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Abstract: We derive a reaction–diffusion model with time-delayed nonlocal effects to study an
epidemic’s spatial spread numerically. The model describes infected individuals in the latent period
using a structured model with diffusion. The epidemic model assumes that infectious individuals
are subject to containment measures. To simulate the model in two-dimensional space, we use the
continuous Runge–Kutta method of the fourth order and the discrete Runge–Kutta method of the
third order with six stages. The numerical results admit the existence of traveling wave solutions
for the proposed model. We use the COVID-19 epidemic to conduct numerical experiments and
investigate the minimal speed of spread of the traveling wave front. The minimal spreading speeds
of COVID-19 are found and discussed. Also, we assess the power of containment measures to contain
the epidemic. The results depict a clear drop in the spreading speed of the traveling wave front after
applying containment measures to at-risk populations.

Keywords: epidemic of COVID-19; incubation period; continuous Runge–Kutta method; traveling wave
solution; spreading speed; delay model; reaction–diffusion model

1. Introduction

Mathematical models have been extensively used in epidemiology, since they provide a
clear understanding of the dynamical behavior of an epidemic; see, for example, [1–10]. The
work by Alanazi et al. [1–3] proposed a model to study and analyze the disease of rabies; they
compared the results to popular studies published about the disease and to the rabies epizootic
that happened in Europe from 1940 to 1980. The most basic and classic models of epidemics
are susceptible-infected-removed (SIR) models. For this kind of model, we refer to the study by
Chekroun et al. [4]. In [4], the authors mathematically analyzed an SIR model, which transferred
to a system of a reaction–diffusion equation and a Volterra integral equation. Epidemic models
considering the infection age are typically systems of nonlinear differential equations. Modeling
the infection age could lead to systems with time-delayed and nonlocal effects. For example,
So et al. [11] formulated a model with a fixed maturation period. Then, the total number of
mature populations can be obtained using a reaction–diffusion model with time-delayed nonlocal
effects [11]. The literature is rich in mathematical models focusing on traveling wave solutions
and their minimum speeds; for the readers, we choose the following studies: [6,8,12–15] and
references therein.

Sometimes, containment measures should be applied to at-risk populations to avoid another
wave of an epidemic or weaken the spreading virus. In the recent epidemic of COVID-19, for
instance, several control measures have been applied to contain the disease [16–20]. For more
studies about the COVID-19 epidemic, we refer the reader to [21–31].

This work aims to mathematically predict the spreading speeds of the traveling wave
front. Also, we aim to assess the power of containment measures to contain the disease. We
derive a new mathematical model with time-delayed and nonlocal effects to numerically
study an epidemic’s spatial dynamics in two-dimensional space to reach these goals. We
simulate the model on a bounded domain of R2 and predict the minimal front wave
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spreading speeds to assess the power of containment measures to control the disease.
The results are compared and discussed with the data reported by the National Health
Commission of China and other available data in the literature.

The paper is organized as follows. In Section 2, the unbounded model with time-
delayed and nonlocal effects is derived. To approximate the solution of the model, we con-
sider a bounded domain ofR2 for discretization in space first, then in time (Sections 3 and 4).
To solve the ordinary differential equations in time, we use the continuous Runge–Kutta
method of the fourth order and the discrete Runge–Kutta method of the third order with six
stages (Section 4). This numerical method is proposed and discussed in [32–34]. In Section 5,
we use the COVID-19 epidemic as an example to conduct the numerical experiment. The re-
sults are discussed in detail in Section 6, with remarks about the limitations of the proposed
model and future studies.

2. Derivation of the Unbounded Model

The model assumes that individuals in the susceptible and infected stages can move and
diffuse from one place to another. Also, the model assumes no natural deaths in the population.
Furthermore, the model assumes that some infectious individuals who leave the incubation
period are subject to containment measures with rate γ. Applying the containment measures
to all of the infectious population is not possible, so it is reasonable to assume 0 ≤ γ < 1.
Furthermore, we assume that the infectious time is a fixed constant, where s > 0.

