
Citation: Kato, T.; Nishizawa, K.;

Deng, M. MSVR & Operator-Based

System Design of Intelligent MIMO

Sensorless Control for Microreactor

Devices. Computation 2024, 12, 2.

https://doi.org/10.3390/

computation12010002

Academic Editor: Xiaoyuan Luo

Received: 30 October 2023

Revised: 29 November 2023

Accepted: 13 December 2023

Published: 25 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

computation

Article

MSVR & Operator-Based System Design of Intelligent MIMO
Sensorless Control for Microreactor Devices
Tatsuma Kato, Kosuke Nishizawa and Mingcong Deng *

Department of Electrical and Electronic Engineering, Graduate School of Engineering,
Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-shi 184-8588, Tokyo, Japan
* Correspondence: deng@cc.tuat.ac.jp

Abstract: Recently, microreactors, which are tubular reactors capable of fast and highly efficient
chemical reactions, have attracted attention. However, precise temperature control is required
because temperature changes due to reaction heat can cause reactions to proceed differently from
those designed. In a previous study, a single-input/output nonlinear control system was proposed
using a model in which the microreactor is divided into three regions and the thermal equation is
formulated considering the temperature gradient, but it could not control two different temperatures.
In this paper, a multi-input, multi-output nonlinear control system was designed using operator
theory. On the other hand, when the number of parallel microreactors is increased, a sensorless
control method using M–SVR with a generalized Gaussian kernel was incorporated into the MIMO
nonlinear control system from the viewpoint of cost reduction, and the effectiveness of the proposed
method was confirmed via experimental results.

Keywords: nonlinear control; microreactor; Peltier device; operator theory; multi-output support
vector regression; generalized Gaussian kernel

1. Introduction

A microreactor is a tube-type reactor with a reaction capacity of about microliters.
The advantages of microreactors include the ability to achieve fast and highly efficient
chemical reactions due to the large surface area per unit volume and the ability to safely
handle chemical reactions that may cause explosions or generate hazardous substances
because the reaction volume is much smaller than that of batch reaction systems. On the
other hand, precise temperature control is essential because temperature changes due to
the heat of chemical reactions can cause chemical reactions that are not intended in the
design. In this study, a Peltier element, one of the thermoelectric conversion elements,
is used to achieve vibration-free and precise temperature control. Peltier elements have
the property of heat pumps, in which a high-temperature surface and a low-temperature
surface are generated when an electric current is applied, and heat is transferred from the
low-temperature surface to the high-temperature surface [1,2].

The Peltier elements, microreactors, and heat spreaders used in this study, which
are cooling auxiliary mechanisms, have uncertainties due to the difficulty of accurately
describing their models, and therefore must be controlled to account for them. To solve
this problem, research [3] on methods for the robust design of parallel compensators for
non-ASPR plants with structured uncertainties has been conducted. While sliding mode
control is well known as a nonlinear control theory [4–7], this study uses operator theory,
which can design robust and stable controllers for nonlinear systems [8,9]. As a study
using operator theory, a nonlinear temperature control system has been designed for an
aluminum plate with a Peltier device that has uncertainty [10]. In recent years, due to
the popularity of AI research [11–19], research combining operator theory and AI has also
been conducted. In addition, research on multi-input/output systems, such as research on
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a two-dimensional direction-of-arrival estimation using a polarization rectangular array
under multipath propagation [20], has attracted much attention and has been actively
studied in operator theory. As an example of combined research, a study on the multi-
input/output tip position control of a 3-DOF soft actuator with uncertainty proposes a
method of uncertainty compensation using M–SVR, a type of machine learning, and the
control of multi-input/output systems using operator theory [21]. Operator theory has also
been applied to a variety of other control objects [22–25].

In addition, the output estimates of observers designed using uncertain models deviate
significantly from the real values due to modeling errors. Therefore, a study on a real-time
estimation filter robust to the viscoelasticity of articulated arms in motion has been reported
by considering and quantitatively evaluating an uncertain articulated arm viscoelasticity
model with measurement error [26]. It was also extended to a practical filter algorithm
for estimating the articulated viscoelasticity of human arms using a generalized Gaussian
distribution [27].

Based on the above, the objectives of this study are twofold. The first is to realize
a multi-input/output temperature control system to enable control of two temperatures
within a microreactor. The second is to realize sensorless control in order to solve the
increase in the number of sensors caused by numbering-up (a production method in
which the number of microreactors is increased and parallelized in order to achieve mass
production). Since the model of microreactors includes uncertainty, a machine learning
model, M–SVR, is used as an estimator in this study. M–SVR is a machine learning method
that extends SVR, which is a multiple-input, single-output method, to multiple outputs.
M–SVR can consider effects among outputs compared with general SVR, and M–SVR has
the advantage that the number of hyperparameters does not increase as the number of
outputs increases [28,29]. Furthermore, to obtain higher generalization performance than
the RBF kernel in offline learning, we design a sensorless control system with a model using
a generalized Gaussian kernel. On the other hand, since the generalized Gaussian kernel
increases the number of parameters to be tuned compared with the RBF kernel and makes
it difficult to tune to the optimal parameters, a real-coded genetic algorithm [30,31] is used
for parameter tuning to efficiently search for the optimal parameters. The effectiveness of
these results is confirmed via simulations and experiments on actual equipment.

