
Citation: Tarkhov, D.; Lazovskaya, T.;

Antonov, V. Adapting PINN Models

of Physical Entities to Dynamical

Data. Computation 2023, 11, 168.

https://doi.org/10.3390/

computation11090168

Academic Editors: Yudong Zhang

and Francesco Cauteruccio

Received: 30 June 2023

Revised: 9 August 2023

Accepted: 23 August 2023

Published: 1 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

computation

Article

Adapting PINN Models of Physical Entities to Dynamical Data
Dmitriy Tarkhov , Tatiana Lazovskaya * and Valery Antonov

Department of Higher Mathematics, Peter the Great St. Petersburg Polytechnic University,
195251 St. Petersburg, Russia; dtarkhov@gmail.com (D.T.); antonovvi@mail.ru (V.A.)
* Correspondence: tatianala@list.ru

Abstract: This article examines the possibilities of adapting approximate solutions of boundary value
problems for differential equations using physics-informed neural networks (PINNs) to changes
in data about the physical entity being modelled. Two types of models are considered: PINN and
parametric PINN (PPINN). The former is constructed for a fixed parameter of the problem, while
the latter includes the parameter for the number of input variables. The models are tested on three
problems. The first problem involves modelling the bending of a cantilever rod under varying loads.
The second task is a non-stationary problem of a thermal explosion in the plane-parallel case. The
initial model is constructed based on an ordinary differential equation, while the modelling object
satisfies a partial differential equation. The third task is to solve a partial differential equation of
mixed type depending on time. In all cases, the initial models are adapted to the corresponding
pseudo-measurements generated based on changing equations. A series of experiments are carried
out for each problem with different functions of a parameter that reflects the character of changes in
the object. A comparative analysis of the quality of the PINN and PPINN models and their resistance
to data changes has been conducted for the first time in this study.

Keywords: PINN; parametric PINN; dynamical system modelling; data-driven adaptation; multi-
fidelity; mixed type equation

1. Introduction

The classical approach to mathematical modelling of real objects can be divided
into two stages. In the first stage, a mathematical model is formulated based on the
study of physical processes. Typically, this model consists of differential equations and
additional conditions such as initial or boundary conditions. The second stage involves
the construction of numerical solutions for these equations, as well as the visualisation of
solution graphs.

In cases where the differential equations and boundary conditions precisely capture
the behaviour of the simulated object, various classical methods have been developed
and extensively validated. For instance, a range of classical Runge–Kutta methods for
ordinary differential equations, combined with techniques like the shooting method for
boundary value problems [1], have been formulated. Similarly, grid-based and finite
element methods [2,3] have been devised for solving partial differential equations.

In recent years, there has been a growing emergence of a new paradigm in mathemati-
cal modelling that incorporates not only differential equations but also data to construct
mathematical models. However, it is worth noting that certain tasks traditionally consid-
ered incorrect [4] in this context have become subjects of discussion. The exploration of
this paradigm and the examination of specific tasks associated with it can be found in
various scholarly works, including [5–11]. This direction has gained additional relevance
in the current age of Industry 4.0 [12] accompanied by the widespread introduction of
Cyber–Physical Systems and Digital Twins [13]. The development of sensor technologies
makes it possible to obtain data about the object of modelling in real time and to adapt the
model to changes in a timely manner. The hybrid approach can provide a more robust and

Computation 2023, 11, 168. https://doi.org/10.3390/computation11090168 https://www.mdpi.com/journal/computation

https://doi.org/10.3390/computation11090168
https://doi.org/10.3390/computation11090168
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/computation
https://www.mdpi.com
https://orcid.org/0000-0002-9431-8241
https://orcid.org/0000-0002-3324-6213
https://orcid.org/0000-0002-4088-4707
https://doi.org/10.3390/computation11090168
https://www.mdpi.com/journal/computation
https://www.mdpi.com/article/10.3390/computation11090168?type=check_update&version=1


Computation 2023, 11, 168 2 of 27

accurate model that mitigates some of the disadvantages of using purely physics-based or
data-driven models [14,15].

In certain situations where knowledge of the differential equation and boundary
conditions is imprecise or incomplete, and measurement results are available, neural
networks have proven to be more effective. However, it is important to note that using
neural networks often requires a lengthy and resource-intensive training process. Another
class of problems in which neural networks are recommended is when the equation’s
parameters undergo unknown variations and only the measurement results are accessible
during dynamic processes. The present paper investigates a similar problem, thereby
contributing to the understanding of such problems.

