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Abstract: Multiple sequence alignment (MSA) stands as a critical tool for understanding the evolu-
tionary and functional relationships among biological sequences. Obtaining an exact solution for
MSA, termed exact-MSA, is a significant challenge due to the combinatorial nature of the problem.
Using the dynamic programming technique to solve MSA is recognized as a highly computationally
complex algorithm. To cope with the computational demands of MSA, parallel computing offers the
potential for significant speedup in MSA. In this study, we investigated the utilization of paralleliza-
tion to solve the exact-MSA using three proposed novel approaches. In these approaches, we used
multi-threading techniques to improve the performance of the dynamic programming algorithms
in solving the exact-MSA. We developed and employed three parallel approaches, named diagonal
traversing, blocking, and slicing, to improve MSA performance. The proposed method accelerated
the exact-MSA algorithm by around 4×. The suggested approaches could be basic approaches to be
combined with many existing techniques. These proposed approaches could serve as foundational el-
ements, offering potential integration with existing techniques for comprehensive MSA enhancement.

Keywords: multiple sequence alignment; dynamic programming; parallel computing; high-performance
computing; multithreading

1. Introduction

Sequence alignment (SA) refers to the process of arranging and comparing biological
sequences, such as DNA, RNA, and proteins, with the ability to reveal meaningful infor-
mation about the similarities and differences among them. SA is one of the fundamental
steps in most genomic analyses [1]. The classification of sequence alignment techniques
encompasses two fundamental distinctions: global versus local alignment and pairwise
versus multiple alignment. Global alignment algorithms, such as the Needleman–Wunsch
algorithm, align sequences from the beginning to the end [2]. By contrast, the local se-
quence alignment is used to compare specific regions and to find contiguous regions of
high similarity, such as that performed by the the Smith–Waterman algorithm [3]. The main
two types of sequence alignment are also performed in two ways: the pairwise sequence
alignment (PSA) [4] and the multiple sequence alignment (MSA) [5]. PSA involves the
comparison of two sequences to identify regions of similarity and dissimilarity, while MSA
extends the comparison to more than two sequences, identifying conserved regions and
variations across a set of sequences.

The dynamic programming technique [6] provides an efficient computational ap-
proach for optimizing alignment scores by breaking down complex problems into smaller
overlapping subproblems [7]. Common dynamic programming algorithms for pairwise
sequence alignment include the Needleman–Wunsch algorithm, employed for global
alignment, and the Smith–Waterman algorithm, utilized for local alignment. Dynamic
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programming extends its utility to multiple sequence alignment algorithms, such as the
progressive and iterative methods [8,9]. Aligning N sequences using dynamic program-
ming is an NP-Hard problem [10] that stems from the complexity of considering all possible
combinations and alignments among the N sequences. To address complexity challenges in
MSA, heuristic methods [11] and approximation algorithms [12] are employed in practice
for the MSA of a large number of sequences. In addition to these algorithms, applying
parallel computing techniques offers a promising avenue to mitigate the computational
demands associated with MSA [13].

The primary objective of this study is to explore the dynamic programming technique
for solving exact-MSA problems, employing various parallel computing approaches. Ini-
tially, we introduced an exact solution for multiple sequence alignments using the dynamic
programming technique employing the Needleman–Wunch algorithm. Subsequently, we
improved the proposed implementation using the multithreading technique and experimen-
tally validated its efficiency. Our development encompassed three approaches leveraging
multithreading technology to accelerate the exact-MSA.

In the initial parallel approach, we implemented the diagonal traversing that is de-
scribed in Section 3.3.1. However, this approach did not provide an enhancement over
the sequential dynamic programming method. Then, we introduced the second parallel
approach employing the blocking method as shown in Section 3.3.2. The second approach
distinctly enhances the performance over the sequential method for pairwise sequence
alignment. In the third parallel approach, the slicing concept explained in Section 3.3.3,
we used this method to enhance the execution time, and the approach was tested using
3, 4, and 5 sequences with different sizes. In the third parallel approach, employing the
slicing concept as elucidated in Section 3.3.3, the slicing approach improved execution time.
The effectiveness of the proposed approaches was tested using 3, 4, and 5 sequences with
varying sizes.

The rest of this paper is structured as follows: Section 2 discusses the related works,
exploring the existing literature. Then, Section 3 outlines the proposed methodology
presenting the three developed approaches. Section 4 shows the enhancements achieved
through each approach, contrasting them with the sequential implementation of MSA.
Finally, Section 5 offers concluding remarks, summarizing the findings of this work, and
outlines potential future directions.