This section describes the structure of this paper. Section 2 describes the experimental
apparatus used in this study, its mathematical modeling, and modeling using M–SVR.
Section 3 describes the design of the multi-input multi-output temperature control system
and the sensorless control system using M–SVR, based on the modeling in Section 2.
Section 4 describes the results of the simulation and actual machine experiments using the
control system designed in Section 3, verifies the effectiveness of the proposed method,
and concludes in Section sec:conclusion.

2. Modeling

As shown in Figure 1, the microreactor and heat spreader are modeled by dividing
them into three regions and formulating the thermal equations for each. Let Part A1,
Part A2, and Part A3 be the areas to the left of the heat spreader and Part W1, Part W2, and
Part W3 be the areas to the left of the microreactor, where Sn represents the area, and the
values are shown in Table 1. The parameters used for modeling are shown in Table 2. Here,
Peltier elements are installed on both sides of Part A1 and Part A3.

Table 1. Parameters of area.

Symbol Value Unit Symbol Value Unit

S1 2.6 × 10−3 m2 S2 7.0 × 10−4 m2

S3 9.8 × 10−3 m2 S4 9.0 × 10−4 m2

S5 9.0π × 10−6 m2 S6 3.0π × 10−4 m2

S7 1.4 × 10−3 m2 S8 2.8 × 10−4 m2

S9 1.2π × 10−4 m2
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Figure 1. Model of microreactor and heat spreader.

Table 2. Parameters of microreactor.

Symbol Description Value Unit

T0 Initial temperature - [K]

Tan

Aluminum
temperature
(n = 1, 2, 3)

- [K]

Twk

Water temperature
(k = 1, 2, 3) - [K]

yan
Aluminum cooling

temperature
- [K]

ywk

Water cooling
temperature - [K]

ud1
, ud2

Heat absorption from
Peltier element - [W]

ca
Specific heat
of aluminum 468 J/(kg · K)

cw Specific heat of water 2174.64 J/(kg · K)

λa
Thermal conductivity

of aluminum 238 J/(kg · K)

λw
Thermal conductivity

of water 0.602 J/(kg · K)

α Heat transfer
coefficient of air

180 W/(m2·K4)

αw Heat transfer
coefficient of water

500 W/(m2·K4)

ma1 , ma3 Mass of HS 1.31 kg
ma2 Mass of HS 0.52 kg

mw1 , mw3 Mass of Water 1.41 × 10−3 kg
mw2 Mass of Water 0.6 × 10−3 kg

σ
Stefan–Boltzmann

constant 5.67 × 10−8 W/(m2·K4)

ϵa
Thermal emissivity

of aluminum 0.2 -

ϵw
Thermal emissivity

of water 0.93 -

2.1. Modeling of Heat Spreader

This section models heat spreaders.

Part A1 :
d(T0 − Ta1)ma1 ca

dt
=2ud1 − α(T0 − Ta1)(2S1 + 2S2 + S3 − S5)

+ αωS6(Ta1 − Tω1) +
λaS3(Ta1 − Ta2)

dx
+ ϵaσ(T4

a1
− T4

0 )(2S1 + 2S2 + S3 − S5) (1)
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Part A2 :
d(T0 − Ta2)ma2 ca

dt
=− α(T0 − Ta2)(2S7 + 2S8) + αωS9(Ta2 − Tω2)

− λaS3(Ta1 − Ta2)

dx
− λaS3(Ta3 − Ta2)

dx
+ ϵaσ(T4

a2
− T4

0 )(2S7 + 2S8) (2)

Part A3 :
d(T0 − Ta3)ma3 ca

dt
=2ud2 − α(T0 − Ta3)(2S1 + 2S2 + S3 − S5)

+ αωS6(Ta3 − Tω3) +
λaS3(Ta3 − Ta2)

dx
+ ϵaσ(T4

a3
− T4

0 )(2S1 + 2S2 + S3 − S5) (3)

If the variables are defined as yan = T0 − Tan(n = 1, 2, 3), Part An can be expressed by
Equations (4)–(6).

