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Abstract: A two-dimensional heat diffusion problem with a heat source that is a quasilinear parabolic
problem is examined analytically and numerically. Periodic boundary conditions are employed. As
the problem is nonlinear, Picard’s successive approximation theorem is utilized. We demonstrate the
existence, uniqueness, and constant dependence of the solution on the data using the generalized
Fourier method under specific conditions of natural regularity and consistency imposed on the input
data. For the numerical solution, an implicit finite difference scheme is used. The results obtained
from the analytical and numerical solutions closely match each other.

Keywords: quasilinear parabolic equation; periodic boundary condition; generalized Fourier method;
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1. Introduction

The investigation of a mathematical model has broad implications for a great number
of important applications, such as chemical diffusions [1,2], heat conduction problems, [3–5],
population dynamics [6], thermoelasticity [7], medical science, electrochemistry [8], engi-
neering, and control theory. This necessitates the analysis of two-dimensional parabolic
partial differential equations with nonlocal boundary conditions [9–11].

The heat diffusion equation is one of the two-dimensional quasilinear parabolic prob-
lems. It is employed to determine temperature distribution in every region of the domain at
desired time for conduction heat transfer problems. Heat transfer by conduction involves
temperature differences in a solid or stationary fluid. Information on temperature distribu-
tion in a solid can be utilized to determine structural integrity through assessing thermal
stresses, expansions, deflections, and cracks. The evaluation and propagation of granite
thermal stresses and thermal cracks with time are shown in Figure 1 [12]. The temperature
distribution can also be used to optimize the thickness of an insulating material or to
determine the compatibility of the material with special coatings or adhesives used [13].

Initial and boundary conditions are required for solving the two-dimensional quasilin-
ear parabolic problem, such as the heat diffusion equation. Some of boundary conditions
for the heat diffusion equation, Dirichlet (or first kind) determines the fixed temperature
at surfaces. For example, the surface is very close to this when it comes into contact with
a melting solid and/or a boiling liquid. In both cases, heat transfer occurs at the surface,
whereas the surfaces remain at the temperature of phase-changing process [13]. Neumann
(or the second type) corresponds to the presence of constant heat flux on the surface. This
heat flux is related to the temperature at the surface according to Fourier’s law and can
be accomplished by bonding a thin electric heater to the surface. A special case of this
situation corresponds to a perfectly insulated or adiabatic surface. A periodic boundary
condition is combined with Dirichlet and Neumann boundary conditions [14], and it is set
to isolate repeating temperature distribution in the solution’s domain [15].
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Figure 1. Evaluation and propagation of granite thermal stress field and thermal cracks [12]. 

The periodic boundary condition, a special case of the nonlocal boundary [16] condi-
tion, is used in the present investigation. Generally, the periodic boundary condition is 
often employed in numerical simulations and mathematical models. Additionally, the pe-
riodic boundary condition results from many important applications in heat transfer, fluid 
dynamics, life sciences, and used lunar theory [14,17,18]. 

There are analytical methods available for solving two-dimensional quasilinear par-
abolic problems. One of these methods is the Fourier method. Baglan and Kanca analyti-
cally solved the two-dimensional quasilinear parabolic problem (heat diffusion) with an 
inverse coefficient and a heat source using the Fourier method [14,19]. The two-dimen-
sional heat diffusion equation with time-dependent thermal conductivity and a heat 
source problem is analytically solved with the Fourier method by the same authors [20]. 
Additionally, similar analytical solutions for fractional diffusion equations can be found 
in the literature [21–23]. 

In order to solve the two-dimensional quasilinear parabolic problem, several numer-
ical methods are available, such as the finite difference method [24,25], the finite element 
method [26,27], the finite volume method [28], and the lattice Boltzmann methods 
[15,29,30]. Denghan solved the one-dimensional heat diffusion equation numerically us-
ing the finite difference method [31]. In this study, three different schemes were employed, 
namely, the backward time-centered space (BTCS) implicit scheme, the implicit Crandall’s 
method, the forward time-centered space (FTCS) explicit scheme, and the Dufort–Frankel 
three-level techniques. The Crank–Nicolson implicit scheme is used to numerically solve 
the one-dimensional heat diffusion equation with an inverse coefficient by Baglan et al. 
[32]. Kanca and Baglan numerically solved the two-dimensional heat diffusion equation 
with periodic boundary conditions [20]. An implicit finite difference scheme is used for 
numerical solutions. Hamila et al. [33] investigated the effects of changes in thermal con-
ductivity on several transient heat transfer problems using the lattice Boltzmann methods 
(LBM). Benchmark problems containing conduction and/or radiation with constant ther-
mal conductivity were calculated and simulated. The heat diffusion equation was solved 
numerically by exclusively using the lattice Boltzmann methods. The numerical results 
closely aligned with the available results in the literature. 

The finite difference method is one of the existing numerical methods considered in 
the present investigation that can be applied to solve partial differential equations. The 
finite difference method is based on the discretization of differential equations through 
finite difference equations. Finite difference approximations have algebraic forms and re-
late the value of a dependent variable at one point in the solution region to the values at 
some neighboring points. Using Taylor series is the most usual way to construct these 
approximations. The numerical method recommended here is the implicit finite difference 
method. This method supports second order accuracy in the spatial grid sizes and first 
order time grid size. The explicit finite scheme has a restriction of determining time step 

Figure 1. Evaluation and propagation of granite thermal stress field and thermal cracks [12].