2. Related Work

In this section, we explore various methods developed to address the sequence align-
ment problem. Initially, we delve into the techniques applied in pairwise sequence align-
ment (PSA), as detailed in Section 2.1. Following that, we highlight the main techniques
utilized in multiple sequence alignments (MSAs), as presented in Section 2.2. Additionally,
we provide insights into the methods employed to accelerate sequence alignment problems
through various parallel computing techniques.

2.1. Pairwise Sequence Alignment (PSA)

Pairwise sequence alignment (PSA) is considered an important tool for aligning
biological sequences such as DNA and protein sequences [14]. Haque et al. [15] presented a
comprehensive overview of both local and global pairwise sequence alignment algorithms.
They also included an identification of the techniques utilized in these algorithms and
discussed their respective advantages and limitations. In [16], Edgar et al. distinguished
between the main three methods used to align sequences: sequence–sequence methods
(like BLAST), profile–sequence methods (like PSI-BLAST), and profile–profile methods (like
CLUSTALW). The survey in [17] reviewed the wide range of aligning algorithms and tools
developed to assess the quality of the aligned sequences. In [18], bacterial DNA sequences
were aligned using pairwise alignment and dynamic programming. Table 1 shows an
overview of the most well-known approaches utilized for PSA.



Computation 2024, 12, 32 3 of 17

Table 1. Pairwise sequence alignment techniques.

# Technique Approach Reference

1 Needleman–Wunsch Dynamic Programming [2]
2 Smith–Waterman Dynamic Programming [3]
3 Gotoh’s Algorithm Dynamic Programming [19]
4 FASTA Algorithm Heuristic [20]
5 BLAST Algorithm Heuristic [21]
6 EMBOSS Software Toolkit [22]
7 Parasail Toolkit/Library [23]
7 Minimap2 Toolkit/Program [24]
9 ASCA-PSO Heuristic [25]
8 WFA-GPU Toolkit [26]

Several studies have aimed to accelerate the performance and the accuracy of the tools
used in sequence alignment by using several parallelization techniques [27]. For example,
Fakirah et al. [28] utilized a diagonal traversing approach to enhance the Needleman–
Wunsch algorithm by utilizing the iterations used to fill the scoring matrix. Balhaf et al. [29]
enhanced the Levenshtein edit distance algorithm’s performance by using the diago-
nal traversing approach, and the performance was enhanced using both CPU and GPU.
Jararweh et al. [30] accelerated the Levenshtein and Damerau algorithms by using parallel
implementation on a GPU. Jararweh et al. showed that using unified memory resulted in
the best performance. Shehab et al. [31] enhanced the performance of multiple pairwise
alignments in protein sequences by utilizing a hybrid CPU-GPU implementation. In [26],
Puig et al. utilized a GPU (graphics processing unit) to compute exact gap-affine alignments
based on the wavefront alignment (WFA) algorithm. They showed that the proposed tool
is up to 29× faster than other GPU implementations.

2.2. Multiple Sequence Alignment

Numerous studies have employed various techniques to address the challenge of
multiple sequence alignments (MSAs) [9]. One widely adopted technique is progressive
alignment [32]. The progressive alignment method initially starts with pairwise alignments
and progressively builds an MSA alignment through a series of pairwise alignments,
producing accurate results for moderately sized sequence sets [33]. In addition to the
progressive methods, iterative approaches have also played a crucial role in improving the
accuracy of MSA [34]. Iterative methods generally refine alignments applying successive
cycles of alignment improvement. Iterative refinement involves realigning sequences
based on the initial solution and gradually converging toward a more accurate alignment.
Iterative techniques often outperform progressive methods in terms of alignment accuracy,
especially in cases where sequences are more distant [35]. Lupyan et al. proposed a hybrid
algorithm that combined the progressive and iterative algorithms for MSA. The hybrid
approach provided a significant advancement compared to earlier methods involving a
notable decrease in computational cost.

In addition to progressive and iterative methods, several studies focus on the uti-
lization of metaheuristics techniques for performing MSA [11]. Ali et al. [36] reviewed
the landscape of metaheuristics in bioinformatics highlighting various metaheuristic ap-
proaches, including tabu search [37], simulated annealing [38], and particle swarm opti-
mization [39], showcasing their applications in computational biology problems and MSA.
Hatzou et al. [9] provided valuable insights centered on the heuristic-based progress of
MSA methods. Similarly, Chowdhury et al. [40] offered an overview of MSA methods with
a focus on the multi-objective approach. In contrast, Vega et al. [41] provided a comparative
analysis of different formulations of multi-objective metaheuristics for MSA. In Table 2, we
present some well-known tools for MSA and we show the general techniques used for each.
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Table 2. Multiple sequence alignment tools with techniques.