Part A1 :
dya1

dt
= ωa1 + Aa11 ya1 + Aa12 y2

a1
+ Aa13 y3

a1
+ Aa14 y4

a1
+

λaS3ya2

ma1 cadx
(4)

Part A2 :
dya2

dt
= ωa2 + Aa21 ya2 + Aa22 y2

a2
+ Aa23 y3

a2
+ Aa24 y4

a2
− λaS3(ya1 + ya3)

ma2 cadx
(5)

Part A3 :
dya3

dt
= ωa3 + Aa31 ya3 + Aa32 y2

a3
+ Aa33 y3

a3
+ Aa34 y4

a3
+

λaS3ya2

ma3 cadx
(6)

In this case, ωan are as follows:

ωa1 =
2ud1 + αwS6yw1

ma1 ca
, ωa2 =

αwS9yw2

ma2 ca
, ωa3 =

2ud1 + αwS6yw3

ma3 ca

And Aanm are as follows:

Aa11 =
(α + 4ϵaσT3

0 )(S1 + S2 + S3 − 2S4 − S5) + αwS6 +
λaS3

dx
ma1 ca

,

Aa12 =
6ϵaσT2

0 (S1 + S2 + S3 − 2S4 − S5)

ma1 ca
,

Aa13 =
4ϵaσT0(S1 + S2 + S3 − 2S4 − S5)

ma1 ca
,

Aa14 =
ϵaσ(S1 + S2 + S3 − 2S4 − S5)

ma1 ca
,

Aa21 =
(α + 4ϵaσT3

0 )(2S7 + 2S8) + αwS9 +
2λaS3

dx
ma2 ca

,

Aa22 =
6ϵaσT2

0 (2S7 + 2S8)

ma2 ca
,

Aa23 =
4ϵaσT0(2S7 + 2S8)

ma2 ca
,

Aa24 =
ϵaσ(2S7 + 2S8)

ma2 ca
,

Aa31 =
(α + 4ϵaσT3

0 )(S1 + S2 + S3 − 2S4 − S5) + αwS6 +
λaS3

dx
ma3 ca

,
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Aa32 =
6ϵaσT2

0 (S1 + S2 + S3 − 2S4 − S5)

ma3 ca
,

Aa33 =
4ϵaσT0(S1 + S2 + S3 − 2S4 − S5)

ma3 ca
,

Aa34 =
ϵaσ(S1 + S2 + S3 − 2S4 − S5)

ma3 ca

2.2. Modeling of Microreactor

In this section, we model the tubes.

Part W1 :
d(T0 − Tω1)mωcω

dt
=− λωS5((Tω0 − Tω1)− (Tω0 − Tω2))

dx
+ αωS6(Tω1 − Ta1) (7)

Part W2 :
d(T0 − Tω2)mωcω

dt
=− λωS5(2(Tω0 − Tω2)− (Tω0 − Tω1)− (Tω0 − Tω3))

dx
+ αωS9(Tω2 − Ta2) (8)

Part W3 :
d(T0 − Tω3)mωcω

dt
=− λωS5((Tω0 − Tω3)− (Tω0 − Tω2))

dx
+ αωS6(Tω3 − Ta3) (9)

If the variables are defined as ywk = T0 − Twk (k = 1, 2, 3, ), Part Wk can be expressed
by Equations (10)–(12).

Part W1 :
dyω1

dt
= ωω1 − Aω1 yω1 +

λωS5yω2

mw1 cwdx
(10)

Part W2 :
dyω2

dt
= ωω2 − Aω2 yω2 +

λωS5(yω1 + yω3)

mw2 cwdx
(11)

Part W3 :
dyω3

dt
= ωω3 − Aω3 yω3 +

λωS5yω2

w3cwdx
(12)

In this case, ωwk and Aawk are as follows:

ωw1 =
αwS6ya1

mw1 cw
, ωw2 =

αwS9ya2

mw2 cw
, ωw3 =

αwS6ya3

mw3 cw
(13)

Aw1 =
λwS5

dx + αwS6

mw1 cw
, Aw2 =

λwS5
dx + αwS9

mw2 cw
, Aw3 =

λwS5
dx + αwS6

mw3 cw
(14)

2.3. Modeling via M–SVR

To estimate the temperature of a microreactor, this section uses training data to build a
model using M–SVR. M–SVR is a machine learning method that extends SVR to multiple
outputs and has the advantage over general SVR of being able to consider the effects
between outputs. Another advantage is that the number of hyperparameters does not
increase as the number of outputs increases [28,29]. The theory of M–SVR is presented
in Appendix B. In this study, a generalized Gaussian kernel is used to achieve higher
generalization performance than the RBF kernel. The generalized Gaussian kernel is a
kernel based on the generalized Gaussian distribution and has the property of changing
the shape of the distribution with the value of the shape parameter [26]. The theory of
generalized Gaussian kernels is presented in Appendix C. Three features, the currents i1
and i2 flowing in the Peltier element and Ta2 , the temperature of aluminium, are used as
training data for the input of M–SVR, and five features, Tw1 , Ta1 , and Ta3 , the temperature
of the microreactor, and Ta1 and Ta2 , the temperature of aluminium, are used as training
data for the output. The training data are obtained by applying a constant current to
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currents i1 and i2 in 15 combinations obtained from 0, 100, 200, and 400 mA for 500 s
each to obtain the temperatures Tw1 , Tw2 , and Tw3 of the microreactor and Ta1 , Ta2 , and
Ta3 of the aluminium. The 100 samples of data obtained from each current combination
were summed to obtain 1500 samples of data, which were used as training data to create
the model. Hyperparameter optimization using a real-coded genetic algorithm [30] with
50 generations and 20 individuals, ranking selection as the selection method, and SPX
crossover [31] as the crossover method, using the training data obtained in the experiment,
and manually adjusted results are shown in Tables 3 and 4, and MSE values in Table 5.
Note that the manual adjustment is a trial-and-error adjustment made to obtain a good
evaluation value using the parameters obtained by the real-valued genetic algorithm as a
base point. The results show that the generalized Gaussian kernel is more accurate than the
RBF kernel, so the M–SVR model with the generalized Gaussian kernel is used in this study.