The periodic boundary condition, a special case of the nonlocal boundary [16] con-
dition, is used in the present investigation. Generally, the periodic boundary condition
is often employed in numerical simulations and mathematical models. Additionally, the
periodic boundary condition results from many important applications in heat transfer,
fluid dynamics, life sciences, and used lunar theory [14,17,18].

There are analytical methods available for solving two-dimensional quasilinear parabolic
problems. One of these methods is the Fourier method. Baglan and Kanca analytically
solved the two-dimensional quasilinear parabolic problem (heat diffusion) with an inverse
coefficient and a heat source using the Fourier method [14,19]. The two-dimensional heat
diffusion equation with time-dependent thermal conductivity and a heat source problem is
analytically solved with the Fourier method by the same authors [20]. Additionally, similar
analytical solutions for fractional diffusion equations can be found in the literature [21–23].

In order to solve the two-dimensional quasilinear parabolic problem, several numeri-
cal methods are available, such as the finite difference method [24,25], the finite element
method [26,27], the finite volume method [28], and the lattice Boltzmann methods [15,29,30].
Denghan solved the one-dimensional heat diffusion equation numerically using the finite
difference method [31]. In this study, three different schemes were employed, namely, the
backward time-centered space (BTCS) implicit scheme, the implicit Crandall’s method, the
forward time-centered space (FTCS) explicit scheme, and the Dufort–Frankel three-level
techniques. The Crank–Nicolson implicit scheme is used to numerically solve the one-
dimensional heat diffusion equation with an inverse coefficient by Baglan et al. [32]. Kanca
and Baglan numerically solved the two-dimensional heat diffusion equation with periodic
boundary conditions [20]. An implicit finite difference scheme is used for numerical so-
lutions. Hamila et al. [33] investigated the effects of changes in thermal conductivity on
several transient heat transfer problems using the lattice Boltzmann methods (LBM). Bench-
mark problems containing conduction and/or radiation with constant thermal conductivity
were calculated and simulated. The heat diffusion equation was solved numerically by
exclusively using the lattice Boltzmann methods. The numerical results closely aligned
with the available results in the literature.

The finite difference method is one of the existing numerical methods considered in
the present investigation that can be applied to solve partial differential equations. The
finite difference method is based on the discretization of differential equations through
finite difference equations. Finite difference approximations have algebraic forms and
relate the value of a dependent variable at one point in the solution region to the values
at some neighboring points. Using Taylor series is the most usual way to construct these
approximations. The numerical method recommended here is the implicit finite difference
method. This method supports second order accuracy in the spatial grid sizes and first
order time grid size. The explicit finite scheme has a restriction of determining time step
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size due to stability requirements for the numerical solution of the two-dimensional heat
diffusion equation.

In the present paper, we establish the existence, uniqueness, and continuous depen-
dence of the solution on the data. We derive the analytical solution by the Fourier Method
and Picard’s successive approximation for the two-dimensional heat diffusion problem
with periodic boundary conditions [14,19,20]. For the numerical solution, we employ
an implicit finite difference approximation. The numerical solution demonstrates good
agreement with the analytical solution.

This problem is nonlinear. Obtaining an analytical solution for a nonlinear problem is
only possible through a few methods, namely, the Fourier Method, the maximum principle
method, and/or the operation method. The periodic boundary condition used in the
problem poses a challenging condition, and analytically solving this boundary condition
is very difficult. Generally, in the literature, there are very few analytical solutions for
problems that are both nonlinear and have periodic boundary conditions. As mentioned
before, we utilized the Fourier method along with the Picard’s successive approximation
for our analytical solution. We compared this analytical solution with a numerical solution,
highlighting the novelty of our study.

2. The Problem with Periodic Boundary Conditions

Let us examine the two-dimensional, quasilinear heat diffusion problem with the heat
source given below,

∂T
∂τ

=
∂2T
∂α2 +

∂2T
∂β2 + h(α, β, τ, T), (1)

with the initial condition,

T(α, β, 0) = ϕ(α, β), α ∈ [0, π], β ∈ [0, π], (2)

and with the periodic boundary conditions,

T(0, β, τ) = T(π, β, τ), β ∈ [0, π], τ ∈ [0,
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T T

 

 

       

       

  

  
 (4)

Studies involving equations similar to the heat diffusion equation we solved in our 
work can be found in the literature [13,14,19,20,32]. In Equations (1)–(4), where T is tem-
perature distribution, h is a source function,   and   represent the direction, and   
and  are time and maximum time, respectively. The domain size is   for the   and 
  directions.   is the initial condition. A schematic figure of the problem with bound-

ary conditions is shown in Figure 2.  

]
T(α, 0, τ) = T(α, π, τ), α ∈ [0, π], τ ∈ [0,
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Studies involving equations similar to the heat diffusion equation we solved in our 
work can be found in the literature [13,14,19,20,32]. In Equations (1)–(4), where T is tem-
perature distribution, h is a source function,   and   represent the direction, and   
and  are time and maximum time, respectively. The domain size is   for the   and 
  directions.   is the initial condition. A schematic figure of the problem with bound-

ary conditions is shown in Figure 2.  

],
(3)

Tα(0, β, τ) = Tα(π, β, τ), β ∈ [0, π], τ ∈ [0,
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Studies involving equations similar to the heat diffusion equation we solved in our 
work can be found in the literature [13,14,19,20,32]. In Equations (1)–(4), where T is tem-
perature distribution, h is a source function,   and   represent the direction, and   
and  are time and maximum time, respectively. The domain size is   for the   and 
  directions.   is the initial condition. A schematic figure of the problem with bound-

ary conditions is shown in Figure 2.  