Let x be the location in unbounded domain Ω and t be the time. The density of
susceptible individuals is S(x, t), and the density of nonisolated infectious individuals is
O(x, t). Then, the model is defined as follows:

∂

∂t
S(x, t) = Ds

∂2

∂x2 S(x, t)− ηS(x, t)O(x, t)

∂

∂t
O(x, t) = Do

∂2

∂x2 O(x, t)− doO(x, t) + (1 − γ)I(x, t, s)

(1)

where x ∈ Ω and t > 0. I(x, t, a) is the density of infected individuals with infection age
a ∈ (0, s), and it is described by the standard structured model with diffusion as follows:

∂

∂t
I(x, t, a) +

∂

∂a
I(x, t, a) = Di

∂2

∂x2 I(x, t, a)− di I(x, t, a)

I(x, t, 0) = ηS(x, t)O(x, t),
(2)

In the model, Ds, Do, and Di > 0 are the diffusion coefficients of susceptible, nonisolated
infectious, and infected populations, respectively. η > 0 is the disease transmission
coefficient. The term 1/do > 0 is the mean length of the infectious period. di is the death
rate of the infected population. The force of containment measures is denoted by γ, where
1 > γ ≥ 0.

Next, we solve the system (2) for 0 < a < s to find I(x, t, s). Let W(x, c, a) = I(x, c +
a, a) and c ≥ 0; see also [35]. Then, we have the following:

∂

∂a
W(x, c, a) =

[ ∂

∂t
I(x, t, a) +

∂

∂a
I(x, t, a)

]
t=c+a

= Di
∂2

∂x2 I(x, c + a, a)− di I(x, c + a, a)

= Di
∂2

∂x2 W(x, c, a)− diW(x, c, a)

W(x, c, 0) = ηS(x, c)O(x, c).

(3)

We solve the linear reaction–diffusion system (3) and obtain
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W(x, c, a) = ηe−
∫ a

0 dida
∫

Ω
Γ(Dia, x − y)S(y, c)O(y, c)dy, (4)

where Γ is the fundamental solution of ∂t − ∂xx. Therefore, for t > a ≥ 0 and x ∈ Ω,
we obtain

I(x, t, a) = W(x, t − a, a) = ηe−dia
∫

Ω
Γ(Dia, x − y)S(y, t − a)O(y, t − a)dy. (5)

Incorporating (4) into (1) leads to the following reaction–diffusion system with nonlocal delay:

∂

∂t
S(x, t) = Ds

∂2

∂x2 S(x, t)− ηS(x, t)O(x, t)

∂

∂t
O(x, t) = Do

∂2

∂x2 O(x, t)− doO(x, t)

+ (1 − γ)ηe−dis
∫

Ω
Γ(Dis, x − y)S(y, t − s)O(y, t − s)dy,

(6)

where x ∈ Ω and t > 0. We define the initial densities as follows:

S(x, t) = ϕ1(x, t), O(x, t) = ϕ2(x, t), (7)

where x ∈ Ω and t ∈ [−s, 0]. In the next section, we will incorporate boundary conditions
into the bounded model.

3. Spatial Discretization of the Bounded Model

Let Ω = R2. Then, the model (6) takes the form

∂

∂t
S(x, y, t) = Ds

(∂2S(x, y, t)
∂x2 +

∂2S(x, y, t)
∂y2

)
− ηS(x, y, t)O(x, y, t)

∂

∂t
O(x, y, t) = Do

(∂2O(x, y, t)
∂x2 +

∂2O(x, y, t)
∂y2

)
− doO(x, y, t)

+ (1 − γ)ηe−dis
∫ ∫

Ω
Γ(Dis, x − v, y − w)S(v, w, t − s)

O(v, w, t − s) dv dw,

(8)

where (x, y) ∈ Ω and t > 0. Here,

Γ(Dis, x) = (4πDis)−1e−|x|2/(4Dis), x ∈ R2, (9)

where | · | is the Euclidean norm on R2 and Dis > 0. The initial densities are

S(x, y, t) = θ1(x, y, t), O(x, y, t) = θ2(x, y, t), (10)

where (x, y) ∈ Ω, t ∈ [−s, 0]. To numerically approximate the solution of (8)–(10), we
assume Ω ⊆ R2 with the following boundary conditions:

S(x, y, t) = ψ(x, y, t), O(x, y, t) = ϕ(x, y, t) on ∂Ω × (0, ∞). (11)