Table 3. Parameters of RBF.

Symbol Description Value

C Regularization parameter 106.8
ϵ Insensitive factor 0.0077
γ Kernel coefficient for RBF 0.371

Table 4. Parameters of generalized Gaussian kernel.

Symbol Description Value

C Regularization parameter 251.96
ϵ Insensitive factor 6.32 × 10−4

γ Shape parameter 0.5151
σ Standard deviation 48.007

Table 5. MSE comparison.

Description PartW1 PartW2 PartW3 PartA1 PartA3

RBF 0.0020 0.0015 0.0015 0.0016 0.0015
GGD 0.0015 0.0010 0.0011 0.0011 0.0011

3. Control Design

When performing MIMO temperature control, it is necessary to consider the cou-
pling elements that occur between each control system. In this study, the coupling ele-
ments are separated based on the literature [8], and the two-input, two-output control
system is divided into two independent subsystems for control. The theory is described in
Appendix A.

3.1. Right Factorization

Using the model derived in Sections 2.1 and 2.2, we perform a right factorization based
on operator theory. First, from Equations (4)–(6) and (10)–(12), we have that

ωan =
zan

man ca
, ωwk =

zwk

mwk cw
(15)

Part An : ẏan =
zan

man ca
− Aan1 yan + Aan2 y2

an − Aan3 y3
an + Aan4 y4

an (16)

Part Wk : ẏwk =
zwk

mwk cw
− Awk ywk (17)

is expressed as follows.
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In this case, zan and zwk are the input signals of processes PAn and PWk , respectively. In
addition, yan and ywk are the outputs of processes PAn and PWk , respectively. Here, zan and
zwk are expressed as follows.

zan =


2ud1 + Gaya2 + Gawyw1 (n = 1)
Gaya1 + Gaya3 + Gaw2 yw2 (n = 2)
2ud2 + Gaya2 + Gawyw3 (n = 3)

(18)

zwk =


Gawya1 + Gwyw2 (k = 1)
Gaw2 ya2 + Gw(yw1 + yw3) (k = 2)
Gawya3 + Gwyw2 (k = 3)

(19)

Note that Ga, Gw, Gaw, Gaw2 , Gsa, and Gsw are as follows.

Ga =
λaS3

dx
, Gw =

λwS5

dx
, Gaw = αwS6

Gaw2 = αwS9, Gsa =
2λaS3

dx
, Gsw =

2λwS5

dx
(20)

The output-to-output coupling factors for each process are then as follows, where
Ha =

λaS3
macadx , Hw = λaS5

mwcwdx .

Ha12 = Haya2 , Ha13 = 0, Ha21 = Haya1

Ha23 = Haya3 , Ha31 = 0, Ha32 = Haya2 (21)

Hw12 = Hwya2 , Hw13 = 0, Hw21 = Hwya1

Hw23 = Hwya3 , Hw31 = 0, Hw32 = Hwya2 (22)

The right factorization of each process is based on operator theory. Therefore, we
represent each operator using a spatial representation as follows.

D−1
an : zan(t) → ωan(t)

: ωan =
zan

man ca
(23)

Nan : ωan(t) → yan(t)

:

{
ẋan = ωan − Aan1 yan + Aan2 y2

an − Aan3 y3
an + Aan4 y4

an

yan = xan

(24)

3.2. Without Interference Effects

Figure 2 shows the control system for eliminating the effects of interference.

Figure 2. Without interference effects.
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In this case, P̃A = (P̃A1 ,P̃A2 , . . . P̃An), P̃An = NAn R−1
An

, P̃W = (P̃W1 , P̃W2 , . . . P̃Wn),
P̃0A = (P̃0 A1

, P̃0 A2
, . . . P̃0 An), and P̃0W = (P̃0W1

, P̃0W2
, . . . P̃0Wn). P̃0A = (P̃0 A1

, P̃0 A2
, . . . P̃0 An)

is the thermal model of the heat spreader, and P̃0W = (P̃0W1
, P̃0W2

, . . . P̃0Wn) is the tube
thermal model. P̃0A can undergo right factorization as follows.