]
Tβ(α, 0, τ) = Tβ(α, π, τ), α ∈ [0, π], τ ∈ [0,
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].
(4)

Studies involving equations similar to the heat diffusion equation we solved in our
work can be found in the literature [13,14,19,20,32]. In Equations (1)–(4), where T is
temperature distribution, h is a source function, α and β represent the direction, and τ and
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are time and maximum time, respectively. The domain size is π for the α and β directions.
ϕ is the initial condition. A schematic figure of the problem with boundary conditions is
shown in Figure 2.
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T(α, β, τ) = T0(τ)
4 +

∞
∑

r,s=1
Tcrs(τ) cos(2rα) cos(2sβ) +

∞
∑

r,s=1
Tscrs(τ) sin(2rα) cos(2sβ)

+
∞
∑

r,s=1
Tcsrs(τ) cos(2rα) sin(2sβ) +

∞
∑

r,s=1
Tsrs(τ) sin(2rα) sin(2sβ).

(5)

where the Fourier coefficients:

T0(τ) = T0(0) +
4

π2

t∫
0

π∫
0

π∫
0

h(α, β, τ, T)dαdβdτ,

Tcrs(τ) = Tcrs(0)e
−

t∫
0
[(2r)2+(2s)2]dt

+
4

π2

t∫
0

π∫
0

π∫
0

e
−

t∫
τ
[(2r)2+(2s)2]dt

h(α, β, τ, T) cos(2rα) cos(2sβ)dαdβdτ,

Tcsrs(τ) = Tcsrs(0)e
−

t∫
0
[(2r)2+(2s)2]dt

+
4

π2

t∫
0

π∫
0

π∫
0

e
−

t∫
τ
[(2r)2+(2s)2]dt

h
(

α, β, τ, T(N)
)

cos(2rα) sin(2sβ)dαdβdτ,

Tscrs(τ) = Tscrs(0)e
−

t∫
0
[(2r)2+(2s)2]dt

+
4

π2

t∫
0

π∫
0

π∫
0

e
−

t∫
τ
[(2r)2+(2s)2]dt

h(α, β, τ, T) sin(2rα) cos(2sβ)dαdβdτ,

Tsrs(τ) = Tsrs(0)e
−

t∫
0
[(2r)2+(2s)2]dt

+
4

π2

t∫
0

π∫
0

π∫
0

e
−

t∫
τ
[(2r)2+(2s)2]dt

h(α, β, τ, T) sin(2rα) sin(2sβ)dαdβdτ.

Then, we obtain the solution:

T(α, β, τ) = 1
4

(
φ0 +

4
π2

t∫
0

h0(τ, T)dτ

)

+
∞
∑

r,s=1

φcrs +
4

π2

t∫
0

e
−

t∫
τ
[(2r)2+(2s)2]dt

hcrs(τ, T)dτ

 cos(2rα) cos(2sβ)

+
∞
∑

r,s=1

φcsrs +
4

π2

t∫
0

e
−

t∫
τ
[(2r)2+(2s)2]dt

hcsrs(τ, T)dτ

 cos(2rα) sin(2sβ)

+
∞
∑

r,s=1

φscrs +
4

π2

t∫
0

e
−

t∫
τ
[(2r)2+(2s)2]dt

hscrs(τ, T)dτ

 sin(2rα) cos(2rβ)

+
∞
∑

r,s=1

φsrs +
4

π2

t∫
0

e
−

t∫
τ
[(2r)2+(2s)2]dr

hsrs(τ, T)dτ

 sin(2rα) sin(2sβ)

(6)

where h0, hcrs, hcsrs, hscrs, and hsrs are the Fourier coefficients of the source function.

3. Analytical Solution of the Problem

Let us assume the following rules for the functions used in the problem:

(A) φ(α, β)C1,1([0, π]× [0, π]),

Let L be constant, ∥φ∥ ≤ L,

φ(0, β) = φ(π, β), φα(0, β) = φα(π, β),



Computation 2024, 12, 11 5 of 15

φ(α, 0) = φ(α, π), φβ(α, 0) = φβ(α, π).

(B) Let h(α, β, τ, v) have the following properties:∣∣∣∣∣∂h(α, β, τ, T)
∂α

−
∂h
(
α, β, τ, T

)
∂α

∣∣∣∣∣ ≤ b(α, β, τ)
∣∣T − T

∣∣,
∣∣∣∣∣∂h(α, β, τ, T)

∂β
−

∂h
(
α, β, τ, T

)
∂β

∣∣∣∣∣ ≤ b(α, β, τ)
∣∣T − T

∣∣,
∣∣∣∣∣∂h(α, β, τ, T)

∂α∂β
−

∂h
(
α, β, τ, T

)
∂α∂β

∣∣∣∣∣ ≤ b(α, β, τ)
∣∣T − T

∣∣,
where

b(α, β, τ) ∈ L2, b(α, β, τ) ≥ 0,

b(α, β, τ) ∈ C1,1,0[0, π],

h(α, β, τ, T)|α=0 = h(α, β, τ, T)|α=π ,

hα(α, β, τ, T)|α=0 = hα(α, β, τ, T)|α=π ,

hβ(α, β, τ, T)
∣∣
β=0 = hβ(α, β, τ, T)

∣∣
β=π

,

hαβ(α, β, τ, T)
∣∣
α=0 = hαβ(α, β, τ, T)

∣∣
α=π

,

hαβ(α, β, τ, T)
∣∣
β=0 = hαβ(α, β, τ, T)

∣∣
β=π

.

and where b(α, β, τ) is the Lipschitz coefficient.

