
Citation: Liubimov, O.; Turkin, I.;

Pavlikov, V.; Volobuyeva, L. Agile

Software Development Lifecycle and

Containerization Technology for

CubeSat Command and Data

Handling Module Implementation.

Computation 2023, 11, 182.

https://doi.org/10.3390/

computation11090182

Academic Editor: Demos T. Tsahalis

Received: 29 June 2023

Revised: 27 August 2023

Accepted: 9 September 2023

Published: 14 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

computation

Article

Agile Software Development Lifecycle and Containerization
Technology for CubeSat Command and Data Handling
Module Implementation
Oleksandr Liubimov 1,2,* , Ihor Turkin 2 , Vladimir Pavlikov 3 and Lina Volobuyeva 2

1 Ektos-Ukraine LLC, 1 Academika Proskury Str., 61070 Kharkiv, Ukraine
2 Department of Software Engineering, National Aerospace University “Kharkiv Aviation Institute”,

17 Chkalova Str., 61070 Kharkiv, Ukraine; i.turkin@khai.edu (I.T.); l.volobuieva@khai.edu (L.V.)
3 Department of Aerospace Radio-Electronic Systems, National Aerospace University “Kharkiv

Aviation Institute”, 17 Chkalova Str., 61070 Kharkiv, Ukraine; v.pavlikov@khai.edu
* Correspondence: oleksandr.liubimov@gmail.com

Abstract: As a subclass of nanosatellites, CubeSats have changed the game’s rules in the scientific
research industry and the development of new space technologies. The main success factors are
their cost effectiveness, relative ease of production, and predictable life cycle. CubeSats are very
important for training future engineers: bachelor’s and master’s students of universities. At the
same time, using CubeSats is a cost-effective method of nearest space exploration and scientific work.
However, many issues are related to efficient time-limited development, software and system-level
quality assurance, maintenance, and software reuse. In order to increase the flexibility and reduce the
complexity of CubeSat projects, this article proposes a “hybrid” development model that combines
the strengths of two approaches: the agile-a-like model for software and the waterfall model for
hardware. The paper proposes a new computing platform solution, “Falco SBC/CDHM”, based on
Microchip (Atmel) ATSAMV71Q21 with improved performance. This type of platform emphasizes
low-cost space hardware that can compete with space-grade platforms. The paper substantiates
the architecture of onboard software based on microservices and containerization to break down
complex software into relatively simple components that undergraduates and graduates can handle
within their Master’s studies, and postgraduates can use for scientific space projects. The checking of
the effectiveness of the microservice architecture and the new proposed platform was carried out
experimentally, involving the time spent on executing three typical algorithms of different algorithmic
complexities. Algorithms were implemented using native C (Bare-metal) and WASM3 on FreeRTOS
containers on two platforms, and performance was measured on both “Falco” and “Pi Pico” by
Raspberry. The experiment confirmed the feasibility of the complex application of the “hybrid”
development model and microservices and container-based architecture. The proposed approach
makes it possible to develop complex software in teams of inexperienced students, minimize risks,
provide reusability, and thus increase the attractiveness of CubeSat student projects.

Keywords: CubeSat; nanosatellite; COTS; CDHM; OBC; containerization; microservices architecture;
agile; on-board interpreter; WASM3; software; WebAssembly; FreeRTOS; Falco; Raspberry Pi

1. Introduction

CubeSat is a type of nanosatellite that began its commercial and research in 1999
when the CubeSat Design Specification was started in California [1]. From the beginning,
CubeSats were invented as technology for research and education. Since 1999, this form
factor and the paradigm of nanosatellites have become popular in both commercial and
military industries [2], as well as in academia and in particular astronomy [3]. Academic
availability and access to such technology allowed student and science teams to gain access
to research on space and the Earth from low earth orbit (hereafter LEO). A typical CubeSat

Computation 2023, 11, 182. https://doi.org/10.3390/computation11090182 https://www.mdpi.com/journal/computation

https://doi.org/10.3390/computation11090182
https://doi.org/10.3390/computation11090182
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/computation
https://www.mdpi.com
https://orcid.org/0000-0003-3636-6939
https://orcid.org/0000-0002-3986-4186
https://orcid.org/0000-0002-6370-1758
https://orcid.org/0000-0002-3466-5743
https://doi.org/10.3390/computation11090182
https://www.mdpi.com/journal/computation
https://www.mdpi.com/article/10.3390/computation11090182?type=check_update&version=2


Computation 2023, 11, 182 2 of 31

is a nanosatellite ranging in size from 1U–10 × 10 × 10 cm up to 12U when several 1U units
can be assembled together (stacked or placed next to each other). Usually, CubeSats are
delivered to orbit as “parasitic load”, i.e., a secondary load. This is what makes its delivery
to LEO very cheap, in comparison to the dedicated satellite launch. The typical programs
for these parasitic launches of CubeSats are NASA’s CubeSat Launch Initiative (CLI) [4] and
the European Space Agency (ESA) program called Fly Your Satellite (FYS) [5]. The method
for the local “from the rocket” launch of satellites to orbit is a mechanically armed spring-
based ejection, using particular load “dispensers”, for example, P-POD [6]. The key reasons
for the high popularity [7], as well as the prosperous future [8], of the CubeSats standard
and approach are the low cost of such satellites [9,10]; the relatively short time of their
construction and testing (which made it possible to construct, program, test, and launch a
satellite during master’s degree students studies); and standardization. Standardization
in its turn allowed one to reuse both individual parts of satellites and ground stations to
receive telemetry and control satellites at LEO. The typical tasks of CubeSats include three
types: the remote sensing of the Earth or other space objects, communication infrastructure
(especially for CubeSats constellations, examples of OneWeb and StarLink), and the research
of problems and tasks of re-entry into the Earth’s atmosphere. Looking at the statistics of
launches and orbital deliveries for the past few years [7,11,12], we can see rapid growth in
popularity and further development of this area of space technology.

It is easy to see that almost 500 CubeSat satellites were launched in 2021 and 2022.
Unfortunately, even with 20 years of launch experience and platform flight heritage,
a relatively large number of launches remain unsuccessful. Looking at Figure 1, we
can see that approximately 18.5% of satellites in 2022 were completely lost, and only
2.9% of satellites fully completed their task (full launch mission). Numerous scientific
and commercial teams worldwide strive to minimize the probability of either a full
or partial satellite failure and maximize the percentage of satellites that accomplish
their programmed mission. Such a need utilizes the following areas: general reliability,
hardware and software design and development processes and techniques, hardware
and software reuse, and verification and validation methods. As CubeSat design and
development is a popular aerospace-related academic scientific project, many teams
worldwide are trying to develop an entire satellite from scratch. This, in its turn, leads
to the long duration, comprehensive planning, and execution of the project, and it
establishes a very high bar for software and hardware development skills, which are not
typical for academic people. In other words, teams are starting from scratch, trying to
plan from the very beginning to the very end of the project, and running rigid but not yet
mature software and hardware development processes. Looking into statistical data, it
is clear that software development takes up roughly 2/3 of the time needed to complete
a whole CubeSat project. The software development part of a typical CubeSat project
always ends up being very complex and time-consuming. It involves defining, designing,
developing, and testing (verification and validation, commissioning, and support after
launch) the software. Even with a lot of earlier developed software reuse and open-
source software use, it is still a significant challenge for the development teams to
use the software properly and to obtain solid flight-ready software promptly. This
article will provide an alternative approach to using a modern software development
lifecycle, i.e., agile-like, and proper technology for the implementation, deployment,
and use of the software. After the definition of a new development approach and its
technical background is given, the authors make a top-level design of a CubeSat software
structure in a newly introduced paradigm. To ensure that the proposed method is sound,
the authors carried out a performance check on the selected variety of classical computer
science algorithms.



Computation 2023, 11, 182 3 of 31

Figure 1. CubeSats launch statistics (annual by mission status).

1.1. How Is the Software Development Complexity and Processes Addressed by the Industry?

If we look into the typical ways of addressing the design and development of complex
software, it is clear that the majority of techniques are divided into two major parts:

• Technical design and development methods;
• Improvements in the areas of communication, planning, and processes around the

development process and development team.

The technical methods include but are not limited to techniques like decomposition,
minimalism adoption, code from data separation, proper abstraction identifications, code
reuse, etc., and the process and communication part is normally represented by modern
software development life cycles, people and project management principles, and the so-
called conscious collaboration paradigm. Looking into NASA’s own recommendations [13],
it is very clearly stated that the first-time development teams shall: “keep it simple” and
“use familiar components”, and they “do not design to the limits”.