P̃0 An = NA0n
R−1

An
(25)

N0An
→ NAn

Also, ϕA = (ϕA1 , ϕA2 . . . , ϕAn ) and ϕW = (ϕW1 , ϕW2 . . . , ϕWn ) are linear operators such
that ϕi(α(t)) → 0 for any bounded α(t). Here, the effect of interference can be eliminated
by designing the control system so that the interference term is equal to the feedback term,
as shown in the following equation. Each operator is designed with AA = I, AW = I,
ϕ−1

Ai
(αi)(t) = 1

na
αi, ϕ−1

Wi
(αi)(t) = 1

nw
αi, where αi is the bounded signal and na and nw are

design parameters.

zi(t) = udi
+ di(t) + ϕ−1

Ai
AAi P̃0Ai

(udi
)(t)

+ ϕ−1
Wi

AWi P̃0Wi
P̃0Ai

(udi
)(t)

− ϕ−1
Ai

AAi P̃Ai (zi)(t)− ϕ−1
Wi

AWi P̃Wi P̃Ai (zi)(t) (26)

Transform the equation for zi(t).

ϕ−1
Ai

(ϕAi + AAi P̃Ai )(zi)(t) + ϕ−1
Wi

(ϕWi + AWi P̃Wi P̃Ai )(zi)(t)

= di(t) + ϕ−1
Ai

(ϕAi + AAi P̃0 Ai
)(udi

)(t)

+ ϕ−1
Wi

(ϕWi + AWi P̃0Wi
P̃0 Ai

)(udi
)(t) (27)

From the above equation, the input signal zi(t) equals the output ui(t) of operator B−1.

zi(t) → udi
(t) (28)

3.3. Controller Design

The control system designed based on operator theory is shown in Figure 3. In
this case, each plant is DA = (DA1 , DA2 , . . . DAn), NA = (NA1 , NA2 , . . . NAn), and PW =
(PW1 , PW2 , . . . PWn), and the controllers are S = (S1, S2, . . . Sn), RW = (RW1 , RW2 , . . . RWn),
and CW = (CW1 , CW2 , . . . CWn). Also, each signal is e∗ = (e∗1 , e∗2 , . . . e∗n), e = (e1, e2, . . . en),
r = (r1, r2, . . . rn), ud = (ud1 , ud2 , . . . udn), wa = (wa1 , wa2 , . . . wan), ya = (ya1 , ya2 , . . . yan),
and y = (y1, y2, . . . yn). The nonlinear operator NA = (NA1 , NA2 , . . . NAn) for the thermal
model of the aluminum block and the operator PW = (PW1 , PW2 , . . . PWn) for the thermal
model of the tube are collectively denoted by ÑWn = (ÑW1 , ÑW2 , . . . ÑWn ), where the
operators S = (S1, S2, . . . Sn) and RW = (RW1 , RW2 , . . . RWn) are designed to satisfy the
Bezout’s identity shown in Equation (29). By designing stable operators Sn and RWn to
satisfy Bezout’s identity, DAn and ÑWn become right-irreducible and BIBO-stable in the
feedback control system shown in Figure 3 [8].

SnÑWn(ωan) + RWn DAn(ωan) = I(ωan) (29)

where I is the identity map. The operators designed with an arbitrary constant Bn are
shown in Equations (30) and (31).

Sn(yn) = (1 − Bn)(Ñ−1
Wn

(yn)) (30)

RWn(udn) =
Bn

maca
udn (31)
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By designing as above, we obtain that

SnÑWn(ωan) + RWn DAn(ωan) = (1 − Bn)Ñ−1
Wn

ÑWn(ωan) +
Bn

maca
× macaωan

= (1 − Bn)(ωan) + Bnωan

= ωan

= I(ωan) (32)

and Equation (29) is satisfied. The tracking controller CWn designed to compensate for
tracking performance is shown in Equation (33).

CWn(en) = KPn en + KIn

∫ t

0
en(τ)dτ (33)

Figure 3. MIMO control system for microreactor based on operator theory.

3.4. Sensorless Control System with M–SVR

A sensorless control instrument using M–SVR is shown in Figure 4. The model for
M–SVR was the model created in Section 2.3. yMw is the vector of temperatures of the
microreactor estimated by M–SVR, and yMa is the vector of temperatures of the heat
spreader estimated by M–SVR, yMa1 , yMa3 , combined with the measured value, ya2 . H1 is
a controller that converts from heat to current and can be expressed as in Equation (34);
H2 is a controller that takes the temperature about the tube from the output of M–SVR
and outputs the difference from the initial temperature; H3 is a controller that takes the
temperature about aluminum from the output of M–SVR and outputs the difference from
the initial temperature. The parameters used are listed in Table 6.

H1 : i =
(

i1
i2

)
=


(

STa1 −
√
(STa1)

2 − R
(
2K(T0 − Ta1) + 2ud1

))
/R(

STa3 −
√
(STa3)

2 − R
(
2K(T0 − Ta3) + 2ud2

))
/R

 (34)

Figure 4. Proposed sensorless control system using M–SVR.
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Table 6. Parameters of Peltier device.