# Technique Approach Heuristics Ref.

1 Recursive MAGUS Divide-and-Conquer Alignment Guide Tree [42]
2 ClipKIT Trimming Strategies IQ-TREE Hill-Climbing [43]
3 Kalign Progressive Alignment Guide Tree [44]
4 ProbCons Probabilistic Consistency Probabilistic Modeling [45]
5 MUSCLE Progressive Alignment Guide Tree [46]
6 MAFFT Progressive Alignment Guide Tree [47]
7 T-Coffee Various Various [48]
8 DIALIGN Local Multiple Alignment Pairwise Alignments [49]
9 CLUSTAL W Progressive Alignment Guide Tree [50]

Limited studies have been directed towards seeking exact solutions for multiple
sequence alignment due to the time complexity associated with obtaining the optimal
results. Mojbak et al. [51] proposed an exact-MSA approach using forward dynamic
programming. Also, in the comprehensive exploration of exact solutions, Hosseininasab
et al. [52] proposed a framework employing a dynamic programming approach to construct
a multivalued decision diagram, representing all PSAs. The synchronization of PSAs
with the proposed decision diagram effectively incorporates modeling the MSA problem
within polynomial space complexity. Moreover, Domínguez [53] delves into statistical
and biological concepts employed in the MSAProbs-MPI tool to complete the alignments
where high-performance computing techniques are employed for alignment acceleration.
Additionally, Ju et al. [54] introduced an end-to-end deep neural network and called it
CopulaNe, designed to directly estimate residue co-evolution from MSA, representing a
cutting-edge approach in the finding of exact solutions for MSA.

In addition to the previously mentioned approaches, several parallelization strategies
have been employed to tackle the challenges associated with MSA [55]. Some of these
strategies focus on the parallelization of dynamic programming algorithms, such as in [56].
Other strategies aim to parallelize the progressive alignment [57]. Several studies focus on
the parallelization of heuristic algorithms, such as [58]. Recently, many studies utilized GPU
acceleration for MSA [59]. The optimization of parallel MSA is characterized by continuous
innovation in algorithmic design and adaptation to emerging hardware architectures [55].
In our study, we employ various parallel computing approaches to enhance the basic
dynamic programming approach for MSA, as shown in the next Section 3.

3. Methodology

In this section, we first describe the dataset used and the experimental setup as shown
in Section 3.1. Then, in Section 3.2, we explain the dynamic programming technique used
to solve the pairwise sequence alignment problem and how it is extended to solve the
MSA problem. Following this, we delve into explaining three proposed approaches that
utilized the multithreading technology to accelerate the implementation of MSA as shown
in Section 3.3.

3.1. Dataset and Experimental Setup

The aligned sequences are taken from a real database (http://lab.malab.cn/soft/
halign/) that was used in several studies, such as [60–64]. The website allows the viewers
to download the dataset that was used in testing many tools.

In this research, we used the dataset called the 16s rRNA dataset that contains the
RNA sequences of the small units of the ribosomes (prokaryotic ribosome). We used the
16s rRNA dataset to test the proposed work. The sequences in this dataset are of several
lengths between 1300 and 2000 characters. We used the following sequence length for the
experiments we performed in our studies. The final length employed in each experiment is
constrained by the computational complexity of the runtime for the approaches used.

http://lab.malab.cn/soft/halign/
http://lab.malab.cn/soft/halign/
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• 1024, 2048, 4096, and 8192 characters for 2-sequence alignment.
• 128, 256, 512, and 1024 characters for 3-sequence alignment.
• 64, 128, 256, and 512 characters for 4-sequence alignment.
• 64, 128, and 256 characters for 5-sequence alignment.

The objective of this work is to measure the improvements gained by using different
parallel implementations of the Needleman–Wunsch (NW) algorithm extended for the
MSA problem. The performance of each implementation is measured by the total time
needed to compute the correct alignment of the input sequences. The improvement gain of
any parallel implementation is computed by dividing the sequential implementation’s time
over its time, as shown in Equation (1). Ten different tests are conducted for each sequence
length using ten different sequences and their average is reported.

Improvement = Sequentialtime/paralleltime (1)

3.2. Sequential Implementation

In this sub-section, we discuss the algorithm used to solve the pairwise sequence
alignment problem and how we extended it to solve the MSA problem.