1.2. CubeSat Software State-of-the-Art

The whole idea of making a CubeSat cheap and easy to launch lies in the domain of
using commercial-off-the-shelf (COTS) or modifiable-off-the-shelf (MOTS) components in
both software and hardware parts of a typical development project. The use of COTS com-
ponents opens up a wide variety of open-source and proprietary software to be used [14,15].
However, the use of the COTS software creates a huge number of troubles by way of the
developing and proper testing of the CubeSat on-board software. Why? Well, many of
the software parts are rather provided as the sample or “take it on your own risk” and
thus simply do not fulfill any reasonable metrics for production-ready software. This
means that an increasing number of development teams are leaning towards the very
comprehensive testing of the final assembled flight software, simply to ensure its quality



Computation 2023, 11, 182 4 of 31

and readiness to go to space. The majority of the research is focused on a very thorough
verification & validation (V&V) approach [16], using complex data validation models and
techniques [17]. Other research papers propose software in the loop (SIL) and/or hardware
in the loop (HIL) simulation [18]. Various efforts are also made in the field of failure emula-
tion mechanisms (FEM) [19], as well as the introduction of different fault injection platforms
(FIP) [20]. All these methods are very typical for the ”waterfall’ software development
lifecycle and overall project management, as well as for rigidly and thoroughly planned
projects. The rigidity and thoroughness are truly nontypical for academia and research
projects where the mindset of “greenfield exploration” is commonly used.

1.3. Why the CubeSat Software Is Complex to Develop?

When we look into what actually makes CubeSats development a complex and chal-
lenging task, we can see a few major factors. The first and widely underestimated factor is
the cyclomatic complexity of making CubeSat software. It is rather easy to see that even on
the first order of a functional breakdown, CubeSat software demonstrates a complex set
of sub-systems and their functions. The second factor is the skillset of the undergraduate
and/or postgraduate students who did not have the option to obtain the industry practices
and did not make their own so-called rule of 10,000 h of experience. It leads to a bunch
of issues related to both architectural and implementation errors, and low awareness of
the more effective tools and approaches for making software solid and robust. Last but
not least, a major factor lies in the attempt of “blind” reuse of the open-source software
(OSS). The push towards this reuse is normally given by the following factors: other team
successes, strict and tight project deadlines, and focusing on the payload rather than on
a whole CubeSat system. Such reuse leads to the low quality and maturity of the source
code, and a lack of time to properly overview the entire code being developed. At the same
time, CubeSat systems, including ground stations, communication signals, and CubeSat
spacecraft, are subject to various cyberattacks, the classification of which is given by the
standard ISO/IEC 15408 [21]. There are various papers that analyze [22] and propose
methods for analyzing CubeSat security threats and solving those, for example, based on
the analysis of attack trees [23].

1.4. What Programming Language and Operation System Are Used?

Without a doubt, the “C” programming language is the number one choice and the
de-facto market standard for embedded systems and thus CubeSat’s software develop-
ment [24]. The following factors contribute to the popularity of “C”:

• It has minimalistic overhead, which is a must for the low power systems;
• It allows one to use both COTS and a truly proprietary hardware (processor) platform;
• Typical CubeSat FSW requires a lot of near-hardware programming, where “C” is very

powerful and effective;
• It requires less time to start development (in comparison to object-oriented languages

such as C++ or Rust).

Therefore, in this article, the authors concentrate on the use of the “C” language for the
experiment. With the experimental work, the authors will later compare the performance of
the pure “C” code and “C”-written containers for the WASM3 containers engine. The term
“Native C”, is introduced later in the article, means the C-language written software that
is compiled by a dedicated and specialized to the specific hardware platform compiler.
In other words, it is the most effectively compiled source code for a given hardware
platform. Looking into the operation systems (OS) used in the CubeSat industry, it is pretty
clear that it is an OS called FreeRTOS that is leading the development team’s choice [25].
Therefore, FreeRTOS is selected to be used for all the following experiments described in
this article.



Computation 2023, 11, 182 5 of 31

1.5. How Does It Look from the Process Side?

So we learned the technical challenges of the software source code development.
The other major side of the problem lies in the way software development is planned
and carried out—this involves addressing the software development lifecycle (SDLC) and
general project management model. The common project and thus software development
lifecycle for the space projects is still the “waterfall” one. The “waterfall model” is a linear-
sequential life cycle model and was the first process model to be introduced and shown in
Figure 2. It is very simple to understand and use. It is a breakdown of project activities into
linear sequential phases, where each phase depends on the deliverables of the previous one
and corresponds to a specialization of tasks. Typical major stages of the waterfall model are:

• “Requirements analysis and specification phase”: the phase when a project team
gathers together and elicits and writes down all applicable project requirements. This
phase usually ends when all project team members and a customer or a client agree
that all requirements are final and fully defined. After this phase, it is assumed that
requirements never change and are ready for design and implementation;

• “Design phase”: the phase where the engineering team designs parts of the project
having the requirements compiled in a previous stage. Normally, such a phase
delivers two documents: a software design document (SDD) and a hardware design
document (HDD). If some of the requirements cannot be fulfilled by the design,
the design phase is considered as “non-feasible” and the project returns to the previous
phase: “requirements”;

• “Implementation (and unit-testing) phase”: the main phase where the development
team associated with the project gets the software/hardware done. If something
from the design cannot be implemented in unit-tested, the phase is considered as
unfinished and the project shall return to the previous phase for either design or
requirements elaboration;

• “Integration and system testing phase”: the phase where all parts of the project are put
together for the system-level testing. This is where the majority of problems appear
because of either design and/or implementation errors or non-foreseen conflicts.
Normally, this phase is the most heavy one and, in fact, is the most eye-opening for all
project members due to integration “surprises”;

• “Operation and maintenance phase”: the phase where the developed software and/or
overall system delivers its designed value to the customer. This phase normally con-
sists of adding further new functions to the software, fixing found during the operation
bugs, and adopting the developed software to the changing product environment.

The waterfall model is a heritage of 1950s engineering and is bounded to standards
like MIL-STD-499 [26], MIL-STD-1521 [27], and IEEE-15288 [28]. It is rather clear from
NASA’s “CubeSat 101 Handbook” [13] that the recommended approach to the development
of a CubeSat software is purely sequential and thus is of a “waterfall” life-cycle too. It
is mainly driven by two common facts: industry practice and heritage and the fact of
having and actually constructing the hardware in a CubeSat project. These are the factors
that lead the entire project to be within the “waterfall” development life-cycle. What
does it consist of?

Figure 2. Typical outline of the waterfall development model.

The problem that is created by the waterfall development process is not only in its
method of structuring the pipeline of the tasks but also in the the way the source code
design, development, testing, and structuring are carried out. After conducting an analysis
of the existing CubeSat projects available on GitHub, it became clear that the structure of
the source code is weak and often primitive. Even regarding the projects where the code



Computation 2023, 11, 182 6 of 31

structure is executed in a modular manner, it is still made as a monolithic, tightly bounded,
data/code coupled piece of software. Often such a monolithic approach is inherited from
the framework being used as part of the re-use strategy. Knowledge of the development
time and technical skill constraints in a typical CubeSat software development team, such
a monolithic and tightly bounded structure, has never been challenged or changed. So
how can the problem of a waterfall development model that is “reinforced” by a tightly
coupled data/code and monolithic structured source code be solved? The answer is simple
and clearly stipulated by the NASA “CubeSat 101 Handbook” [13]—it involves carrying
out proper testing! Testing and quality control and assurance are by themselves very skill-
demanding areas, and thus, in the majority of CubeSat projects, software, and hardware
testing are pushed to the very last moment and undergo only integration testing. If we take
the more mature development teams (mainly those who are part of commercial companies),
they are using the so-called V-model that comes from the functional safety world where
every step of the SDLC shall be properly verified after being accomplished. The V-model is
widely used in applications driven by the following standards: IEC 61508 [29]—“electronic
functional safety package”, IEC 62304 [30]/ISO 14971 [31]—“medical device software”, ISO
26262 [32]—“automotive functional safety”, etc. It is represented below in Figure 3.

Figure 3. ”Waterfall” SDLC reinforced by the V-model.

With the use of the V-model SDLC, the development team can better decompose the
“design phase” and “integration and system testing phase” mentioned above and have
more time to design/test the system at different abstraction levels. This in return helps
one to obtain a better overview of its functions and addresses the functions’ complexity
better. However, it is important to state that the use of the V-model does not change
the fact that the integration is pushed to the very end of the development process and
still requires a lot of development and testing efforts in the very end of the development.
Using such an approach gives a closer look into the verification and later validation of the
software but does not change either the design thinking or design approach of building the
CubeSat software. Generally, both “waterfall” and “V-model” are widely criticized by the
software industry due to their rigidity, simplicity, inflexibility, and linearity. It is important
to emphasize that the use of the V-model does not improve the speed of the integration
simplicity of the source code, it just helps to use more time for the design considerations at
the different abstraction levels.

1.6. Era of Agile

However, nowadays, the majority of the so-called “big IT” software development
teams and specialists are eager to use iterative and/or incremental software development
models, i.e., based on agile processes, for example, SCRUM (see Figure 4 or Kanban).



Computation 2023, 11, 182 7 of 31

Figure 4. Typical agile-like SCRUM SDLC.

Such an approach means that the whole CubeSat software is broken down into chunks
of “features” (functions) that are ready to be implemented, tested, and demonstrated as
a separate stand-alone function. Looking into the research “Using the Event-B Formal
Method for Disciplined agile Delivery of Safety-critical Systems” [33] available, it became
clear that there are many alternations of this classical SCRUM process that fit better into
mission-critical software development that might be more applicable for the CubeSat
projects and shall be further investigated. One such example is a development framework
called disciplined agile (DA) and presented by the Figure 5, which represents the process
parts shown below.