Definition 1.
{T(τ)} = {T0(τ), Tcrs(τ), Tcsrs(τ), Tscrs(τ), Tsrs(τ)},

max
0≤t≤T

|T0(τ)|
4

+
∞

∑
r,s=1

 max
0≤t≤T

|Tcrs(τ)|+ max
0≤t≤T

|Tcsrs(τ)|
+ max

0≤t≤T
|Tscrs(τ)|+ max

0≤t≤T
|Tsrs(τ)|

 < ∞,

∥T(τ)∥ = max
0≤t≤T

|T0(τ)|
4

+
∞

∑
r,s=1

 max
0≤t≤T

|Tcrs(τ)|+ max
0≤t≤T

|Tcsrs(τ)|
+ max

0≤t≤T
|Tscrs(τ)|+ max

0≤t≤T
|Tsrs(τ)|

.

is called Banach (B) norm.

Problem (1)–(4) is a nonlinear problem; therefore, an iterative method should be
employed to determine the existence, uniqueness, and convergence of the problem. The
solution using the Picard Successive Iteration method is as follows.

Theorem 1. Let the assumptions (A)–(B) be satisfied, then the problem has a unique solution.

Proof. As an iteration for the problem.

T0
(N+1)(τ) = T0

(0)(0) +
4

π2

t∫
0

π∫
0

π∫
0

h
(

α, β, τ, T(N)
)

dαdβdτ,

Tcrs
(N+1)(τ) = Tcrs

(0)(0)e
−

t∫
0
[(2r)2+(2s)2]dt

+
4

π2

t∫
0

π∫
0

π∫
0

e
−

t∫
τ
[(2r)2+(2s)2]dt

h
(

α, β, τ, T(N)
)

cos(2mα) cos(2nβ)dαdβdτ,
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Tcsrs
(N+1)(τ) = Tcsrs

(01)(0)e
−

t∫
0
[(2r)2+(2s)2]dt

+
4

π2

t∫
0

π∫
0

π∫
0

e
−

t∫
τ
[(2r)2+(2s)2]dt

h
(

α, β, τ, T(N)
)

cos(2rα) sin(2sβ)dαdβdτ,

Tscrs
(N+1)(τ) = Tscrs

(0)(0)e
−

t∫
0
[(2r)2+(2s)2]dt

+
4

π2

t∫
0

π∫
0

π∫
0

e
−

t∫
τ
[(2r)2+(2s)2]dt

h
(

α, β, τ, T(N)
)

sin(2rα) cos(2sβ)dαdβdτ,

Tsrs
(N+1)(τ) = Tsrs

(0)(0)e
−

t∫
0
[(2r)2+(2s)2]dt

+
4

π2

t∫
0

π∫
0

π∫
0

e
−

t∫
τ
[(2r)2+(2s)2]dt

h
(

α, β, τ, T(N)
)

sin(2rα) sin(2sβ)dαdβdτ.

where N is the iteration number.
By applying the Cauchy, Bessel, and Hölder inequalities and the Lipschitz condition,

we have

∥∥∥T(1)(τ)
∥∥∥ = max

0≤t≤T

∣∣∣T(1)
0 (τ)

∣∣∣
4 +

∞
∑

r,s=1

 max
0≤t≤T

∣∣∣T(1)
crs (τ)

∣∣∣+ max
0≤t≤T

∣∣∣T(1)
csrs(τ)

∣∣∣
+ max

0≤t≤T

∣∣∣T(1)
scrs(τ)

∣∣∣+ max
0≤t≤T

∣∣∣T(1)
srs (τ)

∣∣∣


≤ |φ0(τ)|
4 +

∞
∑

r,s=1
|φcrs(τ)|+ |φcsrs(τ)|+ |φscrs(τ)|+ |φsrs(τ)|

+
(

2π2
√

T+3
√

T
3π2

)
∥b(α, β, τ)∥

∥∥∥T(0)(τ)
∥∥∥+ ( 2π2

√
T+3

√
T

3π2

)
M.

(7)

where φ0, φcrs, φcsrs, φscrs, and φscs are the Fourier coefficients of the source function. M
presents the arbitrary constant.

From the theorem, T(0)(τ) ∈ B.
Applying for the step N,

∥∥∥T(N+1)(τ)
∥∥∥ = max

0≤t≤T

∣∣∣T(N)
0 (τ)

∣∣∣
4 +

∞
∑

r,s=1

 max
0≤t≤T

∣∣∣T(N)
crs (τ)

∣∣∣+ max
0≤t≤T

∣∣∣T(N)
csrs (τ)

∣∣∣
+ max

0≤t≤T

∣∣∣T(N)
scrs (τ)

∣∣∣+ max
0≤t≤T

∣∣∣T(N)
srs (τ)

∣∣∣


≤ |φ0(τ)|
4 +

∞
∑

r,s=1
|φcrs(τ)|+ |φcsrs(τ)|+ |φscrs(τ)|+ |φsrs(τ)|

+
(

2π2
√

T+3
√

T
3π2

)
∥b(α, β, τ)∥

∥∥∥T(N)(τ)
∥∥∥+ ( 2π2

√
T+3

√
T

3π2

)
M.

(8)

We receive T(N)(τ) ∈ B since T(N+1)(τ) ∈ B.
Let us show that T(N+1)(τ) is converged for N → ∞ .