3.2.1. Sequential Pairwise Sequence Alignment

The main goal of pairwise sequence alignment is to identify regions of similarity
that might indicate functional, structural, and/or evolutionary relationships between two
pairs of biological sequences. Pairwise sequence alignment is divided mainly into two
main types of problems: global alignment and local alignment. Many approaches have
been used as dynamic programming algorithms to compute a global alignment of two
sequences such as the Needleman–Wunsch algorithm [2]. The NW algorithm utilizes a
dynamic programming algorithm to find the global alignment between a pair of sequences.
It works as follows. Consider that we are aligning two sequences, A and B, each of length
N characters. A two-dimensional array of size (N + 1) × (N + 1) is created. The value of
each cell in this array is computed based on three other values in the array, as shown in
Figure 1. Specifically, the optimal value at cell (i, j), denoted by Fi,j, is computed using the
following Equation (2):

Fi,j = max


Fi−1,j−1 + S(Ai, Bj)

Fi,j−1 + gap
Fi−1,j + gap

(2)

where S(Ai, Bj) is equal to the match value when Ai = Bj or the mismatch value when
Ai ̸= Bj, gap is the penalty for inserting a gap into the alignment (i.e., aligning a character
from one sequence with a gap in the other), and F0,0 = 0.

Finally, in the constructed matrix, each path from cell (0, 0) to cell (N, N) represents
an alignment, where the objective is to select the path with the maximum score.

Figure 1. Values used to compute cell (i, j) in the 2D array created for 2-sequence alignment.
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Algorithm 1 discusses the sequential implementation of sequence alignment problem.
The algorithm takes two unaligned sequences of length N. Then, it constructs a matrix of
size (N + 1) × (N + 1). The first row and column of this matrix are filled according to lines
1–6 in the algorithm below. Then, the rest of the matrix is filled according to lines 7–14. As
we mentioned before, there are three possible solutions for the 2D problem calculated at
each iteration (lines 9–11), and the maximum value will be stored (line 12). We repeat the
process until the matrix is filled. Using this matrix and a back-tracking method we finally
get two aligned sequences as output.

Algorithm 1 Sequential implementation of two sequences
Input: Two unaligned sequences
Output: Two aligned sequences
1. for i = 0 to length(A)
2. F(I,0) ← gap * i
3. End for
4. for j = 0 to length(B)
5. F(0,j) ← gap * j
6. End for
7. for i = 1 to length(A)
8. for j = 1 to length(B)
9. S1 ← F(i−1,j−1) + S(Ai,Bj)
10. S2 ← F(i−1,j) + gap
11. S3 ← F(I,j−1) + gap
12. F(I,j) ← max(s1, s2, s2)
13. End for
14. End for

3.2.2. Sequential Multiple Sequence Alignment

For three sequences, seven possible solutions come from seven different locations.
These solutions are shown in Figure 2.

Figure 2. Possible solutions for three sequences.

The NW dynamic programming used to align three sequences works using the follow-
ing Equation (3):

Fi, j =



(Fi − 1, j − 1, k − 1 + S(Ai, Bj, Ck)
Fi − 1, j − 1, k + S(Ai, Bj,−)
Fi − 1, j, k − 1 + S(Ai,−, Ck)
Fi, j − 1.k − 1 + S(−, Bj, Ck)

Fi − 1, j, k + S(Ai,−,−)
Fi, j − 1, k + S(−, Bj,−)

Fi, j, k − 1 + S(−,−, Ck))

(3)
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where F0,0,0 = 0 S(Ai, Bj, Ck) is an entry in a 3D scoring matrix that gives a scoring
depending on the similarity of the characters.

Algorithm 2 discusses the sequential implementation of 3D problem representation.
The algorithm takes three unaligned sequences of length N. Then, it constructs a matrix of
size (N + 1) × (N + 1) × (N + 1). The first three rows of this matrix will be filled according to
lines 1–9 in Algorithm 2. Then, the rest of the matrix is filled according to lines 10–23. As
we mentioned before, there are seven possible solutions for the 3D problem calculated at
each iteration (lines 13–19), and the maximum value will be stored (line 20). The process
is repeated until the matrix is filled. Using this matrix and a back-tracking method, we
finally get three aligned sequences as output. Since all sequences are of the same length,
the created matrix would be a cube and there are three surfaces shared between every two
sequences. Those surfaces are filled using Algorithm 1 and solved as a 2D problem. The
extension for 4- and 5-sequence alignment algorithms and implementations are available
upon request. Figure 3 illustrates the general concept behind the employed framework
showing a representation of aligning 3 sequences in 3D. As shown in Figure 3, the proposed
framework initiates with Step 1, involving the input of N unaligned sequences; in this
example, it is three sequences, along with a scoring matrix and gap value. Subsequently,
in Step 2, we undertake the task of populating indices ranging from (1, 0, 0) to (N, 0, 0),
(0, 1, 0) to (0, N, 0), and (0, 0, 1) to (0, 0, N). Moving forward to Step 3, the goal is to fill the
surfaces of the optimal matrix, with each surface being shared between two sequences and
resolved as a 2D problem utilizing Algorithm 1. Progressing to Step 4, the focus shifts to
completing the remaining indices of the optimal matrix, spanning from index (1, 1, 1) to
index (N, N, N), employing Algorithm 2. Subsequently, Step 5 shows the process of finding
alignments through a reverse engineering technique. Starting from index (N, N, N), we
trace back the alignment to index (0, 0, 0). Finally, in Step 6, the output of the framework is
realized, producing three aligned sequences.

