupled
simulation of injection molding and structural optimization is required.

Unidisciplinary Topology Optimization Considering Constant Molding

Anisotropy was modeled by adjusting the elastic constants of the stiffness matrix. Since
composites reinforced with 30–50 wt.% fiber along the flow direction exhibit double the
stiffness compared to that across the flow direction [75], the anisotropy was incorporated by
modifying stiffness matrix components. The mechanical characteristics of the anisotropic
material were aligned with the global coordinate axis and remained constant throughout
the TO, allowing for the optimization of structure arrangement based on a predefined
stiffness distribution.
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Multidisciplinary Topology Optimization: Considering Variable Molding

As explained in the previous section, modeling the anisotropy during structural
analysis involves incorporating the relevant material characteristics of an anisotropic
material. However, this approach is suitable for cutting structures from injection-molded
plates (constant molding case) but not for molded structures (variable molding case). In
molded structures, the fiber orientation within the channels, which are structural elements
from the perspective of solid mechanics, cannot be defined until TO is performed.

The technique outlined in [75] was applied to account for fiber arrangement within the
channels and dynamically adjust the mechanical characteristics of each structural element
by recalculating the element’s fiber orientation tensor. Algorithm 1 for multidisciplinary
TO considering variable anisotropy is presented in Figure 2 and in the pseudocode. A
detailed description of the algorithm implementation is available in [76].
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Figure 2. Multidisciplinary topology optimization considering a variable anisotropy flow chart.

The process begins with the introduction of initial values, including boundary condi-
tions for structural analysis BCstruct and injection molding simulation BCinjMold, material
properties of the matrix, and fiber MPmatrix+fiber, injection molding material MPinjMold, TO
parameters OPtopoOpt, topology density threshold th, design region volume percentage to
retain Vret, interpolation tolerance between the injection molding and structural analysis
meshes δmap, and an optional geo.stp file for geometry. MPmatrix+fiber and OPtopoOpt are
saved as materialProperties.txt and topoParameters.txt, respectively, for correct utilization
in AnisoTopo [67]. The structural domain region mesh, elements participating in TO, and
elements related to boundary conditions are obtained from Ansys Workbench and saved
as designRegionMesh.ans, design.txt, and frozen.txt, respectively. TO with variable fiber
orientation proceeds after specifying the convergence criterion for the TO algorithm, which
is the relative difference ε between the previous and current objective function values, not
exceeding the objective relative difference εobj. Key moments in TO include:

First, the structural mesh is exported to Autodesk Moldflow. If it is the first iteration,
reducedMesh.ans will be the same as designRegionMesh.ans, as it has not been previously
reduced. Otherwise, the structural mesh is reduced using the “delete_elements” algorithm
and saved as reducedMesh.ans (details in [76]). At the molding simulation stage, the mesh
is refined, including the removal of areas not connected with injection locations. Second,
the reducedMesh.ans, BCinjMold, and MPinjMold are introduced to Moldflow for calculating
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the fiber orientation tensor A, which is exported along with the injection molding mesh
meshinjMold and saved in the files meshMoldFlow.pat and fiberOrientMoldFlow.xml, re-
spectively. Fiber orientation mapping from injection molding to structural analysis mesh
is performed in DigimatMAP, and the mapped fiber orientation A’ is stored in the file
fiberOrientAnsys.xml. The mapping step also extrapolates the orientation tensor field to
regions not included in the molding simulation design domain regions, which allows the
smooth material characteristics field at the part boundaries to be obtained.

Third, in AnisoTopo [67], A’ is introduced to calculate the anisotropic stiffness matrix
(K) using the Advani-Tucker orientation averaging technique applied to the material
stiffness matrix [4]. AnisoTopo’s code employs the Mori–Tanaka homogenization method
to compute mechanical properties.

The composite strain and stress are contingent on the strain and stress of both the
matrix and fiber in proportion to their volume fractions, as follows:

ε =
(

1− ϕ f

)
εm + ϕ f ε f ,

σ =
(

1− ϕ f

)
σm + ϕ f σf ,

where ϕ f is the fiber volume fraction, and the subscripts m denote the strain and stress of
matrix values, while the subscripts f correspond to the strain and stress of the fiber.

The unidirectional short-fiber-reinforced composite material is modeled as transversely
isotropic. The elastic moduli, as introduced by Tandon and Weng [77], were used to
calculate the elastic coefficients:

E11

Em
=

1

1 +
ϕ f (A1+2υm A2)

A6

E22

Em
=

1

1 +
ϕ f [−2υm A3+(1−υm)A4+(1+υm)A5 A6]

2A6

,

where Em and υm are the Young’s modulus and Poisson ratio of the matrix, respectively.
The parameters Ai are the functions of Eshelby’s tensor and can be found in [78]. In this
particular study, we employ Eshelby’s tensor for an elliptical inclusion, which depends
on the fiber’s aspect ratio. Tucker’s averaging procedure is used to account for the fiber
orientation tensor, described as follows:

Cijkl = B1aijkl + B2
(
aijδkl + δijakl

)
+ B3

(
aikδjl + ailδjk + ajlδik + ajkδil

)
+B4

(
δijδkl

)
+ B5

(
δikδjl + δilδjl

)
,

where aijkl is the fourth-order fiber orientation tensor, δij is the second-order unit tensor, and
the coefficients B are related to the components of the stiffness matrix of the transversely
isotropic unidirectional composite [79]. This resulting tensor is linked to each mesh element
and exported as apdl_pre.txt to Ansys Mechanical Workbench.