Figure 5. Disciplined agile as the mission-critical systems development response to the classical
SCRUM process.

Based on the statements and found problems of the waterfall and the advantages of
the agile (SCRUM, DA) development models, the authors suggest moving the CubeSat
software development and overall integration of the satellite to the agile model while the
hardware parts mature via the classical waterfall model. Accordingly, the authors suggest
using the hybrid model, which is becoming commonly used in embedded electronics
development. A simple visualization of the benefits is shown below in Figure 6.

Figure 6. Comparison of the agile and waterfall development models and their value delivery.



Computation 2023, 11, 182 8 of 31

As it could be seen, the main difference is shown by the question mark symbol. It
emphasizes the problem of too late verification of the entirely developed software, rather
than testing smaller but completed deliveries (as shown in the Agile part of the figure).

1.7. Accompanying Development Model and Software Life-Cycle with Proper Software Structure

So, what are the problems that are identified by the authors? Two central problems: the
waterfall development process, and monolithic and tightly coupled onboard software. How
can these two be cracked? We have already addressed the process side by introducing the
“hybrid” development model that combines the strengths of the agile and waterfall processes.

The next problem that was identified and addressed by the authors was the problem
of a software design approach that was biased towards a monolithic piece of software
being developed. The authors propose to address relatively newly introduced embedded
software principles, such as microservices architecture and further containerization. These
are good candidates for providing a counter-solution to the monolithic, tightly coupled,
and ”waterfall”-based developed software.

1.7.1. Microservices

A microservice is a single service built to accommodate an application feature. It
handles discrete tasks within a microservices architecture. Each microservice communicates
with other services through simple interfaces to solve business problems. The key benefits
of the microservices are that they are:

• Independently deployable;
• Loosely coupled;
• Organized around business capabilities;
• Owned by a small team.

As can be easily seen, all of the problems identified in Section 1.3 of a typical CubeSat
software are addressed by the nature of the microservice. The idea of using microservices
architecture opens up the migration options for the initially monolithic software via the
use of the “strangler application” design pattern. The process of such migration is called
“Strangling the monolith”. The industry of software development is rapidly booming in
using such an approach, and there are numerous metrics and tools related to this topic [34].

1.7.2. Microservices Architecture

What is the microservices architecture? It is a development concept in which the entire
software to be built is broken down into several small, independent, and loosely coupled
services that communicate with each other. The communication between those microser-
vices can be carried out using HTTP, WebSockets, AMQP, or even MQTT. The simplest way
to explain the difference between microservice-based and monolithic architectures is to
demonstrate the following Figure 7:

Figure 7. Monolithic vs. microservice-based software structure.



Computation 2023, 11, 182 9 of 31

Obviously, connecting such a decomposition approach to the idea of a SCRUM-like
decomposed process when developing smaller fractions/modules of the CubeSat software
makes perfect sense. Practically, this will allow the CubeSat teams to develop different
software modules simultaneously, isolate quality issues and errors in a particular module
of the software, reuse someone’s else modules in a much simpler manner, and use a bigger
development team to shorten the time of the development. Having said that, the one
big limitation still remains unsolved is the non-continuous and low-to-medium-skilled
development teams. Microservices architecture is based on a strong and well-designed
message and event exchange structure, where the typical undergraduate and postgraduate
students are simply not skilled enough to reach the interfacing agreement.

1.8. Introducing Containerization

What containerization in a broad sense is? According to IBM [35], one of the frontiers
of developing the concept and bringing it to the industry, containerization is the packaging
of software code with just the operating system (OS) libraries and dependencies required
to run the code to create a single lightweight executable—called a container—that runs
consistently on any infrastructure [36]. More portable and resource-efficient than virtual
machines (VMs), containers have become the “de facto” compute units of modern cloud-
native applications and successfully moving to smaller hardware platforms. Containers
are called “lightweight“ because they share the OS kernel of the machine and do not have
to load an OS for each application. It makes containers smaller and faster than virtual
machines and allows more containers to run on the same computing capacity. For the
embedded microcontrollers (smaller than a CPU), the classical virtualization would not
fly anyway as the resources (Flash, RAM) are still too low for the completely separate
VM(s). The main benefit of containerization is that it enables applications to be “written
once (on one platform) and run anywhere”. This means that developers can create and
deploy applications faster and more securely across different platforms and clouds without
worrying about bugs or vendor lock-in. Containerization also offers other advantages
such as fault isolation and tolerance [37], easy management, simplified security, and more.
Perhaps the most essential thing is that containerization allows applications to be truly
portable and platform-independent, i.e., “written once and run anywhere”. This portability
accelerates development; prevents cloud vendor lock-in; and offers other notable benefits
such as fault isolation, ease of management, and simplified security. As the importance
of embedded applications is rising, hardware capacity is increasing—the development
of the microservice architecture and packing of it into containers on embedded systems
is booming. There are many examples of home-baked frameworks that are increasingly
changing developers’ mindsets into microservices-based architectures [38]. Having ana-
lyzed the mentioned approaches, the authors suggest using the containerization approach
as shown in Figure 8 and implementing the typical onboard software tasks as microservices
and placing those among the containers. To be able to do so, the first step would be the
selection of a proper container engine (or so-called framework).

Figure 8. Microservices, implementing a dedicated onboard function, that is distributed to containers.



Computation 2023, 11, 182 10 of 31

1.9. Available Containerization Frameworks

During the analysis of the IEEE Xplore, Scope, and Google Scholar papers on the matter
of embedded software containerization, the following container engines were found:

• MicroPython;
• Jerry Script;
• Singh;
• Velox VM;
• Toit;
• Femto containers;
• Wasm3;
• Golioth;
• Others.

After conducting a top-level analysis and reviewing it, it became clear that each
container engine is more or less based on the WebAssembly principles of real-time code
translation. WebAssembly was initially developed by the W3C organization as the trans-
lator for web-technologies and applications. Later on, because of its popularity, it be-
came a good choice for the cross-platform engine for non-web applications too. Partially
its popularity is driven by the support of the native to the typical embedded software
programmings languages such as C, C++, and Rust. As of today, there are more than
35 implementations of high-performance WebAssembly machines, roughly 50% of which
are actively supported and continue their lifecycle. During the desktop analysis of the
above-mentioned WebAssembly implementations of the container engines, the main focus
was on three things: ease of migration and adoption of the most commonly used hard-
ware platforms; the existence of already completed ports for easy-to-get COTS hardware
platforms; and, last but not least, the royalty-free nature of the engine, so the concept of
COTS components of CubeSats is still kept. As the basis of the solution of the container’s
engine implementation on the typical CubeSat hardware, the WASM3 [39] interpreter en-
gine was chosen. WASM3 was initially created to deliver outstanding performance for the
low-performance targets and thus fully supports the energy-efficient and low-performance
hardware of CubeSats. The other neither qualitative nor quantitative selection factor was
that WASM3 was developed and actively supported in Ukraine. This will allow the authors
to establish a direct connection with the WASM3 development team and by this ensure
further work on the use of containers for the CubeSat applications. To be able to better
understand how containerization could help CubeSat development teams, let us look
into a typical CubeSat system structure and identify the conceptual way of implementing
containers for CubeSat projects.

1.10. Combining Benefits of Microservices and Containeriztion

So far, we have solved a monolithic “one-does-it-all” code problem and have moved
to a set of microservices, that represent a standalone function of the onboard software.
The next step that is proposed to be solved is the proper “isolation“ of the microservices so
they are not influencing each other’s stability, ensuring reliability and allowing for faster
integration. The authors suggest solving this via the distribution of the microservices to a
set of containers. Each container will consist of a much smaller sub-set of the microservices
related to the high-level business function of a CubeSat, i.e., “communication” or “altitude
determination and control module”.

1.11. Hidden but Yet Important Advantages of Containerization

In a typical CubeSat project, the hardware and the test stand where the software and
overall integration testing are carried out are very scarce resources. Therefore, there are a
few hidden yet important benefits of the use of containerization:



Computation 2023, 11, 182 11 of 31

• The ability to develop and test the container on a regular PC, rather than CubeSat
hardware. It minimizes the need for the test stand availability and minimizes the risk
of breaking the working hardware;

• Full isolation from the other developers with different (lower) qualifications in a frame
of the particular container scope. This means that software errors and malfunctions in
other containers will not destroy your own work;

• Easier profiling of a container performance as the developer may just stop other
containers at any given point in time.