∥∥∥T(1) − T(0)
∥∥∥ ≤ 1

4

 4
π2

t∫
0

π∫
0

π∫
0

[
h(α, β, τ, T(0))− h(α, β, τ, 0)

]
e
−

t∫
τ
[(2r)2+(2s)2]dt

dαdβdτ


+ 1

4

 4
π2

t∫
0

π∫
0

π∫
0
[h(α, β, τ, 0)]e

−
t∫

τ
[(2r)2+(2s)2]dt

dαdβdτ


+

∞
∑

r,s=1

4
π2

t∫
0

π∫
0

π∫
0

[
h(α, β, τ, T(0))− h(α, β, τ, 0)

]
e
−

t∫
τ
[(2r)2+(2s)2]dt

cos(2rα) cos(2sβ)dαdβdτ

+
∞
∑

r,s=1

4
π2

t∫
0

π∫
0

π∫
0
[(α, β, τ, 0)]e

−
t∫

τ
[(2r)2+(2s)2]dt

cos(2rα) cos(2sβ)dαdβdτ

+
∞
∑

r,s=1

4
π2

t∫
0

π∫
0

π∫
0

[
h(α, β, τ, T(0))− h(α, β, τ, 0)

]
e
−

t∫
τ
[(2r)2+(2s)2]dt

cos(2rα) sin(2sβ)dαdβdτ
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+
∞
∑

r,s=1

4
π2

t∫
0

π∫
0

π∫
0
[h(α, β, τ, 0)]e

−
t∫

τ
[(2r)2+(2s)2]dt

cos(2rα) sin(2sβ)dαdβdτ

+
∞
∑

r,s=1

4
π2

t∫
0

π∫
0

π∫
0

[
h(α, β, τ, T(0))− h(α, β, τ, 0)

]
e
−

t∫
τ
[(2r)2+(2s)2]dt

sin(2rα) cos(2sβ)dαdβdτ

+
∞
∑

r,s=1

4
π2

t∫
0

π∫
0

π∫
0
[h(α, β, τ, 0)]e

−
t∫

τ
[(2r)2+(2s)2]dt

sin(2rα) cos(2sβ)dαdβdτ

+
∞
∑

r,s=1

4
π2

t∫
0

π∫
0

π∫
0

[
h(α, β, τ, T(0))− h(α, β, τ, 0)

]
e
−

t∫
τ
[(2r)2+(2s)2]dt

sin(2rα) sin(2sβ)dαdβdτ

+
∞
∑

r,s=1

4
π2

t∫
0

π∫
0

π∫
0
[h(α, β, τ, 0)]e

−
t∫

τ
[(2r)2+(2s)2]dt

sin(2rα) sin(2sβ)dαdβdτ.

By applying the Cauchy, Bessel, and Hölder inequalities and the Lipschitz condition,
we have∥∥∥T(1)(τ)− T(0)(τ)

∥∥∥ ≤
(

2π2
√

T + 3
√

T
3π2

)
∥b(α, β, τ)∥

∥∥∥T(0)(τ)
∥∥∥+(2π2

√
T + 3

√
T

3π2

)
M, (9)

where let A =
(

2π2
√

T+3
√

T
3π2

)
∥b(α, β, τ)∥

∥∥∥T(0)(τ)
∥∥∥+ ( 2π2

√
T+3

√
T

3π2

)
M.

Applying for the step N,

∥∥∥T(N+1)(τ)− T(N)(τ)
∥∥∥ ≤

(
2π2

√
T + 3

√
T

3π2

)(N)
A√
N!

∥b(α, β, τ)∥(N). (10)

We obtain T(N+1)(τ) → T(N)(τ) .
Let us show that T(N+1)(τ) → T(τ) is converged for N → ∞ .
By applying the Cauchy, Bessel, and Hölder inequalities and the Lipschitz condition,

we have∥∥∥T(τ)− T(N+1)(τ)
∥∥∥ ≤

(
2π2

√
T+3

√
T

3π2

)
∥b(α, β, τ)∥

∥∥∥T(τ)− T(N+1)
∥∥∥

+
(

2π2
√

T+3
√

T
3π2

)
∥b(α, β, τ)∥

∥∥∥T(N+1)(τ)− T(N)
∥∥∥+ ( 2π2

√
T+3

√
T

3π2

)
M.

(11)

From the Gronwall’s inequality,

∥∥∥T(τ)− T(N+1)(τ)
∥∥∥2

≤ A2
√

N!

(
2π2

√
T + 3

√
T

3π2

)2

∥b(α, β, τ)∥2N exp

(
2π2

√
T + 3

√
T

3π2

)2

∥b(α, β, τ)∥2. (12)

From Equation (12), we receive T(N+1)(τ) → T(τ) .
To show the uniqueness, we receive two solutions for the problem {T(τ), U(τ)}.
By applying the Cauchy, Bessel, and Hölder inequalities and the Lipschitz condition,

we have

∥T(τ)− U(τ)∥ ≤
(

2π2
√

T + 3
√

T
3π2

)
∥b(α, β, τ)∥∥T(τ)− U(τ)∥+

(
2π2

√
T + 3

√
T

3π2

)
M.

From the Gronwall’s inequality,

∥T(τ)− U(τ)∥2 ≤ 0 × exp

(
2π2

√
T + 3

√
T

3π2

)2

∥b(α, β, τ)∥2. (13)
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We receive T(τ) = U(τ). □

4. Stability of Solution

Theorem 2. Let the assumptions (A)–(B) be satisfied. Then, the problem is constantly dependent on
the data.