Figure 3. The Dynamic programming for MSA.
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Algorithm 2 Sequential Implementation of Three Sequences
Input: Three unaligned sequences
Output: Three aligned sequences
1. for i = 0 to length(A)
2. F(i,0,0) ← gap * i
3. End for
4. for j = 0 to length(B)
5. F(0,j,0) ← gap * j
6. End for
7. for k = 0 to length(C)
8. F(0,0,k) ← gap * k
9. End for
10. For i = 1 to length(A)
11. for j = 1 to length(B)
12. for k = 1 to length(C)
13. S1 ← F(i−1,j−1,k−1) + S(Ai,Bj,Ck)
14. S2 ← F(i−1,j−1,k) + S(Ai,Bj,−)
15. S3 ← F(i−1,j,k−1) + S(Ai,−,Ck)
16. S4 ← F(i,j−1,k−1) + S(−,Bj,Ck)
17. S5 ← F(i−1,j,k) + S(Ai,−,−)
18. S6 ← F(i,j−1,k) + S(−,Bj,−)
19. S7 ← F(i,j,k−1) + S(−,−,Ck)
20. F(i,j,k) ← max(s1, s2, s2,. . . ,s7)
21. End for
22. End for
23. End for

3.3. Parallel Implementation

In the Needleman–Wunsch algorithm, the value of a cell is calculated based on three
value cells (left, upper, and left), as shown in Figure 4. Hence, filling the matrix is performed
with data dependency between cells. There are two ways to fill the matrix: sequential
or diagonal traversing methods. In the sequential traversing approach, as in [65], the
algorithm starts from the cell with index (1, 1), (1, 2) and continues until it reaches cell (1,
N), as shown in Figure 5a. Then, it moves to the next row using the same approach, while
the diagonal traversing method works by filling cells diagonally simultaneously. Figure 5
shows the difference between sequential traversing (a) and diagonal traversing (b).

Figure 4. Data dependency between cells.

Figure 5. Traversing methods used to fill scoring matrix.
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Figure 5 shows a visual representation of the ways used to fill the matrix: the sequential
traversing approach, as shown in Figure 5a, and the diagonal traversing method inspired
by the methodology proposed in [65], as shown in Figure 5b. The Sequential traversing
initiates from the top-left corner (cell index (1, 1)), sequentially progressing through each
cell in the first row (1, 2) to (1, N) and then systematically advancing to subsequent rows.
This method provides a clear, step-by-step progression, as illustrated in (Figure 5a). In
contrast, the diagonal traversing approach, as depicted in (Figure 5b), demonstrates a
simultaneous filling of cells along the diagonals. Starting from the top-left corner, cells are
computed diagonally, resulting in a distinctive traversal pattern. This diagonal strategy
showcases a more intricate filling pattern, potentially impacting computational complexity
and algorithmic efficiency. The alternative diagonal traversing approach is more effective
than the sequential traversing approach since it takes fewer iterations to fill the scoring
matrix. In this work, we proposed three parallel approaches to accelerate the MSA. In this
section, we presented these approaches in detail, as shown in the following section.

3.3.1. First Parallel Approach: Diagonal Traversing

In this work, the parallel implementation was performed using a multithreading
technique. The multithreading method is used to reduce the time taken by the sequential
implementation. We explored the following two methods to accelerate MSA: In the first
method, we tried to increase the number of threads used to fill the optimal matrix. So,
as we diagonally traverse the optimal matrix, every cell is sent to a separate thread to
calculate its value. For example, assuming we are aligning two sequences of a length
of 1000 characters, an array of threads is created per each sequence. This array contains
a million threads. Each thread is used to calculate a value of the 1000 × 1000 optimal
matrix. The execution time of the parallel code in this way compared to the sequential
time is too high. The sequential time takes 282 milliseconds, while the parallel code takes
97,661 milliseconds. Also, it took too many threads for longer sequences and is not practical.
We also tried to execute this methodology using a fixed number of threads without violating
the device resources, but the parallel execution time was not reduced as we hoped. When
we used a fixed number of threads equal to 4, the execution time was 297,025 milliseconds.
When we used 8 threads, the execution time was 594,750 milliseconds, while when we used
500 threads, the execution time was 376 milliseconds. These results are listed in the Results
Section 4.

In the second method, we tried to use a dynamic array of threads, where the number
of threads used to fill the optimal matrix is equal to the number of diagonals in the same
optimal matrix. Assuming we are aligning a matrix of 1000 × 1000 elements, a matrix of
1000 X2-1 will be created. So, as we diagonally traverse the optimal matrix, every group
of cells is included (the cells on the same diagonal will be sent to a thread to calculate
its values). The execution time of the parallel code in this way takes 210 milliseconds
compared to the sequential time of 282 milliseconds, which is a reduced amount 25% lower
than the sequential execution time.