Solving differential equations by means of neural networks originates at the end of
the 20th century [16,17]. Our first studies [5,18] on this topic were published in 2005, when
different terminology was used. In 2019, the publication [19] of Raissi, Perdikaris, and
Karniadakis brought wide fame and a recognisable name PINN (Physics-Informed Neural
Networks) to neural network models described using differential equations and obtained
by minimising a specific loss function. Since then, a large number of articles have been
published annually on solving problems involving differential equations using machine
learning methods.

In many cases, the problem formulation involves parameters that exhibit variations
within a certain range. For instance, properties like density, coefficients of thermal con-
ductivity, elasticity, and others may not be precisely known for real media. Additionally,
factors such as object size and ambient temperature may also exhibit variability. In such
scenarios, the task of constructing parametric models arises, either to investigate the so-
lution’s behaviour dependent on a specific parameter or to estimate the parameter value
using measurement data.

The classical approach traditionally involves obtaining a numerical solution for the
problem using a representative set of parameters. However, our proposed approach [20–22]
presents an alternative method. It allows us to search for a solution in the form of a neural
network function, where the relevant parameters are included as arguments.

There are not only PINNs to which several recent reviews [23,24] are devoted but
also more general issues [8–10] covering a new modelling paradigm and hybrid models
combining physics and heterogeneous data.

In the paper [6], we presented our approach to constructing a neural network model
based on all available information (differential equations, boundary conditions, measure-
ment data, etc.) about a stationary object. In this paper, we focused on another problem
that arises when modelling real objects. It takes into account the possibility of their change
during operation. These changes can be considered smooth increases or decreases, as well
as sharp jumps in the values of parameters corresponding to any physical properties of
the simulated object, and its functioning or operation conditions. Mostly, there are tasks
when parameters characterise the domain shape or boundary condition for differential
equations [25].

The benchmark problems we solve in this paper have been chosen in such a way as to
study various aspects of changes in the modelling object. Pseudo-measurements used to
adapt the constructed models are generated based on known analytical solutions. Relevant
are the problem statements when the object is described using equations which are not
quite accurate. Thus, in the second benchmark problem, the initial model is constructed
based on an ordinary differential equation, while in fact, the modelling object satisfies
a partial differential equation according to which the corresponding measurements are
generated. The paper in [26] focuses on the learning of a dynamical system for making
forecasts, particularly when certain variables are unobserved by utilising physics-based
and data-driven modelling. In [27], surface uncertainties are regarded as one of the limiting
factors of physics-based contact modelling methods. The problem statement is close to
multi-fidelity data-driven modelling with approximate governing equations. One of the
solutions is estimating the current model error and further incorporating it in the equation



Computation 2023, 11, 168 3 of 27

as a corrective term [28]. Another option, besides data-driven discovery of the equations,
in the case of modelling unknown or partially known dynamics, is dynamical system
identification [29]. But, they do not discuss data-driven real-time adaptation of a used
model and the qualitative behaviour of the solution does not change when the parameter
changes over time. At the same time, it is interesting to check the adaptive properties of
PINNs on a problem when the solution qualitatively changes its nature. To this end, we
consider a partial differential problem in which a parameter change leads to a shift in the
type of equation from elliptic to hyperbolic. There is some work devoted to a certain type,
for example, elliptic [30]. The study of mixed-type problems using PINNs is found on the
example of stochastic partial differential equations [31].

In this paper, we focused on comparing two types of neural networks: PINNs and
parametric PINNs (PPINs). Adaptive properties of these networks are analysed and
compared on each of the benchmark problems. PINNs are constructed with fixed parameter
values using the methods described in our earlier work [5,18], and the PPINNs include the
parameters for the number of input variables [6,20–22,32]. Including system parameters
as an input to the model allows for providing real-time simulation for a range of problem
settings and decreases computation time [33]. Moreover, solving parametrised governing
systems can be used in a wide variety of complex systems [34].

2. Materials and Methods

Let us consider a boundary-value differential problem in a general formulation for
both ordinary and partial differential equations:{

D[u](x) = f (x), x ∈ Ω;

B[u](x) = g(x), x ∈ ∂Ω,
(1)

where Ω ⊂ Rm; u, f : Rm → R, g : R→ R; D[·] is a differential operator; and B[·] is a valid
operator that sets boundary conditions.