2. Materials and Methods
2.1. Finding a Unique and Proper Combination of Development Approach and Containerization
with Micro-Services Use

In order to evaluate the possibility of using the WASM3 container and microservices-
based software, it is essential to evaluate the technology’s ability to meet the requirements
of real-time systems, that is, to guarantee the execution of a specific task at a predeter-
mined time. Compliance with real-time requirements is a mandatory component of every
dependability system. It is especially true of the nanosatellite software when the loss of
communication or power supply leads to the loss of the entire satellite. In this part, it
is necessary to consider the system’s compliance with two requirements: soft and hard
real-time. Soft real-time is when, on average, the execution time of the algorithm does
not exceed predetermined limits; hard is when each violation is a possible reason for the
disruption of the system as a whole. The work aims to estimate the overhead and addi-
tional costs of meeting the performance requirements of software algorithms, both from the
point of view of soft and hard real-time requirements, if the software architecture includes
microservices based on the WASM3 interpreter. Microservices provide more opportunities
for the independent implementation of individual student projects and their subsequent
integration into a single whole, but the question of how much such an opportunity will
cost remains unanswered. It is already clear that the transition from a program compiled
and tailored for a specific processor to a program interpreted by a shell requires additional
processor time due to additional costs and limited available onboard energy. In order to
meet the evaluations required, the next part of the article will provide readers with the
essence of the CubeSat structure. Such an overview will show us the typical approaches to
a CubeSat software decomposition and implementation, and the author’s proposal on the
new method of implementing the onboard software based on WASM3 containers with the
microservices-based software modules.

2.2. Typical CubeSat Software Structure

To better understand and break down a problem, let’s look into a typical CubeSat
build shown in Figures 9 and 10, and how the declaration of the author’s techniques can
be used for its system and software design. A CubeSat normally consists of a few main
electronics systems:

• OBC(D): on-board computer (and data);
• ADCS: an altitude determination and control system;
• EPS: electronic power system (could include batteries);
• Comm (or COM): communication system;
• Payload: the “mission” of the CubeSat that brings business value to its creators;
• Propulsion: a propulsion system that is typical for a more advanced and bigger

(6U+) CubeSats.

Additionally, there are a few non-electronic systems (which are out of the scope of this
document): solar panels, batteries, antenna(s), and the mechanical structures around which
all the modules are assembled.



Computation 2023, 11, 182 12 of 31

Figure 9. Typical CubeSat structure and components.

Figure 10. Top-Level typical CubeSat component structure.

In some pretty complex CubeSat build-ups, OBC(D) and ADCS could be combined
and called CDHM, which stands for the command and data handling module. This article
will address this module in particular as the most software-heavy and complex of any
CubeSat project. If we look into a typical method of implementing the software for such a
CubeSat platform, there are two main approaches:

• Approach A: An OBC/CDHM only coordinates the data exchange between the rest of
the system components, where each component has its firmware and program. See
Figure 11

• Approach B: An OBC/CDHM does it all. All other components are as “dummy” as
possible. See Figure 12;

To be able to perform the mission, both approaches A and B shall basically implement
the same software. However, the number of CubeSat components and sub-systems will
impose different complexities on the software, its structure, and its data footprints. The
typical OBC/CDHM software (both approaches A and B) could be represented as the
following main software building blocks, where the OBC/CDHM handles the main control
block and other modules represent different system and payload functions.

The CDHM normally represents either a server in a client-server architecture of
CubeSat software, or a central data and task scheduler in a more classic OS-like CubeSat
system architecture. Further breakdown of the data flows and the software components of
a typical CubeSat can be represented as follows:



Computation 2023, 11, 182 13 of 31

Figure 11. Approach A: CubeSat on-board software and module structure.

It is reasonable to assume that it is a typical Approach A system architecture that re-
quires several comparable calculation power processors/microcontrollers to be embedded
in each system board. Therefore, the energy consumption, complexity, cost, and, last but
not least, the probability of a hidden error are at their maximum. This is also a very clear
example where each separate component of a CubeSat will be designed in a monolithic
manner. Making a separate system component (especially one that runs on separate hard-
ware) in a monolithic manner is rather typical for the industry. The big problem with such
distributed yet monolithic systems comes with the integration tests complexity, where the
bug-finding efforts and time are very costly and the overall project is very much pressed
for time.

Instead of such a monolithic system architecture, the software can be designed differ-
ently by the use of containerization and microservices. Instead of having many smaller
different monolithic components in the system that are compressed into a big one, the busi-
ness and control logic of those modules is spread towards the containers and corresponding
microservices. Each container can represent the particular system component, and in that
way, strictly breakdown functions across containers. The suggested approach is represented
below in a Figure 12 (Approach B).

Figure 12. Approach B: The proposed container-based software structure of a CubeSat on-board software.



Computation 2023, 11, 182 14 of 31

In this approach, the utilization of the centralized EventHub and EventBus, which
is used for the data and commands exchange, can be enhanced by the introduction of
the “exposed” EventBus to the communication modules of the other CubeSat components.
In this way, the whole system control can be synchronized and orchestrated by the “Saga”
pattern or similar. At the same time, such an approach solves the problem of complex and
non-uniformed multiple firmware files over the different modules and thus reduces overall
project complexity. The majority of the development work moves to the OBC/CDHM side
and requires a system architecture response to make it easier to handle, i.e., by using design
patterns like “Saga” and adopting a proper database. Surely, the modern approach of using
RTOSes, aka FreeRTOS, embOS, and Salvo, allows for a proper abstraction level and the
modularity of the complex OBC/CDHM to be designed properly too. However, the main
problem of the monolithic firmware, which is still the industry practice, remains active.
The monolithic implementation approach of such logically broken down and modularized
software brings challenges that are typical for both waterfall development models and
overall software quality complexity and cost. Normally, these challenges are integration
complexity and time, the many iterations of the re-design of the data exchange and APIs,
complex bug-finding and fixing, etc.

2.3. Implementing a Concept CDHM Software on WASM3 Container

So, what are the proposed new methods of developing CubeSat software with the
intent of using SCRUM-like development life-cycle and containerization? They are:

• Each container represents either one functional block of the CubeSat (ADCS, EPS, etc.)
and/or the separate OBC or payload function, see Figure 13;

• During the development and V&V process of each separate container, the separate
team or the team member develops each separate container;

• Due to the fact that the containers are cross-platform, the verification and development
of each separate container is carried out at the PC and not at the CubeSat hardware.

Figure 13. A CubeSat CDHM containerization concept.

As the basis of the solution of the container’s engine implementation on the typical
CubeSat hardware, the WASM3 interpreter engine was chosen. To be able to run WASM3
on the embedded target of any type, the following minimal infrastructure is to be ported:

• The file system: this is required to store containers and be able to upload those
for execution;

• CLI (command line interface): This allows manipulation with the containers (run,
stop, load, etc.) and allows the user to see the system parameters in real-time;

• The HTTP server: This will allow for the simple and easy-to-implement OTA (over-
the-air) transfer of the container images from a PC to the embedded target (for the
communication with the ground stations, AX.25 over HTTP can be used).



Computation 2023, 11, 182 15 of 31

As the typical RTOS for the CubeSats is the FreeRTOS by Amazon, the overall archi-
tecture of the solution looks as follows (Figure 14):

Figure 14. A CubeSat CDHM software architecture based on WASM3 and FreeRTOS.

2.4. Porting WASM3 to the FreeRTOS-Based Environment

The so-called “porting“ process is a process of developing and adapting a selected
piece of software to the selected hardware platform and later-on to the selected RTOS.
In our case, there were already embedded ports provided by the community via the GitHub
repository. The most relevant existing port for our tasks was the ESP32-IDF one, and it
was chosen to be used as a basis for further experimental work in this article. During the
porting, the following assumptions were made:

1. Each container is running as a separate FreeRTOS task;
2. Containers are running with the priority and scheduling by Round Robin principles

as for the FreeRTOS;
3. The File System is used for the container storage and each container is uploaded to

RAM before its use;
4. The overall porting is carried out by the use of MCU-specific API and FreeRTOS-

specific API.

For the file-system implementation, the littleFS embedded low-footprint filesystem
was selected. The littleFS is widely used across the industry and is the main implementation
candidate for CubeSat use as well. All of the container images are permanently stored
on the file system and thus are ready for operation right after the system boot. For the
sake of the remote (from the Earth) container upload (Figure 15), a simplified HTTP/FTP
server could be considered and thus used further in this article. Schematically, the container
upload and corresponding RTOS task start/stop sequence can be shown as follows:

The sequence diagram above assumes that only one container is running at one single
moment of time. If the container already exists on the file system, only the “START”
command is required to be altered (See Figure 16).

In the case of a CubeSat implementation, such a command can arrive via any of the
telemetry communication channels or from the system scheduler rather than the container
uploading interface only (GroundStation via HTTP/FTP server here).



Computation 2023, 11, 182 16 of 31

Figure 15. A WASM3 container upload to the CDHM.

Figure 16. A WASM3 remote container control at the CDHM (START/STOP commands).

2.5. Selection of the Hardware Platforms and Algorithms for the Performance Tests

For the performance testing, two platforms were chosen.

1. The most popular in the open STEM-like hardware projects is Pi Pico by Raspberry
(Figure 17), based on an RP2040 processor [40], see Figure 18. Core type: ARM
Cortex-M0+, whose calculation performance is roughly 130 DMIPS.

2. The CDHM platform “Falco SBC 1.0” (see Figure 19), which was developed by Olek-
sandr Liubimov [41] for the Ph.D. thesis, will be used for the upcoming “KhAI-
1 spacecraft” 3U CubeSat. The platform is based on the Microchip (Atmel) AT-
SAMV71Q21 [42,43] and shown in Figure 20. The core type is ARM Cortex-M7 and
it’s expected calculation performance is roughly 600 DMIPS.

Figure 17. The COTS Raspberry Pi Pico Dev. kit.