3.3.2. Second Parallel Approach: Using Blocks

As shown before, diagonal traversing can be used to fill the matrix effectively. Let us
assume that we are filling a matrix of size N × N. Then, the sequential traversing needs
N × N iterations to fill the matrix, while the diagonal traversing needs (N ∗ 2)− 1 iterations.
This method is already extended from our work in [66]. The main idea of the block method
is that when a matrix is filled diagonally, there is a part of it that is called a block which
is treated as a single cell. The short-read accelerator uses a different block strategy. It
computes the alignment score around a specific space (it does not fill the whole matrix).
The blocks’ sizes were used as suitable with the length of the sequence and took the values
of K = 1, 2, 4, 8, 16, and 32. Using blocks with diagonal traversing gives a result with
outstanding improvement, as shown in the Results Section 4.



Computation 2024, 12, 32 10 of 17

3.3.3. Third Parallel Approach: Slicing

To solve the three-sequence problem, we work in three different ways to solve this
problem: Firstly, we assume that the created array represents three sequences from a cube,
and this array is processed as shown in Figure 6. We take a slice of the cube and treat it as a
2D array. Then, we process this 2D array in a zig-zag fashion. The zig-zag fashion is shown
in Figure 6 and marked in dark arrows. We re-try the process until we complete the whole
matrix. Note that every cell in this matrix represents a block (a group of cells).

Figure 6. The proposed approach 1 to solve 3D problem.

In the second way, we assume that the created array represents three sequences from a
cube, and this array is processed as shown in Figure 7. We treat the cube matrix as a 2D
array, with nothing different from processing a 2D matrix.

Figure 7. The proposed approach 2 to solve 3D problem.

In the third way, a 3D matrix is a matrix of 2D matrices. So, when we want to describe
a 3D matrix, we usually describe it as a book, and each page in that book represents a 2D
matrix. Our third way depends on this description. This method is like the first method
but with one difference. In the first method, we took a slice of a cube (a group of papers
and processed them in a zig-zag fashion) and processed it as a 2D matrix. Here, we just
took a paper every time and processed it as a 2D matrix in a zig-zag fashion. We noticed
that in the first two methods, we reached an improvement of around 2×. However, in this
improvement, we obtain 4× as much using the third method; the results are discussed in
the Results Section 4. The same process is applied to solve 4- and 5-sequence alignments in
the same manner; algorithms and implementations are available upon request.

4. Results

In this section, we reported the results we obtained from applying the different ap-
proaches explained above in Section 3. First, we show the result obtained from the sequen-
tial algorithms for PSA in Section 4.1.1 and for MSA in Section 4.1.2. Then, we present the
results obtained from different parallel approaches developed in this work.

4.1. Sequential Implementation Results
4.1.1. Sequential Pairwise Sequence Alignment Results

The results of the sequential implementation, shown Section 3.2.1, are listed in Table 3.
When we aligned two sequences of length 1024, the average execution time was 282.3 mil-
liseconds. Meanwhile, aligning two sequences of lengths 2048, 4096, and 8192 takes an
average execution time of 758.3, 2909.5, and 11,473.5 milliseconds, respectively. These times
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are calculated by running the code on ten different sequences and the execution time of
every experiment, and then the average is reported.

Table 3. Execution time for pairwise sequence alignment for different problem sizes using sequential
approach.

Sequence Length 1024 2048 4096 8192

Avg. sequential execution time
(time is in milliseconds) 282.3 758.3 2909.5 11,473.5

4.1.2. Sequential Multiple Sequence Alignment

The results of the sequential implementation, shown Section 3.2.2, are listed in Table 4.
When we sequentially align three sequences of length 128, the average execution time was
760.9 milliseconds. Meanwhile, aligning three sequences of lengths 256, 512, and 1024
takes an average execution time of 5817.7, 45,980.6, and 270,720.8 milliseconds, respectively.
These times are calculated by running the code on ten different sequences and obtaining the
execution time of every experiment, and then the average is reported. Here, we presented
the results for the three-sequence alignments. From these results, it is experimentally
shown that the execution time is increased when the number of sequences is increasing.
The largest length of sequence that can be handled with the hardware used to align five
sequences using the sequential approach is 256, which takes 435,095 milliseconds.

Table 4. Execution time for three-sequence problem using the sequential approach.