Fourth, the structural analysis is carried out. In all iterations but the first, the structural
analysis is performed on the current topology as determined by the topology density
ρ (details in [75]). Subsequently, ε is calculated, and the topology is extracted based
on Vdef and exported as density.topo. If the current ε is less than εobj for the number
of times specified by the k-iterations criterion Kε [80] (in this work, three times in a
row), TO is stopped, and the last topology is exported as topoOptStruct.stl. Otherwise,
the counter g is incremented by 1, and the loop repeats until convergence is achieved.
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Algorithm 1. Multidisciplinary topology optimization.

Input: BCstruct, BCinjMold, MPinjMold, MPmatrix+fiber, OPtopoOpt, th, δmap, Vdef, εobj, geo.stp (Optional)
Output: topoOptStruct.stl
write materialProperties.txt←MPfiber+matrix
write topoParameters.txt← OPtopoOpt
meshstruct, designelements, frozenelements = AnsysWorkbench_Mesh(BCstruct, geo.stp);
write designRegionMesh.ans←meshstruct, design.txt← designelements, frozen.txt←
frozenelements;
g = 1;
counter_epsilon = 0;
while (counter_epsilon < Kε) do

if g == 1 then
reducedMesh.ans = designRegionMesh.ans;

else
domain_mesh_reduced = delete_elements(designRegionMesh.ans, th, (density.txt)g-1);
write reducedMesh.ans← domain_mesh_reduced

end if
meshinjMold, A = AutodeskMoldFlow(reducedMesh.ans, BCinjMold, MPinjMold);
write meshMoldFlow.pat←meshinjMold, fiberOrientMoldFlow.xml← A;
A’ = DigimatMAP(fiberOrientMoldFlow.xml, meshMoldFlow.pat, designRegionMesh.ans, δ);
write fiberOrientAnsys.xml← A’;
KEL = AnisoTopo(materialProperties.txt, fiberOrientAnsys.xml, topoPararmeters.txt,

designRegionMesh.ans, design.txt, frozen.txt);
write apdl_pre.txt← KEL;
if g == 1 then

Wg = AnsysWorkbench_StructuralAnalysis(designRegionMesh.ans, apdl_pre.txt,
BCstruct);

else
Wg = AnsysWorkbench_StructuralAnalysis(designRegionMesh.ans, apdl_pre.txt,

BCstruct, ρ);
εg = |(Wg −Wg-1)/Wg-1|
if εg <= εobj then

counter_epsilon ++
else

counter_epsilon = 0
end if

end if
ρ = AnsysWorkbench_TopologyOptimization_Iteration(designRegionMesh.ans, design.txt,

frozen.txt, Vdef, topoPara, apdl_pre.txt, Wg)
write density.topo← ρ;
Convert density.topo to (density.txt)g with HDFView();
g++

end while
topoOptStruct = delete_elements(designRegionMesh.ans, th, (density.txt)g-1);
write topoOptStruct.stl← topoOptStruct

2.2.2. Metrics for Evaluating the Structure Design Quality of Composite Materials

The load-carrying factor (LCF), denoted as G, along with its coefficient CK, is employed
to assess the quality of a structural arrangement [55,56]. Their typical formulations are
defined as follows:

G =
∫

V
σeqdV, (2)

CK =
G
Fl

(3)

Here, σeq represents the equivalent stress, V is the volume of the structure, F is the
characteristic load in N, and l is the characteristic linear dimension in m (l represents
the distance between areas where loads are applied to the locations of the supports). To
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properly evaluate the quality of the structural arrangement in composite materials, the LCF
has been redefined based on stress criteria.

For structures made of isotropic materials, the LCF is expressed as follows:

G = σUTS
∫

V
FeqdV, (4)

Here, σUTS is the ultimate tensile stress, and Feq = σV / σUTS is the maximum stress
criterion, defined as the ratio of von Mises stress σV to the material’s ultimate tensile stress
σUTS. The LCF coefficient remains the same as in Equation (3).