Symbol Description Value Unit

S Seebeck coefficient 0.08 V/K
R Electrical resistance 2 Ω
K Thermal conductance 0.43 W/K

4. Simulation and Experiment
4.1. Experimental System

Figure 5 shows a diagram of the experimental apparatus. The experimental apparatus
consists of a computer, power supply, microcomputer, temperature sensor circuit, current
sensor circuit, and microreactor cooling block. The cooling block consists of a Peltier
element, a heat spreader, a microreactor, and a fan. The microreactor and heat spreader
are equipped with multiple temperature sensors. The operation flow of the system is
shown below.

1. Temperature acquisition
When the computer sends a command to the microcomputer to acquire the tempera-
ture, the microcomputer acquires the value from the temperature sensor circuit and
sends the temperature value to the computer.

2. Control input calculation and current value setting
Control inputs are calculated from operator theory based on target and acquisition
temperatures. If necessary, the control input is converted to a current value. The
calculated current value is sent to the microcomputer as a command current.

3. Current control
The microcomputer performs PID control so that the current flowing through the
Peltier element becomes the command current value received from the computer.

4. Step 1 is repeated until the control time is reached.

Table 7 shows the common parameters used in the simulations and the actual exper-
iments. A first-order low-pass filter with a cutoff frequency of 10 Hz was used for noise
rejection in the actual experiment.

Table 7. Common parameters for simulation and experiment.

Symbol Description Value Unit

Ts Control time 500 s
△t Control cycle 1 s

Bw1 , Bw3 Design parameter 0.999 –
na1 , na3 Design parameter 1000 –
nw1 , nw3 Design parameter 1000 –

Figure 5. Diagram of the experimental apparatus.
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4.2. Simulation Results for MIMO Control Systems

Figures 6 and 7 show the simulation results for the MIMO control system. The
parameters used in the simulations are listed in Table 8. Figure 6 shows that Tw1 and Tw3

follow each other in about 150 s.

Table 8. Parameters for simulation.

Symbol Description Value Unit

T0 Initial temperature 28 ◦C
r1 Reference of Part W1 2.5 ◦C
r2 Reference of Part W3 2.3 ◦C

kp1 , kp3

Proportional gain of
Part W1, W3

0.02 –

ki1 , ki3

Integral gain of Part
W1, W3

0.00032 –

Figure 6. Microreactor temperature (simulation on MIMO control system).

Figure 7. Control input (simulation on MIMO control system).
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4.3. Results of Experiment
4.3.1. MIMO Control System

The experimental results of the MIMO control system are shown in Figures 8 and 9.
Table 9 shows the parameters used in the experiments. Figure 8 shows that Tw1 and Tw3

follow each other in about 250 s.

Table 9. Parameters of experiment on MIMO control systems.

Symbol Description Value Unit

T0 Initial temperature 21.69 ◦C
r1 Reference of Part W1 2.0 ◦C
r2 Reference of Part W3 2.5 ◦C

kp1 , kp3

Proportional gain of
Part W1, W3

0.001 –

ki1 , ki3

Integral gain of Part
W1, W3

0.0002 –

Figure 8. Microreactor temperature (experiment on MIMO control system).

Figure 9. Control input (experiment on MIMO control system).
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4.3.2. MIMO Sensorless Control Using M–SVR

Figures 10–12 show the experimental results of sensorless control using M–SVR.
Table 10 shows the parameters used in the experiments. Here, TMw1 and TMw3 are the
estimated values of M–SVR and are the signals used for feedback, while Tw1 and Tw3 are
only measurements and are not used for control. Figures 10 and 11 show that the estimated
values of TMw1 and TMw3 of M–SVR follow each other in about 320 s.

Table 10. Parameters of experiment on MIMO sensorless control using M–SVR.

Symbol Description Value Unit

T0 Initial temperature 27.68 ◦C
r1 Reference of Part W1 2.7 ◦C
r2 Reference of Part W3 2.5 ◦C

kp1 , kp3

Proportional gain of
Part W1, W3

0.001 –

ki1 , ki3

Integral gain of Part
W1, W3

0.0002 –

Figure 10. Microreactor temperature Tw1 and M–SVR estimate TMw1 (experiment).

Figure 11. Microreactor temperature Tw3 and M–SVR estimate TMw3 (experiment).



Computation 2024, 12, 2 14 of 20

Figure 12. Control input (experiment on MIMO sensorless control using M–SVR).

4.4. Discussion

Compare Figures 6 and 7, which are simulation results of the control system in
Figures 3, 8 and 9, which are the results of actual machine experiments. Figure 9, which is
a graph of temperature, shows an overshoot, whereas Figure 8 does not. In addition, the
simulation results show a faster target value tracking time than the experimental results.
This is due to the fact that the heat spreader used in the experimental system has a cavity,
which has a smaller thermal conductivity than in reality. And, even though the difference
between the two cooling temperatures is larger in the actual experiment than in the simu-
lation, the simulation results are more biased than Figures 7 and 9. The reason for this is
that the heat spreader used in the experimental system has a cavity, which is not taken into
account, and therefore the thermal conductivity of the model is larger than in reality. From
Figures 10 and 11, which are the results of the sensorless control system using M–SVR, it
can be seen that there are errors between the sensor values and the estimated values. This
is due to modeling errors that occur when the model is created via M–SVR.