The general neural network approach to solving this problem, which has recently re-
ceived the conventional name physics-informed neural network (PINN) approach, consists
in adjusting the parameters (weights) of a neural network during the process of minimising
the loss function corresponding to the task under question.

Implying changes in the object described using system (1), we introduce into the
formulation of the problem a certain parameter δ, which takes acceptable values in the
corresponding area Γ ⊂ Rd with appropriate d:{

D[u](x, δ(t)) = f (x, δ(t)), x ∈ Ω;

B[u](x, δ(t)) = g(x, δ(t)), x ∈ ∂Ω.
(2)

Some values of the parameter δ(t), where time t ∈ [0, T], can change the nature of the
problem, for example, reduce its dimension or determine the type of differential operator.
Here, u, f : Rm+1 → R, g : R2 → R.

In this paper, we consider the situation when, initially, the object is described using
system (2) at a fixed value of the parameter δ. Then, changes begin to occur, with the object
corresponding to a variation in the parameter value. Meanwhile, the information about
these changes comes to us only in the form of real-time measurements. The question arises
how well a neural network model can adapt to such changes. To answer this question, we
consider the PINN (3) and PPINN (5) models, which are illustrated in Figure 1.

In the first case, the initial PINN model is constructed for system (1) and represents
the output of a neural network with one hidden layer of the form

uc,a(x) = c0 +
n

∑
i=1

ci ϕ(x, ai). (3)



Computation 2023, 11, 168 4 of 27

The weights of the network (parameters c = (c0, c1, . . . , cn) ∈ Rn+1, ai ∈ Rq; q depends on
a certain basis function ϕ : Rm×Rq → R) are adjusted by minimising the physics-informed
loss function

J(c, a) =
MD

∑
j=1

(
D[uc,a](xj)− f (xj)

)2
+ A

MB

∑
j=1

(
B[uc,a](zj)− g(zj)

)2 (4)

for a known fixed initial value of the parameter δ. Here, {xj}MD
j=1 is a training sample

randomly selected using a uniform distribution inside the domain Ω with the condition
of regeneration (resampling) according to the selected neural network learning algorithm.
The boundary condition training sample {zj}MB

j=1 is some grid on ∂Ω. A is a positive penalty
parameter.

The initial PPINN model has the form

uc,a,b(x, δ) = c0 +
n

∑
i=1

ci ϕ(x, ai, δ, bi). (5)

The weights of the network (parameters c ∈ Rn+1, a ∈ Rq1 , b ∈ Rq2 ; q1, q2 depend on a
certain basis function ϕ : Rm+1 ×Rq1 ×Rq2 → R) are selected by minimising the physics-
informed loss function corresponding to system (2). Here, an additional parameter vector
b is introduced to emphasise the difference between basis functions for PINN and PPINN.
Specifically,

J(c, a, b) =
MD

∑
j=1

(
D[uc,a,b](xj, δj)− f (xj, δj)

)2
+ A

MB

∑
j=1

(
B[uc,a,b](zj, δj)− g(zj, δj)

)2, (6)

where {xj, δj}MD
j=1 and {zj, δj}MB

j=1 are the training samples uniformly distributed on Ω× Γ
and some grid on ∂Ω× Γ, respectively. A is a positive penalty parameter.

The adaptation of the obtained PINN and PPINN models consists in adjusting the
weights (c, a) of the solution (3) and the parameter δ of the solution (5) during the minimi-
sation of real-time measurement-based loss functions:

JM(c, a) =
M

∑
j=1

(
uc,a(xj)− uj(tk)

)2 (7)

and

JM(δ) =
M

∑
j=1

(
uc,a,b(xj, δ)− uj(tk)

)2, (8)

respectively. Here, {xj, uj(tk)}M
j=1 are the measurement data at the time point tk.

PINN is trained with a fixed initial parameter value. PPINN incorporates the parame-
ter as an additional input variable and is trained using a particular set of initial parameter
variations. Subsequently, the parameter continues to change, but these changes are not
utilised for training the networks. Instead, “measurement” data are generated according to
a predefined law governing the parameter variation. PINNs are further trained to optimise
its performance by minimising a given objective function. In contrast, PPINN focuses on
parameter identification, which consequently influences the output function as well.

Selecting appropriate penalty factor A in (4,6) presents a challenge in this context, and
various approaches have been proposed to address this issue. In [35], adaptive weights
are suggested, where the penalty parameter is updated during network training steps
using a predetermined formula. In [36], updating the weights after a certain number of
training epochs is proposed to achieve a balanced contribution from each term. In [37], the
influence of the parameter on the learning rate is evaluated and a fixed value is employed
for obtaining the final solution.