Computation 2023, 11, 182 17 of 31

Figure 18. The Pi Pico processor RP2040.

Figure 19. The Falco SBC/CDHM component.

Figure 20. The Falco SBC/CDHM microprocessor ATSAMV71Q21.

At the same time, typical algorithms for the embedded software were used for the
benchmarking, namely:

• Fast Fourier transform (FFT);
• bubble sort;
• The CRC-16 checksum calculation algorithm.



Computation 2023, 11, 182 18 of 31

For the selected algorithms, the following algorithm’s complexity in “O-notation”
is expected:

The main reason for measuring performance here is to see how much overhead the
two layers of abstraction (WASM3 and its middleware) bring to the proposed solution.
To determine the exact overhead, the same selected algorithms (see Table 1) were run
on a bare metal implementation, i.e., what vendors offer as low-level API + FreeRTOS
and on the code written on C/C++ and further WASM3 compiled, where the containers
execution engine is also running on FreeRTOS. The following pre-requisites were used for
the performance measurements:

1. For ensuring repeatability and to be able to properly calculate the S, SD, and AVG
times of the computation, 1000 measurements are planned for each experiment;

2. For each algorithm, 3 different sizes of data will be used. This will be mainly
used to prove that the implementation is carried out in a proper manner and O-
complexity is followed;

3. All measurements will be rounded to two digits after the comma;
4. For the CRC-16 algorithm, the sets of 100, 1000, and 10,000, 32-bit signed integers will

be used;
5. For the bubble sort algorithm, the sets of 100, 500, and 1000, 32-bit signed integers

will be used bubble sort sets with the worst possible condition are used—the data
vector to be sorted was filled with numbers placed in a back-sorted order.

6. For the Fast Fourier Transform algorithm, the sets of 128, 256, and 512 samples will
be used.

Table 1. The algorithms planned for the performance tests.

Algorithm Name Time Complexity in Big O
Notation Notes

Checksum Calculation (CRC-16) O(N) Linear Time
bubble sort (worst case) O(N2) Quadratic Time
Fast Fourier Transform O(N ∗ logN) Linearithmic Time

3. Results

After the successful adoption of the algorithms to the C and C++ languages, the porting
of the code to the WASM3 containers was performed too. To obtain the results, the telemetry
channel was used in the look of a hyper-terminal, where the data of the calculation duration
were obtained via the regular “printf()” C-function. The duration of the execution of
the algorithm was obtained by using the microprocessor’s system timer with a precision
of 1 µS.

The first experiment was made on the entire implementation of pure C language and
processor-dependent APIs w/o FreeRTOS and other 3rd party libraries.

The second experiment was carried out with the written C-language container, com-
piled for the WASM3 container engine, and running under FreeRTOS. The container image
was uploaded via the SD-card image and transferred to it from the PC.

Comparative Analysis and Pre-Conclusoins

For the comparison of the two hardware platforms and native C (bare metal) versus
WASM3 on the performance of FreeRTOS containers, the test results were chosen on a given
number of test data. To provide a good graphical representation of the results (especially
for the Native C/bare-metal results), the arithmetic sum of 1000 measurements was used
as a basis for comparison.

The following size of the data sets was used for the final performance comparison:

• Sum of 1000 measurements for the CRC-16: 1000 × 32-bit signed integers;
• Sum of 1000 measurements for bubble sort: 1000 × 32-bit signed integers;
• Sum of 1000 measurements for the FFT: 512 samples.



Computation 2023, 11, 182 19 of 31

The results can be represented as the numeric data in the following Table 2 and
graphically on the Figures 21–23:

Table 2. Comparative results data at given samples per algorithm—sum of 1000 measurements. All
numbers are in ms.

Algorithm Name Rasperry Pi Pico:
Native C

Falco CDHM 0.1:
Native C

Rasperry Pi Pico:
WASM3

Falco CDHM:
WASM3

CRC-16 (1000 × 32-bit integers) 2426.82 572.71 66,075.18 15,540.95
Bubble Sort, (1000 × 32-bit integers) 291,932.8 60,856.55 6,039,676.61 1,818,025.11

Fast Fourier Transform (512 samples) 7237.35 303.79 47,259.05 13,252.53

Graphically, such a difference in three selected algorithms could be represented
as follows:

Figure 21. Comparative analysis—CRC-16 (platforms, implementations).

Figure 22. Comparative analysis—FFT (platforms, implementations).



Computation 2023, 11, 182 20 of 31

Figure 23. Comparative analysis—Bubble Sort (platforms, implementations).

For further detailed analysis please refer to Appendix A.

4. Discussion

Porting WASM3 to both hardware platforms and running and executing the tests has
brought the authors to the desired results and knowledge.

Performance: It is quite clear from Table 2 that there is a pretty visible performance
difference when running the same algorithms on the native C implementation and the
WASM3 implementation. The simple and yet true performance difference is in the range of
30 times, which means that the native C implementation is 30 times faster than the WASM3-
one. However, the reader shall remember that it is rather unfair to compare the Native C
implementation (which is very close to bare metal digital machine implementation) and the
RTOS-based high-level implementation. The obtained difference in performance in the size
of two orders (and in some cases one order) is expected and might sound big. However,
knowing the typical calculation tasks for the CubeSats, such a performance difference is
not a lifesaver and can be accepted.

Implementation Complexity: During the implementation of the algorithms to Native
C and WASM3 on the FreeRTOS platforms, it was found that the differences in the required
skill set and the speed of implementation are quite different. For the simple algorithms
bubble sort and CRC-16, the implementation was rather simple, and thus there was no
major difference in the development speed, while for the FFT implementation, it was rather
clear that the WASM3 implementation, for which the hardware capabilities are not really
taken into account, is much simpler. It was also found that the implementation by the
regular undergraduate student is very straightforward even for a student with rather basic
programming and data science skills.

Time at the Hardware and Debug: During the implementation of a Native C algorithm,
it can be seen that the hardware access was a MUST. It is very typical for embedded software
engineers to run the Debug process on a target, even for the hardware-decoupled algorithms
we used in the work. At the same time, for the WASM3 implementation, the hardware was
not a need as during the development it is clear that the cross-compilation is required to
upload the software to the target platform. So, as stipulated in the correct development
model research of this article, the demand for the hardware availability is rather low
and could help student teams to work simultaneously on the creation and debugging of
a CubeSat.



Computation 2023, 11, 182 21 of 31

Falco CDHM as the Low-cost and Powerful CubeSat Platform: One of the secondary
tasks in this work was to prove that the selected low-cost automotive grade Microchip
SAMV71Q21 (Cortex-M7) microprocessor can be a good basement for the student’s CubeSat
“KhAI-1 spacecraft” being developed by the National Aerospace University “Kharkiv
Aviation Institute”. As the results of this synthetic performance testing demonstrate a
substantial performance, the Microchip SAMV71 microprocessor is recommended for
future use. It is low-cost, automotive grade and demonstrates outstanding performance.

Future Work: During this research and experiments, quite a few conceptual and
practical questions and tasks have been raised. These topics can be stated as follows:

• Further development of the ported WASM3 engine so it can be further optimized and
support the concurrent container’s execution. This shall allow simple yet powerful
orchestration, for instance, on the basis of event-driven architecture (EDA) and/or the
use of the “Saga” design pattern;

• Further performance optimization shall be carried out, and the real performance
penalty overhead sources shall be found;

• Research and implement (if required) safe yet performance-optimal hardware low-
level access to the microprocessor’s peripherals. The existing implementation of
the WASM3 port does not allow that; if there is no easy way to solve it via the
WASM3 approach, propose a new one that will be a combination of HAL, FreeRTOS,
and WASM3 facilities;

• Research low-power modes of such a WASM3 implementation of a CubeSat CDHM
as the power consumption requirements for the spacecraft are very constrained;

• Research and implement hardware debug facilities that will help to find and fix
complex hardware-related issues when the software to be verified is fully “packed”
into containers.

Author Contributions: Conceptualization, O.L. and I.T.; methodology, O.L.; software, O.L.; validation,
L.V. and O.L.; formal analysis, O.L.; investigation, O.L.; resources, L.V.; data curation, I.T.; writing—
original draft preparation, L.V.; writing—review and editing, O.L., I.T. and V.P.; visualization, L.V.; and
supervision, V.P. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: All of the archived datasets analyzed and generated during the study,
as well as the source code for the experiments, can be obtained upon request.

Acknowledgments: The authors acknowledge the help of engineering company Ektos-Ukraine LLC
for their support with borrowing hardware platforms and helping with the porting toolchain setup and
fine-tuning. Visit https://ektos.net/ (accessed on 14 August 2023) for more details.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Detailed Performance Test Results

The following tests were performed for both of the selected hardware platforms (Falco
OBC/CDHM, based on Microchip SAMV71Q21, and Raspberry Pi Pico, based on RP2040)
and for both Native C (Bare Metal) and for the WASM3 + FreeRTOS container implementation:

• For the CRC-16 Checksum calculation algorithm with 32-bit signed integers: 100/1000/
10,000 elements;

• For the Fast Fourier Transform: 128/256/512 samples;
• For bubble sort (with the worst case condition, back-sorted) with 32-bit signed integers:

100/500/1000 elements.