Let x = xi ∈ [−a1, a1] and y = xj ∈ [−a2, a2], where a1, a2 > 0. Let the spatial grids be
defined as

xi = −a1 + i∆x, ∆x = 2a1/(N + 1), i = 0, 1, . . . , N + 1,

yj = −a2 + j∆y, ∆y = 2a2/(M + 1), j = 0, 1, . . . , M + 1,

where N and M are positive integers. Then, we have the following discrete form of (8):
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∂

∂t
S(xi, yj, t) = Ds

(∂2S(xi, yj, t)
∂x2 +

∂2S(xi, yj, t)
∂y2

)
− ηS(xi, yj, t)O(xi, yj, t)

∂

∂t
O(xi, yj, t) = Do

(∂2O(xi, yj, t)
∂x2 +

∂2O(xi, yj, t)
∂y2

)
− doO(xi, yj, t)

+ (1 − γ)ηe−dis
∫ a1

−a1

∫ a2

−a2

Γ(Dis, xi − v, yj − w)

S(v, w, t − s)O(v, w, t − s) dv dw,

(12)

where i = 1, 2, . . . , N, j = 1, 2, . . . , M, and t > 0. The discrete form of the initial conditions are

S(xi, yj, t) = θ1(xi, yj, t), O(xi, yj, t) = θ2(xi, yj, t), (13)

where i = 0, 1, . . . , N + 1, j = 0, 1, . . . , M + 1, and t ∈ [−s, 0]. Also, the boundary conditions
are now expressed as

S(−a1, yj, t) = ψ1
L(yj, t), S(a1, yj, t) = ψ1

R(yj, t),

S(xi,−a2, t) = ψ2
L(xi, t), S(xi, a2, t) = ψ2

R(xi, t),

O(−a1, yj, t) = ϕ1
L(yj, t), O(a1, yj, t) = ϕ1

R(yj, t),

O(xi,−a2, t) = ϕ2
L(xi, t), O(xi, a2, t) = ϕ2

R(xi, t),

i = 0, 1, . . . , N + 1, j = 0, 1, . . . , M + 1, t ≥ 0.

(14)

∂2S/∂x2 and ∂2S/∂y2 are approximated using the central finite differences such as

∂2S(xi, yj, t)
∂x2 ≈

S(xi−1, yj, t)− 2S(xi, yj, t) + S(xi+1, yj, t)
∆x2 , (15)

and
∂2S(xi, yj, t)

∂y2 ≈
S(xi, yj−1, t)− 2S(xi, yj, t) + S(xi, yj+1, t)

∆y2 . (16)

Similarly for ∂2O/∂x2 and ∂2O/∂y2, we have

∂2O(xi, yj, t)
∂x2 ≈

O(xi−1, yj, t)− 2O(xi, yj, t) + O(xi+1, yj, t)
∆x2 , (17)

and
∂2O(xi, yj, t)

∂y2 ≈
O(xi, yj−1, t)− 2O(xi, yj, t) + O(xi, yj+1, t)

∆y2 . (18)

Let

A(xi, yj, ∆x, ∆y, t − s) =
∫ a1

−a1

∫ a2

−a2

Γ(Dis, xi − v, yj − w)

S(v, w, t − s)O(v, w, t − s) dv dw.
(19)

We use the composite trapezoidal rule to find an approximation to the integral in (15) [1]:
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A(xi, yj, ∆x, ∆y, t − s) =
∆x∆y

4

[
A1(xi, yj, x0, y0, t − s)

+ A2(xi, yj, x0, yM+1, t − s)

+ A3(xi, yj, xN+1, y0, t − s)

+ A4(xi, yj, xN+1, yM+1, t − s)
]

+
∆x∆y

2

[
A5(xi, yj, xk, y0, t − s)

+ A6(xi, yj, xk, yM+1, t − s)

+ A7(xi, yj, x0, yl , t − s)

+ A8(xi, yj, xN+1, yl , t − s)
]

+ ∆x∆y
[

A9(xi, yj, xk, yl , t − s)
]
,

(20)

where i, k = 1, . . . , N, and j, l = 1, . . . , M. The functions from A1 to A9 are given by

A1(xi, yj, x0, y0, t − s) = Γ(Dis, xi − x0, yj − y0)

ψ1
L(y0, t − s)ϕ1

L(y0, t − s),

A2(xi, yj, x0, yM+1, t − s) = Γ(Dis, xi − x0, yj − yM+1)