In the case of structures made of anisotropic materials, the LCF is expressed as follows:

GTH = σUTS
0

∫
V

FTHdV, (5)

Here, σ0
UTS is the ultimate tensile strength either along the longitudinal direction

(along the fiber), and FTH is the average Tsai–Hill criterion, determined using Advani-
Tucker’s averaging procedure [66]. It is defined as follows:

FTH = D1aijkl + D2
(
aijδkl + aklδij

)
+ D3

(
aikδjl + ailδjk + ajlδik + ajkδil

)
+ D4

(
δijδkl

)
+ D5

(
δikδjl + δilδjk

)
, (6)

where D1 = Fud
TH1111 − 2 Fud

TH1122 + Fud
TH2233 − 4 Fud

TH1212 + Fud
TH2323; D2 = Fud

TH1122 − Fud
TH2233;

D3 = Fud
TH1212 − Fud

TH2323; D4 = Fud
TH2233; and D5 = Fud

TH2323. The values of the Tsai–Hill criteria
tensor are determined using the following expression:

Fud
TH =

σ2
11

X2 −
σ11(σ22 + σ33)

X2 +
σ2

22 + σ2
33

Y2 +

(
1

X2 −
2

Y2

)
σ22σ33 +

σ2
12 + σ2

13

S2 +

(
4

Y2 −
1

X2

)
σ2

23, (7)

Here, σij represents the components of the stress tensor (component 11 corresponds to
the fiber’s longitudinal axis, etc.), X is the longitudinal strength limit, Y is the transverse
strength limit, and S is the transverse shear strength.

The LCF coefficient, accounting for the anisotropy, can be written as follows:

CTH
K =

GTH

Fl
(8)

It should be mentioned that the failure criteria presented above are not considered in
the topology optimization problem since the primary scope of the given work is to investi-
gate the influence of the anisotropic properties of SFRP on classical topology optimization
results aimed at obtaining a minimum compliance design.

The second metric that allows comparison of the stiffness of differently loaded struc-
tures made of different materials is the normalized specific stiffness k, which is calculated
as the ratio of F/m to δ/l in the elastic zone:

k =
Fl

mδ
, (9)

where F is the loading force, m is the bracket mass, δ is the displacement of the bracket lug
along the line of force, and l is the distance from the supports to the line of force application.

2.2.3. Bracket Manufacturing and Load Testing Technique

The variable molding brackets and plates for cutting constant molding bracket pro-
duction were manufactured by injection molding using a Negri Bossi VE 210-1700 injection
molding machine. The filling parameters were as follows: melt temperature 230 ◦C, mold
temperature 80 ◦C. The pellets were dried before the injection at a temperature of 90 ◦C
for 4 h in a plastic pellet dryer. Mold for variable molding brackets injection molding was
manufactured from St-3 steel plates underwent CNC machining using a 4-flute 4 mm AlTiN
D4x50x4Dx4F coated carbide endmill.
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A static test was conducted to verify the developed methodology on both brackets.
Before conducting the static test, the brackets were weighed using an electronic balance with
a resolution of 0.01 g. Both brackets are loaded along the Y-axis until they fail. Restricting
plates were used to ensure that the brackets failed due to fracture and not buckling.

The mechanical testing equipment for both brackets consisted of an MTS 322 testing
machine with mechanical grips, an MTS 793 controller, and an MTS 661.20F-03 force sensor,
as well as special equipment shown in Figure 3, which included auxiliary rods and plates.
Before performing the tensile test, the bracket support 1 and loading rod 2 were positioned.
A mounting tool was used to check the collinearity between the bracket’s support and
loading rod axes, and a construction level was used to ensure the vertical straightness
of the loading scheme. Subsequently, the bracket was positioned between the bracket
support plates and secured with M6 bolts. Displacement-restricting plates 3 were attached
to bracket support 1 using M6 bolts. Linking rod 4 is attached to loading rod 1 with M6
bolts. The need for using the Z-displacement restricting plates arises from the conducted
linear buckling analysis. The alignment of the bracket and linking-rod axes was achieved
by adjusting the height of the loading rod. Finally, the bracket and linking rod were fixed
in place using M6 bolts. After positioning all the components and ensuring that the bracket
was not pre-stressed, the gauge sensor was set to zero.
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3. Results

TO was performed on two case studies to obtain the structural layout for constant
molding and variable molding cases. In the constant molding case, the topologies obtained
with and without considering constant anisotropy were compared. In the variable molding
case, the solutions obtained using fixed and variable fiber orientations were compared. The
materials used were PA6 50GF, PA6 30CF, and D16T. The aluminum structures, along with
the LCF coefficient, serve as a control for comparing the resultant topologies.

3.1. Topology of Optimal Constant Molding Structures
3.1.1. Topology Optimization and Structural Arrangement Quality Assessment

In the constant molding case, the design space is a rectangle with dimensions
75 × 50 × 4 mm, as shown in Figure 4, where frozen elements near the loads and sup-
ports are marked in gray. The structured mesh consists of 47,862 elements, with an edge
size of 0.25 mm. This was assessed by the element quality mesh metric, with a minimal
value of 0.4009, a maximum value of 0.9949, an average value of 0.8834, and a standard
deviation of 6.4556 × 10−2.
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Figure 4. Topology optimization design region, boundary conditions, and load case.