For each algorithm, 1000 measurement cycles were made. This was done to increase
the precision of the measurements, especially with the RTOS-based implementation where,
due to the system task scheduling, you normally see a relatively high measurement jitter.
To be able to look into the quality of the obtained statistical data and its dispersion, σ and
σ2 were calculated for each data set of 1000 measurements. In order to compare potentially

https://ektos.net/


Computation 2023, 11, 182 22 of 31

small numbers for the small amount of elements data sets, there was a decision to compare
the arithmetical sum of 1000 measurements time. The following sub-sections will represent
the obtained results.

Appendix A.1. Falco OBC/CDHM, Native C-SAMV71 @ 300 Mhz

For the Microchip SAMV71, the following results were obtained:

Appendix A.1.1. Falco OBC/CDHM, Native C, CRC-16

Figure A1. Native C/Falco CDHM: CRC-16 performance at different numbers of test samples,
1/1000 measurements.

Table A1. Native C/Falco CDHM test results: CRC-16 Algorithm.

Data-Set Size
(Elements) Min (ms) Max (ms) M (ms) σ2 σ ∑ (ms)

100 0.058 0.058 0.058 0.0 0.0001 58.33
1000 0.572 0.573 0.573 0.0 0.0001 572.71

10,000 5.737 5.745 5.742 0.0 0.0008 5741.47

Appendix A.1.2. Falco OBC/CDHM, Native C, and FFT

Disclaimer: It is important to mention that Falco’s microprocessor, Atmel SAMV71Q21,
has an FPU (floating-point unit) that is used for floating-point arithmetic. As the FFT
implementation contains both the float data type and trigonometry functions as sin and cos,
where the floating point arithmetic is used, a performance much stronger than RP2040’s
performance was expected.



Computation 2023, 11, 182 23 of 31

Figure A2. Native C/Falco: FFT performance at different numbers of test samples, 1/1000 measurements.

Table A2. Native C/Falco CDHM test results: FFT algorithm.

Data-Set Size
(Samples) Min (ms) Max (ms) M (ms) σ2 σ ∑ (ms)

128 0.0598 0.072 0.06 0.0 0.0004 60.44
256 0.134 0.145 0.13 0.0 0.0005 135.46
512 0.302 0.315 0.30 0.0 0.0005 303.79

Appendix A.1.3. Falco OBC/CDHM, Native C, and Bubble Sort

Figure A3. Native C/Falco: bubble sort performance at different numbers of test samples, 1/1000 mea-
surements.



Computation 2023, 11, 182 24 of 31

Table A3. Native C/Falco CDHM test results: Bubble sort.

Data-Set Size
(Elements) Min (ms) Max (ms) M (ms) σ2 σ ∑ (ms)

100 0.6082 0.6089 0.6083 0.0 0.0 608.29
500 15.21 15.22 15.21 0.0 0.0003 15,214.08
1000 60.86 60.86 60.86 0.0 0.0002 60,856.55

Appendix A.2. Raspberry Pi Pico, Native C: RP2040 @ 133Mhz

For the Raspberry Pi Pico, the following results were obtained (Statistica analysis
Figure A4, look Table A4): (Please bear in mind that due to the limitations of the system
timer resolution, the data precision is lower by a factor of one digit).

Appendix A.2.1. Raspberry Pi Pico, Native C, and CRC-16

Figure A4. Native C/Pi Pico: CRC-16 performance at different numbers of test samples, 1/1000 mea-
surements.

Table A4. Native C/Pi Pico test results: CRC16 Algorithm.

Data-Set Size
(Elements) Min (ms) Max (ms) M (ms) σ2 σ ∑ (ms)

100 0.243 0.267 0.2432 0.0 0.0009 243.23
1000 2.426 2.451 2.4268 0.0 0.0009 2426.82

10,000 24.243 24.267 24.2434 0.0 0.0009 24,243.43



Computation 2023, 11, 182 25 of 31

Appendix A.2.2. Raspberry Pi Pico, Native C, and FFT

Figure A5. Native C/Pi Pico: FFT performance at different numbers of test samples,
1/1000 measurements.

Table A5. Native C/Pi Pico test results: FFT algorithm.

Data-Set Size
(Elements) Min (ms) Max (ms) M (ms) σ2 σ ∑ (ms)

128 1.384 1.78 1.385 0.0 0.0126 1385.16
256 3.194 3.591 3.195 0.0 0.0126 3195.08
512 7.236 7.633 7.237 0.0 0.0126 7237.35

Appendix A.2.3. Raspberry Pi Pico, Native C, and bubble Sort

Figure A6. Native C/Pi Pico: bubble sort performance at different numbers of test samples,
1/1000 measurements.



Computation 2023, 11, 182 26 of 31

Table A6. Native C/Pi Pico test results: bubble sort.

Data-Set Size
(Elements) Min (ms) Max (ms) M (ms) σ2 σ ∑ (ms)

100 2.913 2.937 2.914 0.0 0.0008 2913.947
500 72.966 72.991 72.967 0.0 0.0009 72,966.8
1000 291.932 291.957 291.933 0.0 0.0009 291,932.8

Appendix A.3. Falco OBC/CDHM, WASM3, Single Container Configuration: SAMV71 @
300 MHz

For the Microchip SAMV71 and WASM3, the following results were obtained:

Appendix A.3.1. Falco OBC/CDHM, WASM3, and CRC-16

Figure A7. WASM3/Falco: CRC-16 performance at different numbers of test samples,
1/1000 measurements.

Table A7. WASM3/Falco CDHM: CRC16 Algorithm, 1000 measurements.

Data-Set Size
(Elements) Min (ms) Max (ms) M (ms) σ2 σ ∑ (ms)

100 1.55 1.56 1.55 0.0 0.002 1554.29
1000 15.52 15.56 15.54 0.0001 0.007 15,540.95

10,000 155.40 155.48 155.44 0.0002 0.015 155,436.47



Computation 2023, 11, 182 27 of 31

Appendix A.3.2. Falco OBC/CDHM, WASM3, and FFT

Figure A8. WASM3/Falco: FFT performance at different numbers of test samples,
1/1000 measurements.

Table A8. WASM3/Falco CDHM: FFT algorithm, 1000 measurements.

Data-Set Size
(Elements) Min (ms) Max (ms) M (ms) σ2 σ ∑ (ms)

128 2.58 2.64 2.61 0.0001 0.009 2607.25
256 5.85 5.95 5.89 0.0002 0.013 5893.53
512 13.18 13.32 13.25 0.0004 0.02 13,252.53

Appendix A.3.3. Falco OBC/CDHM, WASM3, and Bubble Sort

Figure A9. WASM3/Falco: bubble sort performance at different numbers of test samples, 1/1000
measurements.



Computation 2023, 11, 182 28 of 31

Table A9. WASM3/Falco test results: bubble sort.

Data-Set Size
(Elements) Min (ms) Max (ms) M (ms) σ2 σ ∑ (ms)

100 18.19 18.39 18.29 0.001 0.037 18,287.40
500 450.82 453.99 452.52 0.29 0.54 452,521.56
1000 1814.90 1820.7 1818.03 0.86 0.93 1,818,025.11

Appendix A.4. Raspberry Pi Pico, WASM3, and Single Container Configuration: RP2040 @ 133 MHz

For the Raspberry RP2040 and WASM3, the following results were obtained:

Appendix A.4.1. Raspberry Pi Pico, WASM3, and CRC-16

Figure A10. WASM3/Pi Pico: CRC-16 performance at different numbers of test samples,
1/1000 measurements.

Table A10. WASM3/Pi Pico test results: CRC16 Algorithm, 1000 measurements.

Data-Set Size
(Elements) Min (ms) Max (ms) M (ms) σ2 σ ∑ (ms)

100 6.62 6.664 6.625 0.0 0.0024 6625.76
1000 66.067 67.891 66.075 0.0033 0.0576 66,075.18

10,000 660.53 660.71 660.58 0.0011 0.0334 660,580.33



Computation 2023, 11, 182 29 of 31

Appendix A.4.2. Raspberry Pi Pico, WASM3, and FFT

Figure A11. WASM3/Pi Pico: FFT performance at different numbers of test samples,
1/1000 measurements.

Table A11. WASM3/Pi Pico test results: FFT algorithm, 1000 measurements.

Data-Set Size
(Elements) Min (ms) Max (ms) M (ms) σ2 σ ∑ (ms)

128 9.124 9.215 9.14 0.0001 0.0074 9140.41
256 20.851 20.939 20.14 0.0 0.0069 20,868.49
512 47.238 47.321 47.259 0.0001 0.0079 47,259.05

Appendix A.4.3. Raspberry Pi Pico, WASM3, and Bubble Sort

Figure A12. WASM3/Pi Pico: Bubble sort performance at different numbers of test samples,
1/1000 measurements.



Computation 2023, 11, 182 30 of 31

Table A12. WASM3/Pi Pico test results: bubble sort.