Sequence length 128 256 512 1024

Avg. sequential execution time
(time is in milliseconds) 760.9 5817.7 45,980.6 270,720.8

4.2. Parallel Implementation Results

In this subsection, we reported the results obtained from applying different parallel
techniques developed in this work. In Section 4.2.1, we presented the results obtained from
applying the parallel diagonal traversing approach explained in Section 3.3.1. Then, in
Section 4.2.2, we presented the results from applying the idea of the parallel approach that
deploys the blocking concept explained in Section 3.3.2. In the final part of this section in
Section 4.2.3, we display the results acquired from applying the parallel approach to the
slicing idea used and explained in Section 3.3.3.

4.2.1. First Parallel Approach (Diagonal Traversing) Results

The results obtained from using the parallel approach that applied the diagonal
traversal method explained in Section 3.3.1 are shown in Table 5.

Table 5 presents the outcomes derived from employing the parallel approach, utilizing
the diagonal traversal method elaborated in Section 3.3.1. The experiments were conducted
with varying numbers of threads (Thread = 4, Thread = 8, Thread = 500, and Thread = 105)
to assess the performance of the parallel implementation in terms of execution time. The
results, as displayed in the table, show that this parallel approach does not yield a noticeable
enhancement over the sequential approach, even with increasing the number of threads. For
example, the execution time when the Thread = 4 is less than the execution time when the
Thread = 8. Table 5 demonstrates that despite utilizing parallelism and the incorporation
of the diagonal traversal strategy, there is no significant improvement in performance
compared to the sequential implementation. This unexpected observation prompts us to
explore alternative parallelization approaches. The results also show that the extremely
high thread counts might not always result in enhancing performance due to factors like
overhead and resource contention.
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Table 5. The execution time for the first parallel approach using different numbers of threads,
in milliseconds.

Method Sequential Diagonal Thread = 4 Thread = 8 Thread = 500 Threads = 105

time (ms) 282 210 297,025 594,750 376 97,661

4.2.2. Second Parallel Approach (Using Blocks) Results

In the second approach in the proposed methodology, we optimized the diagonal
traversing technique elucidated in Section 3.3.2 by using the block concept. Rather than
traversing individual cells within each diagonal, this approach involves traversing clus-
ters of cells called ’blocks’. This innovative strategy aims to enhance parallel traversing
efficiency. To evaluate the efficacy of this proposed parallel approach, firstly, we conducted
experiments using a sequence of length 1024 characters and employing various block sizes
(K = 4, 8, and 16). The results of these experiments are presented in Table 6. Table 6 shows
a notable trend that an increase in block size correlates with a decrease in the required
execution time. For example, the execution time when the block size is (k = 16) is lower
than when the block size is (k = 4). This result suggests that larger blocks contribute to
improved computational efficiency. The experiments are repeated using several sequence
lengths and block size = 8 and the results are reported in Table 7. As noted from these
results, the average execution time for this parallel approach is 48.6 compared to 282.3 mil-
liseconds for sequential implementation required to align two sequences of length 1024.
The improvement is calculated for the different sequence lengths, and the experiments
show a significant improvement in execution time, about 4.9 times faster.

Table 6. The execution time for the parallel approach using different block sizes, in milliseconds.

Block size 4 8 16

time (ms) 65.9 48.6 40.5

Table 7. Comparison between sequential and parallel implementations for two-sequence alignment
for different sequence lengths.

Sequence length 1024 2048 4096 8192

Avg. exec.time (sequential) 282.3 758.3 2909.5 11,473.5

Avg. exec.time (parallel) 48.6 186.2 630.0 2266.2

Improvement 5.8086 4.0725 4.6182 5.0629

4.2.3. Third Parallel Approach (Slicing) Results

In the third approach in the proposed methodology, we deployed the slicing method
explained in Section 3.3.3 to optimize the parallel traversing technique. To evaluate the
efficacy of this approach, we conducted experiments using sequences of lengths 128, 256,
512, and 1024. Table 8 presents the average execution times (in milliseconds) from ten
different runs for aligning three sequences using the slicing approach with different block
sizes (BK = 1, BK = 16, and BK = 32) across varying sequence lengths. From the table, it
is noticeable that as the sequence length increases, there is an increase in execution times
across all approaches. This is expected as the increase in computational complexity is
associated with longer sequences. Comparing the sequential approach with the parallel
approach using a small block size such as (Bk = 1), there is a slight reduction in execution
time for the applied parallel approach, while substantially more significant improvements
are observed when the block sizes are increased, as shown with BK = 16 and BK = 32.
There is a clear effect of increasing block size (BK) in reducing the execution time, and this
demonstrates the importance of tuning the block size to the characteristics of the alignment
problem.
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Table 8. The average execution time of ten runs for aligning three sequences for different sequence
lengths and using the slicing approach with block sizes (BK) = 1, 16, and 32.