Proof.

T − T = (φ0−φ0)
4 +

∞
∑

r,s=1
φcrse

−
t∫

τ
[(2r)2+(2s)2]dt

cos(2rα) cos(2sβ) +
∞
∑

r,s=1
φcrse

−
t∫

τ
[(2r)2+(2s)2]dt

cos(2rα) cos(2sβ)

+
∞
∑

r,s=1
φcsrse

−
t∫

τ
[(2r)2+(2s)2]dr

cos(2rα) sin(2sβ) +
∞
∑

r,s=1
φcsrse

−
t∫

τ
[(2r)2+(2s)2]dt

cos(2rα) sin(2sβ)

+
∞
∑

r,s=1
φscrse

−
t∫

τ
[(2r)2+(2s)2]dt

sin(2rα) cos(2sβ) +
∞
∑

r,s=1
φscmne

−
t∫

τ
[(2r)2+(2s)2]dt

sin(2rα) cos(2sβ)

+
∞
∑

r,s=1
φsrse

−
t∫

τ
[(2r)2+(2s)2]dt

sin(2rα) sin(2rβ) +
∞
∑

r,s=1
φsmne

−
t∫

τ
[(2r)2+(2s)2]dt

sin(2rα) sin(2sβ)

+ 1
4


4

π2

t∫
0

π∫
0

π∫
0

[
h(α, β, τ, T)− h(α, β, τ, T)

]
e
−

t∫
τ
[(2r)2+(2s)2]dt

dαdβdτ


+

∞
∑

r,s=1

4
π2

t∫
0

π∫
0

π∫
0

[
h(α, β, τ, T)− h(α, β, τ, T)

]
e
−

t∫
τ
[(2r)2+(2s)2]dt

cos(2rα) cos(2sβ)dαdβdτ

+
∞
∑

r,s=1

4
π2

t∫
0

π∫
0

π∫
0

[
h(α, β, τ, T)− h(α, β, τ, T)

]
e
−

t∫
τ
[(2r)2+(2s)2]dt

cos(2rα) sin(2sβ)dαdβdτ

+
∞
∑

r,s=1

4
π2

t∫
0

π∫
0

π∫
0

[
h(α, β, τ, T)− h(α, β, τ, T)

]
e
−

t∫
τ
[(2r)2+(2s)2]dt

sin(2rα) cos(2sβ)dαdβdτ

+
∞
∑

r,s=1

4
π2

t∫
0

π∫
0

π∫
0

[
h(α, β, τ, T)− h(α, β, τ, T)

]
e
−

t∫
τ
[(2r)2+(2s)2]dt

sin(2rα) sin(2sβ)dαdβdτ.

By applying the Cauchy, Bessel, and Hölder inequalities and the Lipschitz condition,
we have∥∥T − T

∥∥ ≤ ∥φ0−φ0∥
4 +

∞
∑

r,s=1
∥φcrs − φcrs∥+ ∥φcsrs − φcsrs∥+ ∥φscrs − φscrs∥+ ∥φsrs − φsrs∥

+
(

2π2
√

T+3
√

T
3π2

)
∥b(α, β, τ)∥

∥∥T(τ)− T(τ)
∥∥+ ( 2π2

√
T+3

√
T

3π2

)
∥b(α, β, τ)∥M,

∥∥θ − θ
∥∥ =

∥φ0 − φ0∥
4

+
∞

∑
r,s=1

∥φcrs − φcrs∥+ ∥φcsrs − φcsrs∥+ ∥φscrs − φscrs∥+ ∥φsrs − φsrs∥.

From the Gronwall’s inequality,

∥∥T − T
∥∥2 ≤

∥∥θ − θ
∥∥2 × exp

(
2π2

√
T + 3

√
T

3π2

)2

∥b(α, β, τ)∥2. (14)

From Equation (14), θ → θ . Then, T → T . □

5. Numerical Method for Problem

The analytical solution described above, which involves Fourier series, is itself an
approximate solution. To validate this approximate solution using another approximate
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method, namely, the numerical method, we performed a numerical solution following the
analytical solution.

In this section, we use an implicit finite difference approximation [14,27,28] of the
discretized problems (1)–(4);

1
∆τ

(
Tk+1

i,j − Tk
i,j

)
=

1
∆α2

(
Tk+1

i−1,j − 2Tk+1
i,j + Tk+1

i+1,j

)
+

1
∆β2

(
Tk+1

i,j−1 − 2Tk+1
i,j + Tk+1

i,j+1

)
+ f k+1

i,j , (15)

T0
i,j = φi, (16)

Tk
1,j = Tk

nα,j
Tk

i,1 = Tk
i,nβ,

(17)

Tk
nα,j =

Tk
2,j−Tk

nα−1,j
2

Tk
i,nβ =

Tk
i,2−Tk

i,nβ−1
2 ,

(18)

where the computational domain [0, π]× [0, π]× [0, τ] is discretized as follows:
αi = i(∆α − 1), i = 1, 2, . . . . . . , nα, β j = j(∆β − 1), j = 1, 2, . . . . . . , nβ, τk = k∆τ, and

k = 0, 1, . . . . . . , n.
Where ∆α = π/nα, ∆β = π/nβ, and ∆τ = τ/n are the space α direction, space β

direction, and time steps, respectively. nx, ny, and n are three positive integers.
Tk

i,j = T
(
αi, β j, τk

)
, and f k

i,j = T
(
αi, β j, τk

)
.