ψ1
R(yM+1, t − s)ϕ1

R(yM+1, t − s),

A3(xi, yj, xN+1, y0, t − s) = Γ(Dis, xi − xN+1, yj − y0)

ψ2
L(xM+1, t − s)ϕ2

L(xM+1, t − s),

A4(xi, yj, xN+1, yM+1, t − s) = Γ(Dis, xi − xN+1, yj − yM+1)

ψ2
R(xN+1, t − s)ϕ2

R(xN+1, t − s),

A5(xi, yj, xk, y0, t − s) = ∑N
k=1 Γ(Dis, xi − xk, yj − y0)

ψ2
L(xk, t − s)ϕ2

L(xk, t − s),

A6(xi, yj, xk, yM+1, t − s) = ∑N
k=1 Γ(Dis, xi − xk, yj − yM+1)

ψ2
R(xk, t − s)ϕ2

R(xk, t − s),

A7(xi, yj, x0, yl , t − s) = ∑M
l=1 Γ(Dis, xi − x0, yj − yl)

ψ1
L(yl , t − s)ϕ1

L(yl , t − s),

A8(xi, yj, xN+1, yl , t − s) = ∑M
l=1 Γ(Dis, xi − xN+1, yj − yl)

ψ1
R(yl , t − s)ϕ1

R(yl , t − s),

A9(xi, yj, xk, yl , t − s) = ∑N
k=1 ∑M

l=1 Γ(Dis, xi − xk, yj − yl)

S(xk, yl , t − s)O(xk, yl , t − s),

(21)

where i, k = 1, . . . , N, and j, l = 1, . . . , M. According to the Equations (14)–(20), the
system (12) has the form
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S′(xi, yj, t) = Ds

(S(xi−1, yj, t)− 2S(xi, yj, t) + S(xi+1, yj, t)
∆x2

+
S(xi, yj−1, t)− 2S(xi, yj, t) + S(xi, yj+1, t)

∆y2

)
− ηS(xi, yj, t)O(xi, yj, t)

O′(xi, yj, t) = Do

(O(xi−1, yj, t)− 2O(xi, yj, t) + O(xi+1, yj, t)
∆x2

+
O(xi, yj−1, t)− 2O(xi, yj, t) + O(xi, yj+1, t)

∆y2

)
− doO(xi, yj, t) + (1 − γ)ηe−dis A(xi, yj, ∆x, ∆y, t − s),

(22)

where i = 1, 2, . . . , N, j = 1, 2, . . . , M, and t > 0. The initial and boundary conditions are
defined in (13) and (14), respectively.

4. Discretization in Time

In this section, we numerically solve the model of ordinary differential equations (22)
in time by applying the continuous Runge–Kutta method of the fourth order and the
discrete Runge–Kutta method of the third order with s = 6 stages. This method was
introduced by Owren and Zennaro [32–34,36].

Let S(xi, yj, t) and O(xi, yj, t) be written as Si,j(t) and Oi,j(t), respectively. Let

S(t) =

S1,1(t) . . . S1,N(t)
...

. . .
...

SN,1(t) . . . SN,N

, O(t) =

O1,1(t) . . . O1,N(t)
...

. . .
...

ON,1(t) . . . ON,N

,

and

y(t) =
[

S(t)
O(t)

]
, y(t − s) =

[
S(t − s)
O(t − s)

]
.

The initial conditions are

y(t) = u0(t) =
[

θ1(t)
θ2(t)

]
,

where t ∈ [−s, 0]. The system of ordinary and delay differential equations in (22) can be
expressed as {

y′(t) = f
(
y(t), y(t − τ)

)
, t ∈ [0, H],

y(t) = u(t), t ∈ [−s, 0],
(23)

where f : R2N2 ×R2N2 → R2N2
, and u : [−s, 0] → R2N2

.
The continuous approximation of order p of yh(tn + θhq) for the solution y(t) at a

point tn ∈ (tn, tq+1] is found by

yh(tn + θhq) = yh(tn) + hq

s=6

∑
j=1

bj(θ)g
(
yh(tq + cjhq), yh(tq + cjhq − τ)

)
,

and the discrete approximation of order p − 1 is calculated as

ŷn+1 = yh(tn) + hq

s=6

∑
j=1

b̂jg
(
yh(tq + cjhq), yh(tq + cjhq − τ)