Force F was applied to the elements located within the ring at the center-right side of
the region, while the displacement of the elements within the rings on the left side was set
to 0 mm. The design region volume percentage to retain mret was set to 12%. The objective
relative difference εobj value was established as 0.1%. The material properties were defined
as follows: for isotropic material, Young’s modulus of 8 GPa and a Poisson’s ratio of
0.25; for orthotropic material, the following elastic constants: EX = 13 GPa, EY = 7 GPa,
EZ = 6.5 GPa, υXY = 0.272, υYZ = 0.365, υXZ = 0.254, GXY = 1.979 GPa, GYZ = 1.639 GPa,
and GXZ = 1.763 GPa (the X-axis corresponds to the bracket symmetry axis, the Y-axis
corresponds to force direction, and the Z axis is determined by the right-hand rule).

During the topology optimization analysis, a bearing force is used as the loading
boundary condition, and cylindrical supports are utilized as structural constraints. A linear
static analysis was employed for the topology optimization.

The convergence results are plotted in Figure 5. A converged solution was achieved
after 44 and 34 iterations for the TCA (topology optimized design with constant molding
and anisotropic material) and TCI (topology optimized design with constant molding
and isotropic material) cases, respectively. Here, “constant molding” means that a single
injection molding simulation was performed before optimization, and the resulting solid
material properties remain the same over the whole design domain. The resultant topolo-
gies are shown in Figure 6; the topology considering isotropy and constant anisotropy will
be further referred to as TCI and TCA, respectively (where C stands for constant, even
though isotropy is constant by definition).
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In the verification analysis, an anisotropic elasto-plastic material model is utilized,
considering the orientation of reinforcing fibers. This model is calculated for the molded
plate from which the parts are cut out. Loads and supports are applied to auxiliary
cylindrical bodies, which are located inside holes and connected to the main part using
nonlinear contact.

The von Mises-based and Tsai–Hill failure criterion fields of the resultant constant
molding topologies, loaded at a force corresponding to the relation F/m =70 N/gr, are
presented in Figure 7. It can be observed that the von Mises failure criterion underestimates
the strength of structural members loaded transversely in the fiber direction. Meanwhile,
the Tsai–Hill failure criterion allows for a more accurate estimation of the strength of
structures made of short-reinforced composite materials.

Computation 2024, 12, 35 13 of 29 
 

 

In the verification analysis, an anisotropic elasto-plastic material model is utilized, 

considering the orientation of reinforcing fibers. This model is calculated for the molded 

plate from which the parts are cut out. Loads and supports are applied to auxiliary 

cylindrical bodies, which are located inside holes and connected to the main part using 

nonlinear contact. 

The von Mises-based and Tsai–Hill failure criterion fields of the resultant constant 

molding topologies, loaded at a force corresponding to the relation F/m =70 N/gr, are 

presented in Figure 7. It can be observed that the von Mises failure criterion 

underestimates the strength of structural members loaded transversely in the fiber 

direction. Meanwhile, the Tsai–Hill failure criterion allows for a more accurate estimation 

of the strength of structures made of short-reinforced composite materials. 

 

Figure 7. Failure criteria in the field of constant molding topologies: (a) von Mises-based failure 

criterion field of TCA; (b) von Mises-based failure criterion field of TCI; (c) Tsai–Hill failure criterion 

field of TCA; (d) Tsai–Hill failure criterion field of TCI. 

The failure criteria and volume of each element in Equations (3) and (7) were 

multiplied and summed to calculate the LCF and LCF coefficients. The LCF and LCF 

coefficients of each topology and failure criterion combination are presented in Table 2. 

The relative percentage difference was calculated between the LCF coefficients of TCA 

and TCI. 

Table 2. LCF coefficient baseline and reconstructed TCA and TCI. 

Topology m, g f, N CK CKTH 

PA6 50GF 

TCA 4.655 326.8 5.2928 5.6994 

TCI 4.658 326.1 5.2482 5.8285 

PA6 30CF 

TCA 3.779 264.5 5.3407 6.7438 

TCI 3.781 264.7 5.2874 7.1127 

D16T 

TCA 8.146 570.3 5.1964 - 

TCI 8.152 570.6 5.2287 - 

  

Figure 7. Failure criteria in the field of constant molding topologies: (a) von Mises-based failure
criterion field of TCA; (b) von Mises-based failure criterion field of TCI; (c) Tsai–Hill failure criterion
field of TCA; (d) Tsai–Hill failure criterion field of TCI.

The failure criteria and volume of each element in Equations (3) and (7) were multiplied
and summed to calculate the LCF and LCF coefficients. The LCF and LCF coefficients
of each topology and failure criterion combination are presented in Table 2. The relative
percentage difference was calculated between the LCF coefficients of TCA and TCI.
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Table 2. LCF coefficient baseline and reconstructed TCA and TCI.

Topology m, g f, N CK CK
TH

PA6 50GF

TCA 4.655 326.8 5.2928 5.6994
TCI 4.658 326.1 5.2482 5.8285

PA6 30CF

TCA 3.779 264.5 5.3407 6.7438
TCI 3.781 264.7 5.2874 7.1127

D16T

TCA 8.146 570.3 5.1964 -
TCI 8.152 570.6 5.2287 -

3.1.2. Influence of the Relationship between Elastic Moduli E1 and E2 of Composite
Material on the Resulting Topology

An investigation of the influence of the relationship between E1 and E2 of composite
material on the resulting part topology has been conducted, considering cases with two
and four times higher anisotropy than those previously considered (refer to Figure 8). For
each material, the normalized specific stiffnesses were calculated using k (9), representing
the ratio of brackets from this material with TCA and TCI shapes. This ratio allows the
evaluation of the potential for increasing the stiffness of the product by considering the
material’s anisotropy in the design.
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Figure 8. Influence of the relationship between E1 and E2 of composite material on the resulting topology.