Computation 2023, 11, 168 5 of 27

Figure 1. Schematic of the PINN (left) and PPINN (right) for solving differential equations and
adapting to measurements.

3. Benchmark Problems
3.1. Modelling Bending of the Cantilever Rod under Load

In our initial task, we focused on studying the deflection of a cantilever rod when
subjected to a load. To develop an approximate differential model, we made several
assumptions about the rod’s properties. Specifically, we treated the rod as an infinitely thin,
homogeneous, linearly elastic structure that was initially straight.

By considering the equation describing the large static deflection of such a rod under
the influence of distributed and concentrated forces projected onto the tangent of the
deflection curve, we solve a differential equation:

d2θ

dz2 = a(δ + z) cos θ, (9)

where a = mg/D, δ = F/mg; D is a constant bending stiffness; θ denotes the angle of
inclination of the tangent to the curve describing the rod; z represents the natural coordinate
of the curved axis of the rod measured from the sealing; m denotes the weight of the rod;
and F represents force acting on the unfixed rod end. See Figure 2.



Computation 2023, 11, 168 6 of 27

Figure 2. Bending of the Cantilever Rod under Load Scheme.

Then, the boundary conditions has the form of

dθ

dz
∣∣
z=0 = 0, θ

∣∣
z=1 = 0. (10)

The relationship between the angle and the coordinates of the points on the rod is
described using the equalities

dx
ds

= cos θ,
dy
ds

= sin θ. (11)

In order to generate pseudo-measurement data, various forms of parameter depen-
dencies on time, represented by different functions δ(t), are employed. Each function δ(t)
exhibits unique characteristics, which are depicted in Figure 3 and described below.

1. The first variations in the parameter’s time dependence correspond to a transient
process characterised by a maximum speed within a specific time interval, eventually
reaching a state of saturation.

δ1(t, α, β, γ, ε) = ε + γ tanh(αt− β); (12)

2. The subsequent time dependence of the parameter simulates a short-term deviation
from its stationary value. We tested the dependencies of the parameter measurement
in this context.

δ2(t, α, γ) = 2 + γ exp(−(αt− 2)2). (13)

Figure 3. Different variants of the parameter dependence (12) and (13) on time.



Computation 2023, 11, 168 7 of 27

3.2. Non-Stationary Problem of a Thermal Explosion in the Plane-Parallel Case

The second task we considered is the non-stationary problem of a thermal explosion
in the plane-parallel case [38] under the assumption that the reaction has one stage and
is irreversible; it is not accompanied by phase transitions, and it proceeds in a stationary
medium.

It is quite accurately described with a partial differential equation [39]:

∂2u
∂x2 + δ(t) exp(u) =

∂u
∂t

,

∂u
∂x

(0, t) = 0,

u(1, t) = 0,

u(x, 0) = u0(x),

(14)

where u0(x) is an analytical solution to the system (15) in the case of δ = δ(0).
It is assumed that the non-stationary nature of the object under consideration is

unknown and it satisfies a time-independent boundary value problem for an ordinary
second-order differential equation [38]:

d2u
dx2 + δ exp(u) = 0,

du
dx

(0) = 0,

u(1) = 0.

(15)

This problem is interesting because we know the exact solution, the area of existence
of the solution (Ω = [0, 1]), and the parameter values for which the solution of the problem
does not exist (δ > δ∗ ≈ 0.878458). Here, the change interval of the variable is derived
from the problem statement and is linked to the shift towards a dimensionless coordinate.
In the case of small parameter values, it is quite convenient to obtain a solution by using
asymptotic methods. Furthermore, in order to attain a low relative error for these parameter
values, modifying the loss function becomes necessary. These alterations are specific to
the task at hand, making it challenging to utilise this problem as a demonstration of the
general methodology. In the case of small parameter values, it is quite convenient to
obtain a solution by using asymptotic methods. Obviously, the operating mode of a real
reactor should not approach the limits of stability. The low reaction rate corresponding
to small parameter values also does not meet real operating modes due to low efficiency.
Therefore, for training the parametric model, we assume that δ ∈ [0.2; 0.85] and investigate
the possibility of adapting PINN models when changing the parameter δ.

To generate pseudo-measurement data, different variants of the parameter dependence
on time are used. Every function δ(t) has its own features, which Figure 4 illustrates.