)
.
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Here, n = 0, 1, 2, . . . , N − 1, hq = tq+1 − tq, c = [c1, c2, c3, c4, c5, c6]
T , and θ ∈ (0, 1]. The opti-

mal values of the coefficients used by this method are given in the folllowing Butcher table:

c A

yh b(θ)

ŷn+1 b̂

=

0
1
6

1
6

11
37

44
1369

369
1369

11
17

3388
4913 − 8349

4913
8140
4913

13
15 − 36764

408375
767

1125 − 32708
136125

210392
408375

1 1697
18876 0 50653

116160
299693

1626240
3375

11648

yh(tn + θhn) b1(θ) b2(θ) b3(θ) b4(θ) b5(θ) b6(θ)

ŷn+1
101
363 0 − 1369

14520
11849
14520 0 0

,

where the polynomials bi(θ) are given by

b1(θ) = − 866577
824252 θ4 + 1806901

618189 θ3 − 104217
37466 θ2 + θ,

b2(θ) = 0,

b3(θ) =
12308679
5072320 θ4 − 2178079

380424 θ3 + 861101
230560 θ2,

b4(θ) = − 7816583
10144640 θ4 + 6244423

5325936 θ3 − 63869
293440 θ2,

b5(θ) = − 624375
217984 θ4 + 982125

190736 θ3 − 1522125
762944 θ2,

b6(θ) =
296
131 θ4 − 461

131 θ3 + 165
131 θ2.

The Euclidean norm of yh(tn+1) and ŷn+1 is defined as follows:

EST(tn+1) =
∥∥ŷn+1 − yh(tn+1)

∥∥
2

This gives an estimate of the local discretization error of the explicit continuous Runge–
Kutta method at tn+1. The initial stepsize h0 is computed by

h0 = min
{

0.01 τ,
TOL1/5

∥ f (0, y0)∥2

}
according to Refs. [37,38], where the accuracy tolerance TOL is chosen by the user of the
code. The new stepsize hn+1 from tn+1 to tn+2 = tn+1 + hn+1 is computed by

hn+1 = η hn

(
TOL

EST(tn+1)

)1/5

,

where η = 0.8 is a safety coefficient that reduces the number of rejected steps during the
implementation time. The new stepsize hn+1 is accepted when

EST(tn+1) ≤ TOL,

and it is rejected when
EST(tn+1) > TOL.

If hn+1 is rejected, another attempt is taken with a halved stepsize hn+1/2; see also [1,2].

5. Numerical Experiment: Spatial Propagation of COVID-19

The coronavirus disease (COVID-19) emerged in Wuhan, China in December 2019.
The disease is registered as an epidemic in many regions of the world. In this section, we
use the model described in Section 2 to study the spread of COVID-19 in two-dimensional
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space for two cases. In the first case, we assume that no containment measures are applied;
thus, γ = 0. For the second case, we assume that the force of containment measures is
γ = 0.5. We assume that Ds, Do, and Di = 10 [people/km2]. Also, we assume no deaths
for the infected individuals in the latent period, i.e., di = 0 [1/day]. The other numerical
values of the parameters are given in Table 1.

Let N = M = 79, t ∈ [0, 40], and Ω = (−a1, a1)× (−a2, a2), where a1 = a2 = 50 km.
We define Dirichlet boundary conditions as

S(−a1, yj, t) = ψ1
L(yj, t) = 0, S(a1, yj, t) = ψ1

R(yj, t) = 0,

S(xi,−a2, t) = ψ2
L(xi, t) = 0, S(xi, a2, t) = ψ2

R(xi, t) = 0,

O(−a1, yj, t) = ϕ1
L(yj, t) = 0, O(a1, yj, t) = ϕ1

R(yj, t) = 0,

O(xi,−a2, t) = ϕ2
L(xi, t) = 0, O(xi, a2, t) = ϕ2

R(xi, t) = 0,

i = 0, 1, . . . , N + 1, j = 0, 1, . . . , M + 1, t ≥ 0.

The initial conditions are defined on Ω × [−s, 0] to be

S(xi, yj, t) = θ1(xi, yj, t) = 3 [people/km2],

O(xi, yj, t) = θ2(xi, yj, t) =

 0.1 [people/km2], −2 ≤ xi ≤ 2,−2 ≤ yj ≤ 2,

0 [people/km2], otherwise,

i = 0, 1, . . . , N + 1, and j = 0, 1, . . . , M + 1.