Data-Set Size
(Elements) Min (ms) Max (ms) M (ms) σ2 σ ∑ (ms)

100 60.86 60.91 60.87 0.0 0.0057 60,873.67
500 1511.15 1511.19 1511.16 0.0 0.0058 1,511,161.81
1000 6039.66 6039.71 6039.68 0.0 0.0058 6,039,676.61

References
1. CubeSat.org. Cubesat Design Specification Rev 14.1 (by the CubeSat Program). 2022. Available online: https://www.cubesat.

org/cubesatinfo (accessed on 15 April 2023).
2. Cappelletti, C.; Robson, D. 2-CubeSat missions and applications. In Cubesat Handbook; Academic Press: Cambridge, MA, USA,

2021; pp. 53–65. [CrossRef]
3. Shkolnik, E.L. On the verge of an astronomy CubeSat revolution. Nat. Astron. 2018, 2, 374–378. [CrossRef]
4. Crusan, J.; Galica, C. NASA’s CubeSat Launch Initiative: Enabling broad access to space. Acta Astronaut. 2019, 157, 51–60.

[CrossRef]
5. ESA. European Space Agency. Fly Your Satellite Program Intro. 2018. Available online: https://www.esa.int/Education/

CubeSats_-_Fly_Your_Satellite/Fly_Your_Satellite!_programme (accessed on 22 August 2023).
6. CalPoly. P-POD User Guide. California Polytechnic State University. 2014. Available online: https://static1.squarespace.

com/static/5418c831e4b0fa4ecac1bacd/t/5806854d6b8f5b8eb57b83bd/1476822350599/P-POD_MkIIIRevE_UserGuide_CP-
PPODUG-1.0-1_Rev1.pdf (accessed on 24 August 2023).

7. Brycetech. Smallsats by the Numbers 2023. 2023. Available online: https://brycetech.com/reports/report-documents/Bryce_
Smallsats_2023.pdf (accessed on 5 June 2023).

8. Kang, J.; Gregory, J.; Temkin, S.; Sanders, M.; King, J. Creating Future Space Technology Workforce Utilizing CubeSat Platforms:
Challenges, Good Practices, and Lessons Learned. In Proceedings of the AIAA Scitech 2021 Forum, Virtual Event, 11–15 & 19–21
January 2021; pp. 1–12. [CrossRef]

9. EXA. Cubesat Market. KRATOS 1U Platform. 2021. Available online: https://www.cubesat.market/kratos1uplatform (accessed
on 26 August 2023).

10. Reznik, S.; Reut, D.; Shustilova, M. Comparison of geostationary and low-orbit “round dance” satellite communication systems.
IOP Conf. Ser. Mater. Sci. Eng. 2020, 971, 052045. [CrossRef]

11. Swartwout, M. Sant Louis University “Cubesat Database”. 2022. Available online: https://sites.google.com/a/slu.edu/
swartwout/cubesat-database (accessed on 5 June 2023).

12. Kulu, E. NewSpace Index “Nanosats Database”. 2022. Available online: https://www.nanosats.eu/database (accessed on 5 June 2023).
13. NASA. NASA CubeSat 101: Basic Concepts and Processes for First-Time CubeSat Developers. 2018. Available online: https:

//www.nasa.gov/sites/default/files/atoms/files/nasa_csli_cubesat_101_508.pdf (accessed on 25 June 2023).
14. El Allam, A.K.; Jallad, A.H.M.; Awad, M.; Takruri, M.; Marpu, P.R. A Highly Modular Software Framework for Reducing

Software Development Time of Nanosatellites. IEEE Access 2021, 9, 107791–107803. [CrossRef]
15. Bocchino, R.L., Jr.; Canham, T.K.; Watney, G.J.; Reder, L.J.; Levison, J.W. F Prime: An Open-Source Framework for Small-Scale

Flight Software Systems. In Proceedings of the SSC-18-XII-04 32nd Annual AIAA/USU Conference on Small Satellites, Logan,
UT, USA, 4–9 August 2018; pp. 110–119.

16. Paiva, D.; Lima, R.; Carvalho, M.; Mattiello-Francisco, F.; Madeira, H. Enhanced software development process for CubeSats to
cope with space radiation faults. In Proceedings of the 2022 IEEE 27th Pacific Rim International Symposium on Dependable
Computing (PRDC), Beijing, China, 28 November–1 December 2022; pp. 78–88. [CrossRef]

17. Liubimov, O.; Turkin, I. Data Model and Methods for Ensuring the Reliability and Relevance of Data for the CubeSat Projects. In
Proceedings of the 2022 12th International Conference on Dependable Systems, Services and Technologies (DESSERT), Athens,
Greece, 9–11 December 2022; pp. 1–7. [CrossRef]

18. Goyal, T.; Aggarwal, K. Simulator for Functional Verification and Validation of a Nanosatellite. In Proceedings of the 2019 IEEE
Aerospace Conference, Big Sky, MT, USA, 2–9 March 2019; pp. 1–8. [CrossRef]

19. Batista, C.L.G.; Martins, E.; de Fátima Mattiello-Francisco, M. On the use of a failure emulator mechanism at nanosatellite
subsystems integration tests. In Proceedings of the 2018 IEEE 19th Latin-American Test Symposium (LATS), Sao Paulo, Brazil,
12–14 March 2018; pp. 1–6. [CrossRef]

20. Paiva, D.; Duarte, J.M.; Lima, R.; Carvalho, M.; Mattiello-Francisco, F.; Madeira, H. Fault injection platform for affordable
verification and validation of CubeSats software. In Proceedings of the 2021 10th Latin-American Symposium on Dependable
Computing (LADC), Florianópolis, Brazil, 22–26 November 2021; pp. 1–11. [CrossRef]

21. ISO/IEC 15408-1:2022; Information Security, Cybersecurity and Privacy Protection—Evaluation Criteria for IT Security—Part 1:
Introduction and General Model. International Organization for Standardization (ISO): Geneve, Switzerland, 2022. Available
online: https://www.iso.org/standard/72891.html (accessed on 26 August 2023).

https://www.cubesat.org/cubesatinfo
https://www.cubesat.org/cubesatinfo
http://doi.org/10.1016/B978-0-12-817884-3.00002-3
http://dx.doi.org/10.1038/s41550-018-0438-8
http://dx.doi.org/10.1016/j.actaastro.2018.08.048
https://www.esa.int/Education/CubeSats_-_Fly_Your_Satellite/Fly_Your_Satellite!_programme 
https://www.esa.int/Education/CubeSats_-_Fly_Your_Satellite/Fly_Your_Satellite!_programme 
https://static1.squarespace.com/static/5418c831e4b0fa4ecac1bacd/t/5806854d6b8f5b8eb57b83bd/1476822350599/P-POD_MkIIIRevE_UserGuide_CP-PPODUG-1.0-1_Rev1.pdf 
https://static1.squarespace.com/static/5418c831e4b0fa4ecac1bacd/t/5806854d6b8f5b8eb57b83bd/1476822350599/P-POD_MkIIIRevE_UserGuide_CP-PPODUG-1.0-1_Rev1.pdf 
https://static1.squarespace.com/static/5418c831e4b0fa4ecac1bacd/t/5806854d6b8f5b8eb57b83bd/1476822350599/P-POD_MkIIIRevE_UserGuide_CP-PPODUG-1.0-1_Rev1.pdf 
https://brycetech.com/reports/report-documents/Bryce_Smallsats_2023.pdf 
https://brycetech.com/reports/report-documents/Bryce_Smallsats_2023.pdf 
http://dx.doi.org/10.2514/6.2021-1437
https://www.cubesat.market/kratos1uplatform 
http://dx.doi.org/10.1088/1757-899X/971/5/052045
https://sites.google.com/a/slu.edu/swartwout/cubesat-database 
https://sites.google.com/a/slu.edu/swartwout/cubesat-database 
https://www.nanosats.eu/database
https://www.nasa.gov/sites/default/files/atoms/files/nasa_csli_cubesat_101_508.pdf
https://www.nasa.gov/sites/default/files/atoms/files/nasa_csli_cubesat_101_508.pdf
http://dx.doi.org/10.1109/ACCESS.2021.3097537
http://dx.doi.org/10.1109/PRDC55274.2022.00022
http://dx.doi.org/10.1109/DESSERT58054.2022.10018658
http://dx.doi.org/10.1109/AERO.2019.8741886
http://dx.doi.org/10.1109/LATW.2018.8347242
http://dx.doi.org/10.1109/LADC53747.2021.9672584
https://www.iso.org/standard/72891.html 


Computation 2023, 11, 182 31 of 31

22. Potii, O.; Illiashenko, O.; Komin, D. Advanced Security Assurance Case Based on ISO/IEC 15408. In Theory and Engineering of
Complex Systems and Dependability, Proceedings of the Tenth International Conference on Dependability and Complex Systems DepCoS-
RELCOMEX, Brunów, Poland, 29 June–3 July 2015; Springer International Publishing: New York, NY, USA, 2015; pp. 391–401.
[CrossRef]

23. Falco, G.; Viswanathan, A.; Santangelo, A. CubeSat Security Attack Tree Analysis. In Proceedings of the 2021 IEEE 8th
International Conference on Space Mission Challenges for Information Technology (SMC-IT), Pasadena, CA, USA, 26–30 July
2021; pp. 68–76. [CrossRef]

24. Tanaka, K. Embedded Systems: Theory and Design Methodology; IntechOpen: London, UK, 2012; pp. 101–120. [CrossRef]
25. Siewert, S.; Rocha, K.; Butcher, T.; Pederson, T. Comparison of Common Instrument Stack Architectures for Small UAS and

CubeSats. In Proceedings of the 2021 IEEE Aerospace Conference (50100), Big Sky, MT, USA, 6–13 March 2021; pp. 1–17.
[CrossRef]

26. MIL-STD-499; Military Standard: System Engineering Management. Defense Logistics Agency: Fort Belvoir, VA, USA, 2017.
Available online: http://everyspec.com/MIL-STD/MIL-STD-0300-0499/MIL-STD-499_10376/ (accessed on 26 August 2023).