Sequence Length Sequential Parallel BK = 1 Parallel BK = 16 Parallel BK = 32

128 760.9 717.5 211.8 158.4

256 5817.7 5481.8 1644.8 1428.5

512 45,980.6 41,041.8 12,356.2 11,482.7

1024 270,720.8 254,350.3 66,171 64,254.1

This approach is evaluated by aligning three sequences, four sequences, and five
sequences with various sequence lengths of 128, 256, 512, and 1024, and with block sizes
(BK) = 1, 2, 4, 8, 16, and 32. The best obtained results for each sequence length are reported
in Table 9 for aligning three sequences, in Table 10 for aligning four sequences, and in
Table 11 for aligning five sequences. Table 9 presents the average execution times for align-
ing three sequences with varying lengths using the proposed slicing approach. As noted
from the results, as the sequence length increases, both the sequential and parallel execu-
tion times increase, which is expected due to the growing computational complexity. The
‘improvement’ column demonstrates that the parallel approach consistently outperforms
the sequential approach across all sequence lengths, showcasing an average improvement
factor exceeding 4×.

Table 10 shows the results of four sequence alignments, providing insights into the
performance of the proposed slicing approach for different sequence lengths. Similar to
the three-sequence alignment, the parallel approach outperforms the sequential approach,
demonstrating substantial improvements in execution time. The ‘improvement’ values
reflect notable speedup where the improvement factor exceeds 3×. The chosen block sizes
(8, 16, and 32) contribute to the overall effectiveness of the proposed approach, while there
is no noted relation in this case between the block size and the approach execution time.
Table 11 shows the further investigation of five sequences. The results obtained from this
experiment emphasize the efficacy of parallelization, showcasing significant improvement
factors across different sequence lengths with around 4×. In summary, the obtained results
from Tables 9–11 collectively highlight the consistent success of the slicing parallelization
approach in improving alignment execution times. The findings also underscore the
importance of choosing appropriate block sizes experimentally for optimal parallelization
benefits across the numbers and lengths of sequences.

Table 9. The average execution time of ten runs for the alignments of three sequences for different
sequence lengths using the slicing approach.

Sequence Length Avg. Sequential Avg. Parallel Improvement Block Size

128 760.9 158.4 4.803 16

256 5817.7 1428.5 4.072 32

512 45,980.6 11,482.7 4.004 32

1024 270,720.8 64,254.1 4.213 32

The experimental work conducted in this research investigated the efficiency of three
proposed parallelization strategies utilized for sequence alignment and MSA problems. The
results obtained and presented in this section (as shown before) consistently demonstrated
the superiority of the utilized parallel approaches over the applied sequential approach.
The slicing approach achieves up to a 4.8× reduction in execution time when implemented
with an optimal block size. The experiments underscored the significance of block size
selection in the utilized parallel strategy, where mostly the larger block sizes contributed
significantly to enhanced parallel efficiency.
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Table 10. The average execution time for four sequences of different lengths using the slicing approach.

Sequence Length Avg. Sequential Avg. Parallel Improvement Block Size

64 8.547 2153 3.969 8

128 134,213.5 44,568.4 3.011 16

256 435,196 108,410.7 4.014 32

512 952,470.7 238,677.1 3.990 32

Table 11. The average execution time for five sequences of different lengths using the slicing approach.

Sequence Length Avg. Sequential Avg. Parallel Improvement Block Size

64 50,981.3 12,484.6 4.083 8

128 101,886.4 25,636.7 3.974 16

256 435,095 108,410.7 4.013 16

5. Conclusions and Future Work

The dynamic programming (DP) algorithm is widely used to solve both local and
global alignment problems. The most obvious drawback of DP algorithms is high exe-
cution time and slow performance, especially when applied to solve multiple sequence
alignment problems. In this study, we focused on enhancing the efficiency of solving exact
multiple sequence alignment exact-MSA problems through three proposed parallelization
approaches. The experimental findings consistently highlight the superiority of parallel
approaches compared to the sequential method. For example, the slicing parallel approach
exhibits a remarkable 4.8× reduction in execution time when implemented with an optimal
block size. The experiments emphasized the crucial role of block size selection in the chosen
utilized parallel strategy. On average, the parallel implementation was 4× faster than the
sequential implementations for several sequences of lengths. The proposed approaches
could be merged with many existing techniques to enhance the performance and accuracy
of current MSA tools. In the future, we will investigate the possibility of extending this
framework to solve more than sequences or even aligning any given N sequences. Also, we
will explore the possibility of utilizing the MSA framework using graphics processing unit
(GPU) technologies. We also intend to increase the lengths of the sequences used to solve
3D, 4D, and 5D problems and test the approaches with diverse datasets. Another aim is to
work on the proposed implementation to optimize the approach to obtain better results.
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