Table 1. Numerical values of the parameters.

Parameter Biological Meaning Units Values References

S0 The initial number of susceptible [people/km2] 3 Assumed
η Disease transmission coefficient [km2/day] 0.59 [18]
s Incubation period fixed value [day] 3 [18]
1/do The mean length of infectious period [day] 1.61 [39]

5.1. The Force of Containment Measures when γ = 0

If the force of containment measure is zero, then contour plots in the x direction are
demonstrated in Figure 1, which show that COVID-19 propagates uniformly to all directions,
with a minimal wave speed that equals

c∗γ=0 ≈ 2 [km/day] = 14 [km/week].

The two-dimensional approximated solutions of Sh(x, y, t) to S(x, y, t), and Oh(x, y, t) to
O(x, y, t) at different times are presented in Figures 2 and 3. Figure 4 displays the rejected
stepsize h, as discussed in Section 4.
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Figure 1. Contour plots of Sh(x, y, t) (top) and Oh(x, y, t) (bottom) in x direction when N = 21 and γ = 0.

(a) (b)

(c) (d)

(e) (f)

Figure 2. Two-dimensional approximation of Sh(x, y, t) to S(x, y, t) when γ = 0. (a) t = 3 [day],
(b) t = 5 [day], (c) t = 10 [day], (d) t = 20 [day], (e) t = 30 [day], (f) t = 40 [day].
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(a) (b)

(c) (d)

(e) (f)

Figure 3. Two-dimensional approximation of Oh(x, y, t) to O(x, y, t) when γ = 0. (a) t = 3 [day],
(b) t = 5 [day], (c) t = 10 [day], (d) t = 20 [day], (e) t = 30 [day], (f) t = 40 [day].

Figure 4. The plot of stepsize h taken between time tn and tn+1 for TOL = 10−3, 10−6, and 10−9

when γ = 0 and N = 21.

5.2. The Force of Containment Measures when γ = 0.5

In this case, contour plots in the x direction are demonstrated in Figure 5, which show that
COVID-19 spreads uniformly to all directions, with a minimal wave speed that equals

c∗γ=0.5 ≈ 1.05 [km/day] = 7.35 [km/week].
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For γ = 0.5, the approximated solutions of Sh(x, y, t) to S(x, y, t), and Oh(x, y, t) to O(x, y, t)
are presented in Figures 6 and 7.

Figure 5. Contour plots of Sh(x, y, t) (top) and Oh(x, y, t) (bottom) in x direction when N = 21 and γ = 0.5.

(a) (b)

(c) (d)

(e) (f)

Figure 6. Two-dimensional approximation of Sh(x, y, t) to S(x, y, t) when γ = 0.5. (a) t = 3 [day],
(b) t = 5 [day], (c) t = 10 [day], (d) t = 20 [day], (e) t = 30 [day], (f) t = 40 [day].



Computation 2024, 12, 34 12 of 15

(a) (b)

(c) (d)

(e) (f)

Figure 7. Two-dimensional approximation of Oh(x, y, t) to O(x, y, t) when γ = 0.5. (a) t = 3 [day],
(b) t = 5 [day], (c) t = 10 [day], (d) t = 20 [day], (e) t = 30 [day], (f) t = 40 [day].

6. Discussion

We developed a reaction–diffusion model with a latent period, described by a standard
structured model with age-independent diffusion and death rates. The resulting system
consists of partial differential equations with a time-delayed nonlocal term. We assumed
a bounded domain to solve the model numerically in two-dimensional space using the
continuous Runge–Kutta method of the fourth order and the discrete Runge–Kutta method
of the third order with s = 6 stages. As an advantage of this numerical method, users can
choose the accuracy tolerance TOL, which helps to reduce the local discretization error. The
local discretization error is given by

EST(tn+1) =
∥∥ŷn+1 − yh(tn+1)

∥∥
2.
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The higher the accuracy tolerance TOL we choose, the more accurate and stable the results
we gain. However, the code requires more time to calculate the results as we apply a higher
accuracy tolerance TOL, which could be considered a disadvantage. The new stepsize hn+1
from tn+1 to tn+2 = tn+1 + hn+1 is computed as

hn+1 = η hn

(
TOL

EST(tn+1)

)1/5

,

where η = 0.8 is a safety coefficient that reduces the number of rejected steps during the
implementation time. The new stepsize hn+1 is accepted when

EST(tn+1) ≤ TOL,

and it is rejected when
EST(tn+1) > TOL.