27. MIL-STD-1521B; Military Standard: Technical Reviews and Audits for Systems, Equipments, and Computer Software. Defense
Logistics Agency: Columbus, OH, USA, 1995. Available online: http://everyspec.com/MIL-STD/MIL-STD-1500-1599/MIL_
STD_1521B_1503/ (accessed on 26 August 2023).

28. ISO/IEC/IEEE 15288:2023; Systems and Software Engineering—System life Cycle Processes. International Organization for Standardization
(ISO): Geneve, Switzerland, 2023. Available online: https://www.iso.org/standard/81702.html (accessed on 26 August 2023).

29. IEC 61508 Ed. 2.0 en:2010 CMV; Functional Safety of Electrical/Electronic/Programmable Electronic Safety-Related Systems—Parts
1 to 7 Together with a Commented Version (See Functional Safety And IEC 61508). International Organization for Standardization
(ISO): Geneve, Switzerland, 2021. Available online: https://webstore.ansi.org/standards/iec/iec61508eden2010cmv (accessed
on 26 August 2023).

30. IEC 62304 Ed. 1.1 b:2015; Medical Device Software—Software Life Cycle Processes. International Organization for Standardization
(ISO): Geneve, Switzerland, 2020. Available online: https://webstore.ansi.org/standards/iec/iec62304ed2015 (accessed on 26
August 2023).

31. ISO 14971:2019; Medical Devices—Application of Risk Management to Medical Devices. International Organization for
Standardization (ISO): Geneve, Switzerland, 2019. Available online: https://www.iso.org/standard/72704.html (accessed on 26
August 2023).

32. ISO 26262-6:2018; Road Vehicles—Functional Safety—Part 6: Product Development at the Software Level. International
Organization for Standardization (ISO): Geneve, Switzerland, 2018. Available online: https://www.iso.org/standard/68388.html
(accessed on 26 August 2023).

33. Edmunds, A.; Olszewska (Plaska), M.; Waldén, M. Using the Event-B Formal Method for Disciplined agile Delivery
of Safety-critical Systems. In Proceedings of the Second International Conference on Advances and Trends in Software
Engineering—SOFTENG 2016, Lisbon, Portugal, 21–25 February 2016.

34. Al-Debagy, O.; Martinek, P. Extracting Microservices’ Candidates from Monolithic Applications: Interface Analysis and
Evaluation Metrics Approach. In Proceedings of the 2020 IEEE 15th International Conference of System of Systems Engineering
(SoSE), Budapest, Hungary, 2–4 June 2020; pp. 289–294. [CrossRef]

35. IBM. What Is Containerization? 2018. Available online: https://www.ibm.com/topics/containerization (accessed on 12 April 2023).
36. IBM. Containers In the Enterprise. 2020. Available online: https://www.ibm.com/downloads/cas/VG8KRPRM (accessed on 12

April 2023).
37. Tamanaka, G.T.B.; Aroca, R.V.; de Paula Caurin, G.A. Fault-tolerant architecture and implementation of a distributed control system

using containers. In Proceedings of the 2022 Latin American Robotics Symposium (LARS), 2022 Brazilian Symposium on Robotics
(SBR), and 2022 Workshop on Robotics in Education (WRE), São Bernardo do Campo, Brazil, 18–21 October 2022; pp. 1–6. [CrossRef]

38. Wang, S.; Du, C.; Chen, J.; Zhang, Y.; Yang, M. Microservice Architecture for Embedded Systems. In Proceedings of the 2021 IEEE
5th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), Xi’an, China, 15–17 October
2021; Volume 5, pp. 544–549. [CrossRef]

39. Shymanskyy, V. WASM3 GitHub Page. 2021. Available online: https://github.com/wasm3/wasm3 (accessed on 28 June 2023).
40. RaspberryPi. RP2040 Microprocessor Page. 2020. Available online: https://www.raspberrypi.com/products/rp2040/ (accessed

on 28 June 2023).
41. Liubimov, O. Falco Engineering. 2023. Available online: https://www.falco.engineering/ (accessed on 28 August 2023).
42. Microchip. ATSAMV71Q21 Microprocessor Page. 2020. Available online: https://www.microchip.com/en-us/product/

ATSAMV71Q21 (accessed on 28 June 2023).
43. Microchip. COTS-to-Radiation-Tolerant and Radiation-Hardened Devices. 2019. Available online: https://www.microchip.

com/en-us/solutions/aerospace-and-defense/products/microcontrollers-and-microprocessors/cots-to-radiation-tolerant-
and-radiation-hardened-devices (accessed on 28 June 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/978-3-319-19216-1_37
http://dx.doi.org/10.1109/SMC-IT51442.2021.00016
http://dx.doi.org/10.5772/2339.
http://dx.doi.org/10.1109/AERO50100.2021.9438438
http://everyspec.com/MIL-STD/MIL-STD-0300-0499/MIL-STD-499_10376/ 
http://everyspec.com/MIL-STD/MIL-STD-1500-1599/MIL_STD_1521B_1503/
http://everyspec.com/MIL-STD/MIL-STD-1500-1599/MIL_STD_1521B_1503/
https://www.iso.org/standard/81702.html
https://webstore.ansi.org/standards/iec/iec61508eden2010cmv 
https://webstore.ansi.org/standards/iec/iec62304ed2015 
https://www.iso.org/standard/72704.html 
https://www.iso.org/standard/68388.html 
http://dx.doi.org/10.1109/SoSE50414.2020.9130466
https://www.ibm.com/topics/containerization
https://www.ibm.com/downloads/cas/VG8KRPRM
http://dx.doi.org/10.1109/LARS/SBR/WRE56824.2022.9995745
http://dx.doi.org/10.1109/ITNEC52019.2021.9587154
https://github.com/wasm3/wasm3
https://www.raspberrypi.com/products/rp2040/
https://www.falco.engineering/
https://www.microchip.com/en-us/product/ATSAMV71Q21
https://www.microchip.com/en-us/product/ATSAMV71Q21
https://www.microchip.com/en-us/solutions/aerospace-and-defense/products/microcontrollers-and-microprocessors/cots-to-radiation-tolerant-and-radiation-hardened-devices
https://www.microchip.com/en-us/solutions/aerospace-and-defense/products/microcontrollers-and-microprocessors/cots-to-radiation-tolerant-and-radiation-hardened-devices
https://www.microchip.com/en-us/solutions/aerospace-and-defense/products/microcontrollers-and-microprocessors/cots-to-radiation-tolerant-and-radiation-hardened-devices

	Introduction
	How Is the Software Development Complexity and Processes Addressed by the Industry?
	CubeSat Software State-of-the-Art
	Why the CubeSat Software Is Complex to Develop?
	What Programming Language and Operation System Are Used?
	How Does It Look from the Process Side?
	Era of Agile
	Accompanying Development Model and Software Life-Cycle with Proper Software Structure
	Microservices
	Microservices Architecture

	Introducing Containerization
	Available Containerization Frameworks
	Combining Benefits of Microservices and Containeriztion
	Hidden but Yet Important Advantages of Containerization

	Materials and Methods
	Finding a Unique and Proper Combination of Development Approach and Containerization with Micro-Services Use
	Typical CubeSat Software Structure
	Implementing a Concept CDHM Software on WASM3 Container
	Porting WASM3 to the FreeRTOS-Based Environment
	Selection of the Hardware Platforms and Algorithms for the Performance Tests

	Results
	Discussion
	Appendix A
	Falco OBC/CDHM, Native C-SAMV71 @ 300 Mhz
	Falco OBC/CDHM, Native C, CRC-16
	Falco OBC/CDHM, Native C, and FFT
	Falco OBC/CDHM, Native C, and Bubble Sort

	Raspberry Pi Pico, Native C: RP2040 @ 133Mhz
	Raspberry Pi Pico, Native C, and CRC-16
	Raspberry Pi Pico, Native C, and FFT
	Raspberry Pi Pico, Native C, and bubble Sort

	Falco OBC/CDHM, WASM3, Single Container Configuration: SAMV71 @ 300 MHz
	Falco OBC/CDHM, WASM3, and CRC-16
	Falco OBC/CDHM, WASM3, and FFT
	Falco OBC/CDHM, WASM3, and Bubble Sort

	Raspberry Pi Pico, WASM3, and Single Container Configuration: RP2040 @ 133 MHz
	Raspberry Pi Pico, WASM3, and CRC-16
	Raspberry Pi Pico, WASM3, and FFT
	Raspberry Pi Pico, WASM3, and Bubble Sort


	References