5. Conclusions

In this study, a MIMO temperature control system for a microreactor was designed
and its effectiveness was confirmed through simulations and experiments. The proposed
method can control two temperatures in a microreactor, whereas the conventional method
can control only one temperature in a microreactor, thus allowing for a high degree of
freedom in temperature control. We also created a machine learning model of the M–SVR of
a microreactor using a generalized Gaussian kernel and conducted actual experiments on
sensorless control using the model to confirm its effectiveness. The hyperparameters of the
M–SVR were optimized using a real-coded genetic algorithm, one of the metaheuristics, and
then adjusted manually. The MSE of each output was lower for the generalized Gaussian
kernel than for the RBF kernel, indicating the accuracy of the model. In addition, the fact
that the M–SVR estimates from the experiment are distributed near the corresponding
sensor values confirms that they are correctly estimated and confirms the effectiveness of
sensorless control.

Author Contributions: T.K. applied a generalized Gaussian kernel as the kernel function of M–SVR
and performed parameter optimization using a real-coded genetic algorithm. Using the model, a
sensorless control of a MIMO temperature control system of a microreactor was proposed. In addition,
K.N. proposed a method to extend the temperature control system of a microreactor to a MIMO
temperature control system, and M.D. suggested technical support and gave overall guidance on the
paper. All authors have read and agreed to the published version of the manuscript.
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Appendix A. Separation of Coupling Elements

When performing MIMO temperature control, it is necessary to consider the coupling
elements that occur between each control system. In this study, the coupling elements
are separated based on Reference [8], and the two-input, two-output control system is
divided into two independent subsystems for control. Figure A1 shows a MIMO system
plant with coupling elements. Here, U is the input space, V is the output space, and
u = (u1, u2, . . . , un), y = (y1, y2, . . . , yn) are the inputs and outputs of the nominal plant
P = (P1, P2, . . . , Pn): U → V. The operator N = (N1, N2, . . . , Nn): W → V is nonlinear and
stable, and P is diagonalizable. The plant can then undergo right factorization as follows.

P = ND̃−1 (A1)

where D is linear, stable and invertible. We define the operator F with respect to the
coupling elements, as in the following equation, where f is a bounded unknown.

v(t) = F(w)(t) = F · w(t) + f(t) (A2)

w = (w1, w2, . . . wn) ∈ W

v = (v1, v2, . . . vn) ∈ W

f = ( f1, f2, . . . fn) ∈ W

In this case, D̃ can be expressed as follows:

D̃ = DF : W → U (A3)

Next, consider a MIMO system with feedback signals as shown in Figure A2, where S
is the feedback operator and b is the feedback signal b = S(y).

Figure A1. MIMO system plant.

Figure A2. MIMO system stabilization via operator theory.
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Each element bi of the feedback signal b is expressed by the following equation, which
includes the coupling elements.

bi =
n

∑
j=i

Sij(yi) (A4)

However, the coupling factor can be eliminated by designing the operator to satisfy
the following equation.

SijNj + FijDi =

{
0, j ̸= i
Ri, j = i

(A5)

In this case, the coupling factor is removed from the input u as in the following
equation, which can be converted to an equation including the disturbances f and ω.

ui(t) = Di(vi) +
n

∑
j=i

Sij(yi)(t) (A6)

= Di( fi) +
n

∑
j=i

(SijNj + DiFij)(ωj)(t) (A7)

= Di( fi) + Ri(ωi)(t) (A8)

The right factorization can then be transformed as follows.

P̃i = NiR−1
i (A9)

Appendix B. M–SVR

M–SVR (Multi-output Support Vector Regression) is an SVR for multi-output prob-
lems and is a regression analysis method that can take into account the effects among
outputs [28,29]. Consider the case of d input (x ∈ Rd) and Q output (y ∈ RQ). Assuming
j = 1, 2, · · · , Q, the jth coefficient vector is wj ∈ Rd and the bias is bj ∈ R, the regression
equation f becomes Equation (A10).

f j(x) = (wj)⊤x + bj (A10)

Let f (x) = [ f 1(x), f 2(x), · · · , f Q(x)]⊤ ∈ RQ, W = [w1, w2, · · · , wQ] ∈ Rd×Q,
b = [b1, b2, · · · , bQ]⊤ ∈ RQ, and ϕ(x) be a function ϕ(x) : Rd → F that maps the input x to
the feature space F. The regression equation for M–SVR is Equation (A11).

f (x) = W⊤ϕ(x) + b (A11)

Let ei = yi − f (xi) and ui = ∥ei∥ =
√

e⊤i ei, and define the cost function Lp(W , b) and
the loss function L(u) as Equations (A12) and (A13).