If hn+1 is rejected, another attempt is taken with a halved stepsize hn+1/2 [37,38]. In Figure 4,
we demonstrate the number of rejected steps for different values of TOL = 10−3, 10−6, and
10−9. Figure 4 depicts that TOL = 10−3 is associated with a higher number of reject steps.

The model’s approximated solutions, contour plots, and rejected stepsize h are de-
picted in Figures 1–7. Since the incubation period of the disease lasts for three days, the
density of susceptible individuals S(x, t) and the density of nonisolated infectious individ-
uals O(x, t) will not change for t < 3. After this time, when t ≥ 3, the density of susceptible
individuals S(x, t) starts to decrease, while the density of nonisolated infectious individuals
O(x, t) starts to increase, as demonstrated in Figures 2, 3, 6, and 7. Clearly, Figures 6 and 7
show less severe epidemic outbreaks, since the force of the containment measures is ap-
plied to half of the infected population, i.e., γ = 0.5. On the other hand, when γ = 0, the
disease moves faster and quickly reaches the boundary of the infected area, as shown in
Figures 2 and 3.

Figures 1 and 5 are also quite important, because we use them to determine the
minimal spreading speeds of COVID-19. Based on our choice for the parameter values, the
minimum speed of spread of COVID-19 is about

c∗γ=0 ≈ 2 [km/day] = 14 [km/week]

when no containment measures are applied to the populations, i.e., γ = 0; see Figure 1.
When the force of the containment measures equals γ = 0.5, Figure 5 shows that COVID-19
propagates with a minimal spreading speed of

c∗γ=0.5 ≈ 1.05 [km/day] = 7.35 [km/week].

The force of the containment measures is applied only to the infectious individuals who
already left the latent period.

The literature is replete with papers estimating the numerical values of the parameters
[18,20,24,29,39,40], since they highly influence the spreading speeds of COVID-19. The
population density of susceptible S0 is another factor that is very important with respect to
how it impacts the speed of the disease; see also [19]. Table 2 demonstrates the dependence
of COVID-19 spreading speeds on S0, which indicates that γ = 0.5 can reduce the speed of
the spreading virus by more than 30%. Also, the results show that quarantining infectious
individuals helps control the disease faster than quarantining the susceptible individuals.
In addition, Table 2 suggests that the spreading speeds of COVID-19 can be described as
a monotone increasing function of S0. To calculate c∗ in Table 2, we used the parameter
values in the previous section.

According to the National Health Commission of China and the data reported by [41],
Wuhan was the only city with confirmed COVID-19 cases as of 17 January 2020. The disease
quickly moved to other cities adjacent to Wuhan. Three weeks later, on 7 February 2020,
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new cases were reported in Ezhou (about 60 km from Wuhan); see [41] (Figure 1). Table 2
displays that the disease virus will reach the city of Ezhou after three weeks when the density of
susceptible individuals S0 available to be infected equals 6 and γ = 0. This shows that the model
gives an excellent estimate of the spreading speeds of COVID-19 compared with the actual data
published by the National Health Commission of China and the data reported by [41].

Table 2. Dependence of COVID-19 spreading speeds on S0.

S0 γ = 0 γ = 0.5

4 c∗ ≈ 2.3529 [km/day] = 16.4703 [km/week] c∗ ≈ 1.4286 [km/day] = 10 [km/week]
5 c∗ ≈ 2.6667 [km/day] = 18.6669 km/week] c∗ ≈ 1.7391 [km/day] = 12.1737 [km/week]
6 c∗ ≈ 2.8571 [km/day] = 19.9997 [km/week] c∗ ≈ 2 [km/day] = 14 [km/week]

Lastly, we conclude with a remark about the limitations of the proposed model and
some future studies. The model assumes that the parameters are constant when, in reality,
they are not. For instance, we assumed the diffusion and death rate to be age-independent,
but we will have more realistic results if we allow them to be age-dependent. This will lead to
a more complicated model that is hard to deal with analytically and numerically. However,
we will discuss this issue and allow the model parameters to be age-independent in future
work. Also, future studies will cover the stability of steady states locally and globally.
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