It can be observed that as the material’s anisotropy increases, the load-carrying el-
ements of the structure align along the direction of maximum stiffness of the material,
resulting in a decrease in the structure height and an increased importance of considering
the material’s anisotropy. Increasing the E1 to E2 ratio to 7.4 enables a 1.49-fold increase in
the stiffness of the structure when considering the material’s anisotropy during the topology
optimization process. For further experimental verification, the case with an E1/E2 = 13/7
is chosen, which corresponds to the actual properties of the available composite material.

3.1.3. Experimental Verification

The TCA and TCI brackets (30 samples in total) were cut using a milling machine from
plates molded from short, reinforced composite materials PA6 50GF, PA6 30CF, and, for
comparison with isotropic material, from an aluminum D16T plate. Mechanical tests of the
brackets were carried out on the MTS 322 machine (Figure 9). The linear buckling analysis
shows that adding the Z-displacement restricting plates increases the load multiplier from
0.8 to 1.3 for plastic parts and prevents them from buckling. The results are presented
in Figure 10 in terms of specific force and normalized deformation by the characteristic
dimension (see Section 2.2.2).

Non-linear structural analysis was performed on the obtained topologies to compare
the numerical and experimental results (Figure 11). The experimental lines are summarized
in the form of average values over the samples, and the scatter field is determined by
the value of the standard deviation. The normalized specific stiffness of the numerical
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results was calculated from 25 to 50% of the maximal specific force for each TCA, TCI,
and material combination. For experimental results, it was calculated from 2.07 to 4.12%
for PA6 50GF, from 4 to 5.74% for PA6 30CF, and from 1.5 to 3% for D16T. The difference
between experimental and numerical results is due to overestimating the stiffness of bolted
joints and molded parts in the lug area and a rough approximation of testing tool flexibility.
The integral characteristics of each structure as well as their normalized specific stiffness
are presented in Table 3.
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Figure 9. TCA and TCI bracket loading experiments.
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Figure 10. TCA and TCI experimental loading curves: (a) TCA made in PA6 50GF, (b) TCA made in
PA6 30CF, (c) TCA made in D16T, (d) TCI made in PA6 50GF, (e) TCI made in PA6 30CF, (f) TCI made
in D16T.
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TCI made of: (a) PA6 50GF; (b) PA6 30CF; and (c) D16T.

Table 3. Normalized specific stiffness of TCA and TCI.

Topology Normalized Specific Stiffness, N/gr Percentage Change
from TCA to TCI, %TCA TCI

PA6 50GF 3883 3661 6.06
PA6 30CF 4621 4194 10.18

D16T 11,474 11,654 −1.54

The statistics of the experimentally obtained specific stiffness of TCA and TCI are
shown in Table 4. The high coefficient of variation of D16T topologies results from the
machining precision during the manufacturing of these topologies.

Table 4. Statistics of normalized specific stiffness of TCA and TCI.

Material
Average, N/gr Standard Deviation,

N/gr
Coefficient of
Variation, % Percentage Change

from TCA to TCI, %
TVA TVI TVA TVI TVA TVI

PA6 50GF 1551 1479 140 167 9.03 11.26 4.87
PA6 30CF 1833 1737 52 96 2.84 5.54 5.53

D16T 7192 7584 76 406 1.06 5.36 −5.17

3.2. Topology-Optimal Variable Molding Structures
3.2.1. Topology Optimization and Topology Assessment

In Figure 12, the design region and boundary conditions for the TO are presented. The
design region has dimensions of 105 × 60 × 10 mm. The optimization was carried out on a
mesh of 163,325 tetragonal elements, each with a size of 1.5 mm. Force F was applied to the
center-right side element of the region, while the elements located at the left-side corners
had a fixed displacement of 0 mm. The target volume fraction to be retained was set to 20%,
and the minimum size of the structural elements was 6 mm. Anisotropic materials PA6
50GF and PA6 30CF, as well as isotropic material D16T, were considered for the analysis.

As in the previous case of study, the resultant topology, considering anisotropy and
isotropy, will be further referred to as TVA (topology optimized design with variable
molding and anisotropic material) and TVI (topology optimized design with variable
molding and isotropic material), respectively. Here, “variable molding” means that the
injection molding simulation is performed at each optimization cycle, and solid material
properties are updated according to orientation tensor field redistribution.