In order to define periodic boundary conditions (Equations (17) and (18)) for the
implicit finite difference scheme, a one-dimensional schematic figure with numerical
meshes is represented in Figure 3. Point-1 and point-nα are the boundary points of the
one-dimensional solution domain. When determining spatial discretization with a finite
difference scheme, the used finite difference formulations are defined as
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. . . = rα


Tnα − 2Tα1 + T2
T1 − 2Tα2 + T3

· · ·
Tnα−1 − 2Tαnα + T1

, (19)

where rα = ∆τ/∆α2, and the coefficient matrix can be rewritten for one-dimensional
solution domain.

rα



−2 1 0 . . . 0 1
1 −2 1 0 . . . 0

. . . . . . . . .
. . . . . . . . .

0 . . . 0 1 −2 1
1 0 . . . 0 1 −2


, (20)

This one-dimensional formulation and coefficient matrix can be extended to a two-
dimensional solution domain. A two-dimensional schematic figure with numerical meshes
(9 finite difference meshes) is represented in Figure 4. Of course, a matrix is constructed for
9 finite difference meshes; therefore, the matrix size is 9 × 9. Point-1, -2, and -3 are periodic
with Point-7, -8, and -9, respectively, in the β-direction. Point-1, -4, and -7 are periodic with
-3, -6, and -9, respectively, at the α direction. The coefficient matrix can be written as
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Figure 4. Two-dimensional schematic figure with numerical meshes.



−
(

1 + 2rα + 2rβ

)
rα rα rβ 0 0 rβ 0 0

rα −
(

1 + 2rα + 2rβ

)
rα 0 rβ 0 0 rβ 0

rα rα −
(

1 + 2rα + 2rβ

)
0 0 rβ 0 0 rβ

rβ 0 0 −
(

1 + 2rα + 2rβ

)
rα rα rβ 0 0

0 rβ 0 rα −
(

1 + 2rα + 2rβ

)
rα 0 rβ 0

0 0 rβ rα rα −
(

1 + 2rα + 2rβ

)
0 0 rβ

rβ 0 0 rβ 0 0 −
(

1 + 2rα + 2rβ

)
rα rα

0 rβ 0 0 rβ 0 rα −
(

1 + 2rα + 2rβ

)
rα

0 0 rβ 0 0 rβ rα rα −
(

1 + 2rα + 2rβ

)



, (21)

where rβ = ∆τ/∆β2. If a large number of meshes are used, the matrix can be extended in a
same way. For example, if we have 20 meshes in both the α and β directions, our matrix
size will be 400 × 400, the total number of elements in the matrix is 160,000, and our matrix
can be constructed in the same manner to define points of periodic boundary conditions
and points of inner (no periodic boundary condition points).

The methods that are described above were implemented in-house using finite differ-
ence code via the FORTRAN Programming language. The obtained results were visualized
using the program Tecplot 360 [34].

Example 1. Consider the heat diffusion problem with heat sources (1)–(4):
The temperature distribution is given as

T(α, β, τ) = eτ2
(5 + cos 2α + cos 2β),

with the heat source,
h(α, β, τ) = 2eτ2

(τ + 2)(cos 2α + cos 2β),

and with the initial condition,

ϕ(α, β) = 5 + cos 2α + cos 2β.

We determined the time step size to be ∆τ = 0.005s. The discretization of spaces
or mesh sizes in the α and β directions are considered equal (∆α = ∆β). To determine
mesh sizes in the α and β directions, a grid independence study was conducted. For the
grid-independence study, fifteen different grid resolutions are used.

In the α and β directions, the same numbers of grid were used because of the equal grid
size (∆α = ∆β) being considered. In Figure 5, two different grid resolutions are illustrated
among fifteen different resolutions. The displayed grid numbers are 2500 and 6400. For
every grid resolution, we observed an area-weighted averaged value of temperature for
the whole solution domain. Figure 6 shows the grid-independent study of area-weighted
averaged value of temperature. According to Figure 6, the mesh number of 6400 is taken
as the grid independent mesh number. In this case, eighty grids are used for the α and β
directions; therefore, our mesh size for the α and β directions is obtained as 0.03926875 m.
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Figure 7 shows the (a) exact and (b) numerical solutions for the temperature with
the time at 0.1 s. The exact and numerical solutions are paraboloidal. Maximum and
minimum temperature values are observed at corners and at the middle of the solution
domain, respectively. Due to periodic boundary conditions at the side of solution domain,
temperatures are the same at the side of the solution domain. Also, the exact and numerical
solutions are quite similar.

Figure 7. The (a) exact and (b) numerical solutions for T(α, β, 0.1 s).
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Figure 8 depicts the (a) absolute error and (b) relative absolute error for the temperature
with the time at 0.1 s. Absolute error is defined as the absolute value of the difference
between the exact solution value and the numerical solution. According to Figure 7a, the
maximum absolute error is observed at center of the solution domain, and the absolute
error is higher at the corners of the solution domain. At the center of the solution domain,
an approximate absolute error of 0.1 is observed. The relative absolute error is the ratio of
the absolute error to the exact solution. The magnitude of the absolute error in terms of the
exact solution is determined using the relative absolute error. Similar to the absolute error,
the maximum relative error, which is 0.03, is observed at the center of the solution domain.
At the corners of the solution domain, the relative absolute error is in the order of 0.01. As
time progresses, the absolute error and relative absolute error remain in the same order,
and these errors are reasonable.