Lp(W , b) =
1
2

Q

∑
j=1

∥wj∥2 + C
l

∑
i=1

L(ui) (A12)

L(u) =

{
0 u < ϵ

u2 − 2uϵ + ϵ2 u ≥ ϵ
(A13)

C is the regularization factor and ϵ is the insensitivity parameter. The M–SVR used in
this study determines the parameters of the optimal regression equation using a type of
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iterative method called IRWLS (Iterative Reweighted Least Square). To construct IRWLS,
Equation (A12) is first-order Taylor-expanded.

L′
P(W , b) =

1
2

Q

∑
j=1

∥wj∥2

+ C

(
n

∑
i=1

L(uk
i ) +

dL(u)
du

∣∣∣∣∣uk
i

(ek
i )

⊤

uk
i

[ei − ek
i ]

)
(A14)

where uk
i = ∥ek

i ∥ =

√(
ek

i
)⊤ek

i ,
(

ek
i

)⊤
= y⊤

i − ϕ⊤(xi)W k −
(

bk
)⊤

.
This is the quadratic approximation of Equation (A14).

L′′
P(W , b) =

1
2

Q

∑
j=1

∥wj∥2

+ C

 n

∑
i=1

L(uk
i ) +

dL(u)
du

∣∣∣∣∣∣∣uk
i

u2
i −

(
uk

i

)2

2uk
i

 (A15)

=
1
2

Q

∑
j=1

∥wj∥2 +
1
2

n

∑
i=1

aiu2
i + CT (A16)

ai can be expressed as in Equation (A17).

ai =
C
uk

i

dL(u)
du

|uk
i
=

0 uk
i < ϵ

2C(uk
i −ϵ)

uk
i

uk
i ≥ ϵ

(A17)

In addition, CT is a term that represents the sum of constants and does not depend on
W or b. The IRWLS algorithm is shown below.

1. Initialize k = 0, W k = 0, bk = 0, and compute uk
i and ai.

2. Equation (A16) is calculated and the obtained W and b are defined as Ws and bs. The
decreasing direction P in Equation (A12) is defined as Equation (A18).

P =

 W s − W k(
bs − bk

)⊤
 (A18)

3. The solution of the next step is obtained from Equation (3). ηk is calculated via a
backtracking algorithm.  W k+1(

bk+1
)⊤
 =

 W k(
bk
)⊤
+ ηkPk (A19)

4. Compute uk
i , ai.Return to 2 until convergence.
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In the following, we will address how to obtain Ws and bs. To obtain Ws and bs,
it is necessary to solve the weighted least-squares problem in Equation (A16). Then, by
partial differentiation of Equation (A16) with wj and bj, and setting their slopes to zero,
Equations (A20) and (A21) are obtained.

∇wj L′′
P =wj − ∑

i
ϕ(xi)ai

(
yij − ϕ⊤(xi)wj − bj

)
= 0 (A20)

∇bj L′′
P =− ∑

i
ai

(
yij − ϕ⊤(xi)wj − bj

)
= 0 (A21)

where 0 ∈ Rd. Equations (A20) and (A21) can be expressed in matrix notation as in
Equation (A22). [

Φ⊤DaΦ + I Φ⊤a
a⊤Φ 1⊤a

][
wj

bj

]
=

[
Φ⊤Dayj

a⊤yj

]
(A22)

where Φ = [ϕ(x1), · · · , ϕ(xn)]
⊤ ∈ Rd×n, a = [a1, · · · , an]

⊤ ∈ Rn, yj =
[
y1j, · · · , ynj

]⊤ ∈
Rn, D = diag(a) ∈ Rn×n and 1 ∈ Rn.

Next, a feature space kernel is introduced to accommodate nonlinearities. Substituting
the Representer Theorem wj = ∑i ϕ(xi)βj = Φ⊤βj into Equations (A20) and (A21), we
obtain Equation (A23). [

K + D−1
a 1

a⊤K 1⊤a

][
βj

bj

]
=

[
yj

a⊤yj

]
(A23)

where (K)ij = κ
(

xi, xj
)
. By changing W sβs to W kβk and W k to βk in the IRWLS algorithm

described earlier, nonlinear multiple-output support vector regression can be realized.

Appendix C. Generalized Gaussian Kernel

The generalized Gaussian kernel is a kernel based on a generalized Gaussian distribu-
tion [27]. Equation (A24) shows the generalized Gaussian function.

f (x) =
g(γ)γ

2σΓ(1/γ)
exp

[
−
(

g(γ)∥x − µe∥
σ

)γ]
(A24)

g(γ) =

√
Γ(3/γ)

Γ(1/γ)
(A25)

x ∈ Rn is the input, µ is the mean, σ is the standard deviation, γ is the shape parameter,
e ∈ Rn is the unit vector, and Γ(z) is the gamma function. The shape parameter is
also called the decay ratio because a smaller value of the shape parameter γ results in a
sharper probability density function, while a larger value results in a flatter probability
density function.

Based on the above, the generalized Gaussian kernel is shown in Equation (A26).

f
(
xi, xj

)
=

g(γ)γ
2σΓ(1/γ)

exp

(
−
( g(γ)∥xi − xj∥

σ

)γ
)

(A26)
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