During the topology optimization stage, linear static analysis is performed. Fixed
supports are utilized as structural constraints, and a uniform load is directly applied to the
nodes of frozen elements.
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The convergence progress is illustrated in Figure 13, where a converged solution was
achieved after 71 and 66 iterations, respectively. The resultant topologies are displayed
in Figure 14. A comparison of the results in Figure 14 reveals that considering the mate-
rial’s anisotropy in topology optimization results in changes to the structural layout. In
Figure 14b, the connections of the main structural members become more rounded, and
some rods are added in the central area of the part.
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3.2.2. Topology Reconstruction

The resultant TO topologies from Section 3.2.1 are idealized results and are not final
geometries ready for verification and manufacturing. They were manually reconstructed in
Siemens NX. Figure 15 presents the baseline and reconstructed TVA and TVI topologies.
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Figure 15. Topology reconstruction divided into three stages: the result of topology optimization
(baseline), baseline and reconstructed topology overlaying, and reconstructed geometry: (a) TVA and
(b) TVI.

Verification was conducted through nonlinear analysis using an anisotropic elasto-
plastic material model, considering injection molding simulation. For both internal-
exported and baseline designs, the loads and supports matched those used in the topology
optimization. In the reconstructed cases, the loads and supports were applied to auxiliary
cylindrical bodies modeled within holes and connected to the main part using nonlinear
contact. Aluminum bushings were connected to the plastic parts via linear-bonded contact.
Mesh sensitivity analysis revealed that the molding simulation yielded nearly identical
results with both coarsely reduced meshes and fine meshes built on CAD models [81]. A
comparison of the fiber orientation tensor at three points within the topology and evaluat-
ing the LCF coefficient of the topologies in different reconstruction stages were evaluated.
Since injection molding simulation during TO was performed on a tetrahedral mesh, this
mesh was evaluated as well. The internal-exported, baseline, and reconstructed topologies
where the fiber orientation tensor was extracted and the components of their tensors are
presented in Figure 16.
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Figure 16. Flow fields: (a) internal-exported TVA; (b) baseline TVA; (c) reconstructed TVA; and
(b) reconstructed TVI. Fiber orientation tensors: (d) internal-exported TVA; (e) baseline TVA; and
(f) reconstructed TVA.

The internal-exported, baseline, and reconstructed topologies were subjected to lineal
structural analysis using linear PA6 50GF, PA6 30CF, and D16T. Figure 17 illustrates the
von Mises-based and Tsai–Hill failure criteria fields for the baseline, smoothed TVA and
reconstructed TVA, and TVI when the topologies were subjected to loads corresponding
to F/M = 70 N/gr. Table 5 displays the corresponding CK values of both topologies and
provides a comparison between them.
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Figure 17. Tsai–Hill failure criterion fields: (a) baseline TVA; (b) reconstructed TVA; (c) baseline TVI;
and (d) reconstructed TVI. Equivalent stress (von Mises-based) failure criterion fields: (e) baseline
TVA; (f) reconstructed TVA; (g) baseline TVI; and (h) reconstructed TVI.
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Table 5. LCF coefficient of internal-exported, baseline, and reconstructed TVA and TVI.

Topology
Baseline Reconstructed Percentage Difference between

Baseline and Reconstructed
m, g f, N CK

eq CK
TH m, g f, N CK

eq CK
TH CK

eq CK
TH

PA6 50GF

TVA 22.94 1606 3.3183 3.4341 25.59 1791 3.5230 3.6541 5.98% 6.21%
TVI 23.24 1627 3.3214 3.4437 26.17 1832 3.5481 3.6926 6.60% 6.98%

PA6 30CF

TVA 18.62 1304 3.3225 3.6881 20.76 1448 3.5273 3.9025 5.98% 5.65%
TVI 18.86 1320 3.3238 3.7103 21.24 1481 3.5539 3.9799 6.69% 7.01%

D16T

TVA 40.15 2810 3.3122 - 47.34 3314 3.5707 - 7.51% -
TVI 40.66 2846 3.3176 - 48.36 3386 3.5892 - 7.86% -

The failure criteria F and volume dV of each element, as described in Equations (3) and (7),
were multiplied and summed to calculate the LCF coefficient. The LCF coefficient of each
topology and material combination is presented in Table 5. The characteristic linear dimen-
sion l for the baseline topologies is 105 mm, whereas for the reconstructed topologies, it is
102.55 mm. The ultimate tensile stress σUTS for PA6 30CF topologies is 169.35 MPa, while
for D16T topologies, it is 476 MPa. The percentage change is calculated with respect to the
correspondent baseline topology.

3.2.3. Experimental Validation

TVA and TVI brackets are made by injection molding (Figure 18). To strengthen the
lugs, aluminum-embedded elements (bushings) were added. The simulation of the injection
molding process was qualitatively validated by comparing the real and simulated flow at
a specific filling time (Figure 19). The used design-stage flow model makes it possible to
predict the material distribution during the molding process with good accuracy.
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Fiber orientation was assessed by comparing the numerical fiber orientation against
the real fiber orientation, which was observed under an electronic microscope, Tescan
Vega 3T, at the fracture zone. Figure 20 shows the points at which the fiber orientation
was evaluated.
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Figure 19. Flow fields: (a) simulated and experimental flow of TVA; and (b) simulated and experi-
mental flow of TVI.
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Figure 20. The fiber orientation at different fracture zones.