Figure 8. The (a) absolute error and (b) relative absolute error of T(α, β, 0.1 s).

Figure 9 presents the numerical predictions of the temperature distributions at the
times (a) 0.1 s, (b) 0.25 s, and (c) 0.5 s. As one can see, the temperature distributions at these
specific times are paraboloid. The concavity of the paraboloid increases with time. The
minimum and the maximum values of the temperature appear at the center and corners of
the solution domain, respectively, at all times.

Computation 2024, 12, x FOR PEER REVIEW 14 of 17 
 

 

  
(a) (b) 

Figure 8. The (a) absolute error and (b) relative absolute error of T(α, β, 0.1 s). 

Figure 9 presents the numerical predictions of the temperature distributions at the 
times (a) 0.1 s, (b) 0.25 s, and (c) 0.5 s. As one can see, the temperature distributions at 
these specific times are paraboloid. The concavity of the paraboloid increases with time. 
The minimum and the maximum values of the temperature appear at the center and cor-
ners of the solution domain, respectively, at all times. 

   
(a) (b) (c) 

Figure 9. Numerical predictions of T distributions at times (a) 0.1 s, (b) 0.25 s, and (c) 0.5 s. 

In order to visualize all time intervals in a single figure, Figure 10 illustrates the tem-
perature distribution over a time range from 0 s to 0.5 s. Paraboloids are not shown in this 
representation. Maximum and minimum temperature values are observed at the corners 
and center of the solution domain, respectively, at all times. Additionally, with increasing 
time, the temperature values of the corners increase, and the temperature values of the 
centers decrease.  

Fundamentally, this study has focused on the analytical and numerical solution of a 
two-dimensional, time-dependent system with heat generation. However, it has not ex-
tensively delved into the specific applications of this problem. Nevertheless, the results 
obtained from this problem could be applied in a suitable context by other researchers. 

Figure 9. Numerical predictions of T distributions at times (a) 0.1 s, (b) 0.25 s, and (c) 0.5 s.



Computation 2024, 12, 11 13 of 15

In order to visualize all time intervals in a single figure, Figure 10 illustrates the
temperature distribution over a time range from 0 s to 0.5 s. Paraboloids are not shown
in this representation. Maximum and minimum temperature values are observed at the
corners and center of the solution domain, respectively, at all times. Additionally, with
increasing time, the temperature values of the corners increase, and the temperature values
of the centers decrease.

Fundamentally, this study has focused on the analytical and numerical solution of
a two-dimensional, time-dependent system with heat generation. However, it has not
extensively delved into the specific applications of this problem. Nevertheless, the results
obtained from this problem could be applied in a suitable context by other researchers.
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6. Limitations and Future Scope

This problem is characterized by specific limits and assumptions, constituting a time-
dependent, two-dimensional heat diffusion problem with a heat source and periodic
boundary conditions. Due to the applied periodic boundary conditions, temperature
distributions at the edges and corners of the solution domain are found to be identical. In
systems with heat generation, the temperature profile at a specific time tends to exhibit a
parabolic shape. As time progresses, the slope of this parabolic nature also increases.

For future studies, this problem can be expanded into three dimensions, enabling an
investigation into the influence of the third dimension on heat diffusion. As an analytical
solution method, the maximum principle and/or the operation method may be considered
in future work. For numerical solutions, various schemes can be employed in the finite
difference method, or alternative methods such as the finite volume method and the lattice
Boltzmann methods could be explored.

7. Conclusions

An analytical and numerical investigation of a two-dimensional heat diffusion prob-
lem with a heat source has been conducted. This problem is a quasi-linear parabolic
problem, and we used an initial condition and a periodic boundary condition to determine
the temperature in the solution domain. Due to the problem being nonlinear, Picard’s
successive approximation theorem is used. Under certain conditions of natural regularity
and consistency imposed upon the input data, we establish the existence, uniqueness, and
constant dependence of the solution on the data using the generalized Fourier method.
An implicit finite difference scheme is employed for the numerical solution. The number
of numerical meshes, where results do not change, is determined according to the grid
independence study. In light of the analytical and numerical solution, the distribution of
the temperature forms a paraboloid at a certain time. With increasing time, the concavity
of the parabola increases. At the time of 0.1 s, the maximum absolute error and relative
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error occur in the middle of the solution domain at 0.1 and 0.03, respectively. Therefore, we
can conclude that the analytical solution and numerical solutions are closely aligned. Also,
with increasing time, the degrees of absolute and relative absolute remain the same. For
future studies, extending the problem to three dimensions can investigate the influence of
the third dimension on heat diffusion. Analytically, considering the maximum principle
and/or the operation method is an option. Numerically, exploring various schemes in
the finite difference method or alternative methods, such as finite volume and the lattice
Boltzmann methods, is possible.
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Nomenclature

φ(α, β) is the initial temperature.
φ0(τ), φcrs(τ), φcsrs(τ), φscrs(τ), φsrs(τ) are the Fourier coefficients of initial condition.
T(α, β, τ) is the temperature distribution.
h(α, β, τ, T) is a source function.
h0(τ), hcrs(τ), hcsrs(τ), hscrs(τ), hsrs(τ) are the Fourier coefficients of source function.
T0(τ), Tcrs(τ), Tcsrs(τ), Tscrs(τ), Tsrs(τ) are the Fourier coefficients.
M is an arbitrary constant.
b(α, β, τ) is a Lipschitz coefficient.
L2 is a converged space.
N is an iterative number.
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