1. The first variant of the time dependence of the parameter is a special case of (12)
and corresponds to the transition process, which has a maximal speed at the initial
moment and becomes saturated:

δ1(t, α, 0, 0.6, 0.2) = 0.2 + 0.6 tanh(αt); (16)

2. The second function change simulates a short-term deviation of the parameter from a
stationary value:

δ3(t, α) = 0.2 + 0.67sech2(αt− 3); (17)

3. The third dependence is also a special case of (12) and differs from the first two via a
time shift in the dramatical parameter change:

δ1(t, α, 2, 0.3, 0.5) = 0.5 + 0.3 tanh(αt− 2); (18)



Computation 2023, 11, 168 8 of 27

4. The last dependence is a jump at the initial moment of time into a domain close to
the boundary of the solution stability. Note that the parameter value in this case goes
beyond the interval at which parametric PINN models have been trained. It is set by

δ4(t) =

{
0.87, t > 0;

0.2, t = 0.
(19)

Figure 4. Different variants of the parameter dependence (16)–(19) on time.

3.3. The Problem with an Equation of Mixed Type

Let us consider the problem of a partial differential equation where changing a pa-
rameter leads to a shift in the type of equation from elliptic to hyperbolic. The nature of a
solution changes accordingly. More specifically, it is the boundary value problem in the
unit square (Ω = [0, 1]× [0, 1]):

∂2u
∂x2 + δ

∂2u
∂y2 = 0,

u(x, 0) = δx2,

u(x, 1) = δx2 − 1,

u(0, y) = −y2,

u(1, y) = δ− y2.

(20)

The exact solution of (20) is

w(x, y, δ) = δx2 − y2. (21)

It is assumed that the parameter can change within the interval [−1.2, 1.2]. We also
consider various dependencies of parameter δ on time (see Figure 5):

1. The first one causes the short-term deviation of the parameter from a stationary value:

δ5(t) = 1− 2sech2(αt− β); (22)



Computation 2023, 11, 168 9 of 27

2. The next dependence is sigmoid with a time shift (delay). Thus, we consider a
situation when, during the operation of algorithm, there is a transition from one
stationary state to another. The parameter changes according to

δ6(t) = tanh(αt− β); (23)

Figure 5. Different variants of the parameter dependence (22) and (23) on time.

4. Computational Experiments and Results

For all tasks, the minimisation of loss functions (4) and (6) is carried out according to
the nonlinear optimisation algorithm RProp [40] with the regeneration (resampling) [41]
of test (training) points every five steps of the optimisation process. RProp implements a
localised adaptation of weight updates based on the error function’s behaviour. Unlike
other adaptive techniques, the impact of the RProp adaptation process is not affected by the
unpredictable influence of derivative magnitude but solely relies on the temporal pattern
of its sign. The resampling allows us to avoid neural network overfitting that distinguishes
our approach from the classical case of learning in collocation points. Regeneration means
selecting new training points by generating a sample from the uniform distribution on
domains Ω and Ω× Γ, respectively. For the second term of the loss function, uniform grids
on ∂Ω× Γ and ∂Ω are used.

As it is mentioned above, we generate pseudo-measurements uj(tk) for all tasks by
calculating solution values at points of time tk, k = 1, . . . , M, indicating the time in seconds
since the start of the adaptation algorithm. To address the first task, surrogate measurement
data θ(tk) have been utilised by selecting values θ(zj, tk) of the solution to the problem:

d2θ

dz2 − a(δ(t) + z) cos θ = 0,
dθ

dz
(0, t) = 0, θ(1, t) = 0. (24)

Thus, uj(tk) for the second problem is the values of the solution u(tk, xj) to (14) in the
case of a fixed parameter δ = δ(tk). All solutions are based on an inaccurate description
of the object using Equation (15), and after adaptation, the resulting solution is compared
with the solution of the problem (14).

For the third task, we have used the exact solution w(xj, yj, δ(tk)) (21) to the system
(20) for δ = δ(tk). We take M = 100 for the second and third tasks and M = 4 for a special
experiment with the mixed-type problem.



Computation 2023, 11, 168 10 of 27

The adjustment of neural network parameters occurs during the minimisation of
discrepancies (7) and (8) for the PINN and PPINN models, respectively. For each model,
five steps of the minimisation algorithm are executed.