Mechanical tests of the TVA and TVI brackets from PA6 50GF, PA6 30CF, and D16T (51
samples in total) were carried out on the MTS 322 machine (Figure 21). The linear buckling
analysis demonstrated that incorporating Z-displacement restricting plates enables an
increase in the load multiplier from 0.52 to 1.3 for plastic parts, thereby preventing buckling.
The experimentally obtained specific force-normalized deformation curves for TVA and
TVI brackets are presented in Figure 22.

A non-linear structural analysis of TVA and TVI brackets was performed on the
reconstructed topologies to compare the numerical and experimental results (Figure 23).
The experimental lines are summarized in the form of average values over the samples and
the scatter field by the value of the standard deviation.
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Figure 22. TVA and TVI bracket-loading experiments: (a) TVA made in PA6 50GF, (b) TVA made in
PA6 30CF, (c) TVA made in D16T, (d) TVI made in PA6 50GF, (e) TVI made in PA6 30CF, (f) TVI made
in D16T.

The normalized specific stiffness was calculated in the elastic zone in all cases with
respect to normalized deformation. For the numerical results, the normalized specific
stiffness ranged from 5.66 to 13.17%, while for the experimental results, it ranged from
7.5 to 15.8% for PA6 50GF and from 8.5 to 17.3% for PA5 30CF and D16T. The integral
characteristics of each structure, as well as their normalized specific stiffness, are presented
in Table 6.
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Figure 23. Specific force-normalized deformation curves of numerical and experimental TVA and
TVI made of: (a) PA6 50GF; (b) PA6 30CF; and (c) D16T.

Table 6. Normalized specific stiffness and mass characteristics of the baseline and reconstructed TVA
and TVI.

Material Topology
Normalized Specific Stiffness, N/gr Percentage Change

from TVA to TVI, %TVA TVI

PA6 50GF
Baseline 7250 7187 0.88

Reconstructed 5500 5260 4.56

PA6 30CF
Baseline 8993 8924 0.77

Reconstructed 7209 6893 4.58

D16T
Baseline 19,737 19,869 −0.66

Reconstructed 11,838 11,613 1.92

The statistics of the experimentally obtained specific stiffness for TVA and TVI are
shown in Table 7. The high coefficient of variation of D16T topologies is attributed to the
machining precision during the manufacturing of these topologies.

Table 7. Statistics of the normalized specific stiffness of reconstructed TVA and TVI.

Material

Average,
N/gr

Standard
Deviation,

N/gr

Coefficient
of

Variation, %
Percentage Change

from
TVA to TVI, %

TVA TVI TVA TVI TVA TVI

PA6
50GF 3529 3289 179 267 5.09 8.13 7.30

PA6
30CF 4533 4290 216 187 4.77 4.36 5.66

D16T 7293 7875 775 1150 10.63 14.60 −7.39

4. Discussion

Assessment of the topologies by the LCF coefficient (see Sections 3.1.1 and 3.1.2)
reveals that the classic coefficient CK is more suitable for structures made of isotropic
materials. The classic CK does not convey any information regarding anisotropy, making it
incapable of accurately estimating the quality of structures made from anisotropic material.
For example, the classic CK indicates the advantage of TCI made from anisotropic materials
over TCA, despite the latter having lower specific stiffness (see Tables 2 and 3). The CK

TH

incorporates the effect of anisotropy on the stress state of the structure by optimizing the
placement of structural elements to achieve more efficient mold filling. The minimal CK

TH

values of the TCA and TCI correspond to the maximal specific stiffness of these topologies.
However, a significant drawback arises from the fact that the integral over the volume of
the failure criteria is the product of the average criteria values over the volume, making
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LCF insensitive to both under- and over-stressed elements. We recommend evaluating the
structure’s topology not only using any of the possible formulations of the LCF coefficient
but also employing a metric based on the coefficient of variance of the failure criteria (where
the average and deviation are calculated from the failure criteria value over the volume).
Moreover, reformulating the objective function to minimize both the average and deviation
of the total strain energy of the topology should lead to a more equally strong structure.

The results obtained in Section 3 confirm that considering anisotropy during TO
increases the normalized specific stiffness of the resultant topologies. Specifically, the
normalized specific stiffness increased numerically by 6.06–10.18% and 0.77–0.88% in the
constant and variable molding cases of study, respectively, for the available composite
materials (see Sections 3.1.3 and 3.2.3). Increasing the E1 to E2 ratio to 7.4 enables a 49%
increase in the stiffness of the structure in a constant molding case, which shows the
possibility of increasing the effect in the presence of materials with greater anisotropy. In
this work, all resulting topologies correspond to truss structures, which consist mostly of
rods. In the variable molding case, all rods have almost the same elastic properties due to
the alignment of fibers along their axes during injection molding. The impact of considering
anisotropy during TO is more pronounced in the constant molding case. It can be assumed
that the contrast in the normalized specific stiffness between the constant and variable
molding cases is due to the regular orientation of the flow—and the fibers within it—along
the structural elements in the variable molding case, causing the mechanical characteristics
in these elements to be closer to those of the 0◦-oriented material. In the case of thin-walled
structures, the effect of increasing stiffness, considering variable molding anisotropy, can
be more prominent.

The increase in the change in the normalized specific stiffness of the reconstructed
topologies compared to the baseline topologies (see Section 3.2.3) can be attributed to
inaccuracies introduced by the CAD engineer during reconstruction and the replacement
of fixed supports with bolted joints. Moreover, an increment is observed when comparing
the CK

TH of the baseline and reconstructed topologies, suggesting that CK
TH and the

normalized specific stiffness are correlated and that CK
TH serves as an indicator of the

degree of pristine (flawless) structure compared to the baseline topology. The experimental
results showed that the normalized specific stiffness increased by 4.84–5.63% and 5.66–7.30%
in the constant and variable molding cases, respectively (see Sections 3.1.3 and 3.2.3). This
indicates that two important points in this work—making the stiffness matrix dependent
on the fiber orientation tensor and obtaining the fiber orientation tensor by solving the
molding equations along with the Folgar–Tucker’s continuity equation—allow us to achieve
a stiffer structure (since the 2D case does not account for these points). The deviation of
the numerical results from the experimental results can be attributed to differences in
the loading scheme, the material model, and the omission of the weld lines during the
numerical calculation. During the experiment with TVA and TVI brackets, it was noted
that the poor adhesion between the aluminum bushing and the SFRP structure generated a
weak joint interfacial strength, which could be the reason for the lower normalized specific
stiffness than that predicted by the numerical model. Therefore, the investigation of the
adhesion of aluminum and titanium alloys to SFRP can be part of future studies.

Regarding the topology, it is evident that TO attempts to orient the structural elements
along the fiber direction when accounting for anisotropy, in contrast to TO in an isotropic
medium, where the elements are positioned further from the symmetry line to reduce
bending moments. The same topology distribution can be observed in the results of
the work [61], where fiber orientation was simultaneously and sequentially considered.
Therefore, it is confirmed that for better structural performance of the structural elements,
they should be oriented in the direction of the fiber, in other words, in the direction of
maximum stiffness. Moreover, this last statement also demonstrates the minimal difference
between the topologies in the variable molding case.

We have several recommendations for improving the repeatability of this work. First,
the maximum strain rate at which the topologies are loaded during the tensile test should
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be 0.01 s−1. Second, the effect of boundary conditions should be minimized to achieve a
higher contrast between solutions; alternatively, different boundary conditions should be
investigated. For instance, increasing the design region, placing the loads further from
the support, or analyzing complex loading schemes such as the geometry presented in
the work [82]. Third, changing the type of material model used during TO from linear to
non-linear should be considered, as previous works [83] have demonstrated that this leads
to stronger structures.

5. Conclusions

In this work, a methodology for obtaining topology-optimal structures made of short
fiber-reinforced composites (SFRC) while considering the material’s anisotropy was pre-
sented. The calculation of the composite material’s stiffness matrix was performed using
the fiber orientation tensor, which was obtained by solving the plastic molding equations
for non-Newtonian fluids. Both calculations and experimental results confirmed that ac-
counting for the material’s anisotropy can enhance the stiffness of structures made from
short-reinforced composite materials. The present work aims to obtain a minimum com-
pliance design through topology optimization, utilizing anisotropic material properties
obtained from numerical simulation of the injection molding process. The Tsai–Hill failure
criterion is employed in current work solely for design evaluation purposes, but it could
also be incorporated into the optimization problem, which is the focus of future work.

In instances where predetermined anisotropy was taken into consideration, the ori-
entation of the reinforcing fibers led to stiffness increases ranging from 5 to 10% for the
available composite materials and can be increased more in the presence of materials with
greater anisotropy. In the case of molding truss-type structures, the stiffness increase was
somewhat lower, ranging from 0.8 to 7.3%. This discrepancy arises from the fact that, in
truss-type structures, the majority of the fibers align with the load-bearing elements of the
truss, while the truss contributes less to the overall rigidity of the structure.

Furthermore, the results obtained using this technique were compared with those of
topology-optimal structures. Thus, the increase in stiffness is also expressed as a percentage.
In specific applications, especially within the aerospace industry, such an increase in
stiffness can prove to be significantly advantageous.

This work demonstrates that the modified CK
TH, in terms of the Tsai–Hill failure

criterion, can be effectively employed in the design of fiber-reinforced polymer-based
composite structures. It is worth noting that the CK approach can be formulated using other
failure criteria as well. For instance, the Tsai–Wu failure criterion may be more appropriate
when distinguishing between tension and compression strengths is crucial.

Currently, various options exist for assessing weight efficiency using dimensionless
criteria. Nevertheless, this field has yet to achieve a comprehensive form, and the approach
proposed in this work contributes to the advancement of dimensionless methods for
assessing the quality of structures made from short-reinforced composite materials.
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