4.1. Modelling Bending of the Cantilever Rod under Load
4.1.1. PINN Model

To address the given problem, we utilise the PINN (3), specifically a solution to (9)–(10)

uc,a(z) = c0 +
n

∑
i=1

ci ϕ(z, ai), (25)

when δ is fixed. In this case, we employ a Gaussian basis function

ϕ(z, ai) = exp
(
−ai1(z− ai2)

2
)

. (26)

and also investigate a perceptron neural network with a basis function:

ϕp(z, ai) = tanh(ai1(z− ai2)). (27)

The parameters c and a of the PINN are optimised by minimising the loss

J(c, a) =
M

∑
j=1

(d2uc,a

dz2 (zj)− a(δ + zj) cos uc,a(zj)
)2

+ A
(
(

duc,a

dz
(0))2 + (uc,a(1))2). (28)

Here, the test points {zj}M
j=1 are randomly selected using a uniform distribution within

the interval [0, 1]. The penalty parameter A is computed during network initialisation to
maintain consistent ordering of the terms in the loss function.

4.1.2. PPINN Model

As an approximate PPINN (5) solution, we constructed a neural network:

uc,a,b(z, δ) = c0 +
n

∑
i=1

ci ϕ(z, ai, δ, bi). (29)

In our investigation, we explored various basic functions, and the most favourable
outcomes were achieved when selecting basic functions in the form described by following
equation:

ϕ(z, ai, δ, bi) = exp
(
−ai1(z− ai2)

2
)

tanh(bi1(δ− bi2)). (30)

and for comparison with Gaussian PINN, we have

ϕp(x, ai, δ, bi) = tanh(ai1(x− ai2)) tanh(bi1(δ− bi2)). (31)

The weights of the network are carefully chosen by minimising the error function:

J(c, a, b) =
M

∑
j=1

(d2θ

dz2 (zj, δj)− a(δj + z) cos θ(zj, δj)
)2

+ A
(
(

dθ

dz
(0, δj))

2 + (θ(1, δj))
2). (32)

Here, {zj, δj}M
j=1 are test points randomly selected using a two-dimensional uniform

distribution inside the rectangle [0, 1] × [2, 16]. In computational experiments, a value
M = 100 has been selected for both the PINN and PPINN models. A is a positive penalty
parameter.



Computation 2023, 11, 168 11 of 27

4.1.3. Initial PINN and PPINN Models

Initially, PINN and PPINN have been trained without considering dynamically chang-
ing data. For the PINN (3) approximation, we successfully achieved a sufficiently small
error by utilising a network with two neurons. By selecting a specific parameter value
δ = 2, the resulting networks are

uc,a(z) = 0.5967− 0.3234e−0.6353(z−1.115)2 − 0.6239e−0.3529(z+0.5196)2
(33)

for Gaussians and

vc,a(z) = 0.2834 + 0.4053 tanh(0.9488(−1.706 + x))− 0.0474 tanh(1.6289(0.3572 + x)) (34)

for the basis function (27).
The accuracies of the solutions are further illustrated in Figure 6. Subsequently, these

networks are utilised as initial approximations to handle dynamic changes in the data.

Figure 6. Comparison of the exact solution θ(z) to (9) and (10) and the approximate solutions uc,a(z)
(33) and vc,a(z) (34) at parameter value δ = 2 (left) along with the absolute difference between the
exact and approximate solutions at the same parameter value (right).

Figure 6 clearly demonstrates that the perceptron PINN achieves notably higher
accuracy. However, subsequent computational experiments reveal that this higher accuracy
does not necessarily translate to improved performance in processing dynamic data.

At the specified parameter value δ = 16, we achieved a neural network approximation
for Gaussians:

uc,a(z) = 3.527− 3.412e−0.4586(z−0.7198)2 − 2.488e−0.6949(z+0.8398)2
. (35)

The absolute error of this approximation remains below 0.006, demonstrating the potential
accuracy that can be achieved as the parameter increases to δ = 16.

On the other hand, the PPINNs necessitate a larger number of neurons (terms) to
achieve an acceptable approximation, and it yields significantly lower accuracy. Further,
we present the results for n = 10 and n = 30. We have omitted the detailed formulas for
these models. When utilising a reduced number of neurons, the outcomes are notably
unsatisfactory.

Figure 7 displays similar plots for PPINNs with 30 neurons, illustrating significantly
improved model accuracy. As a result, the use of networks with 10 neurons was discon-
tinued in subsequent experiments. For PPINNs, the accuracy of the perceptron model is
about the same as that with radial basis functions.



Computation 2023, 11, 168 12 of 27

Figure 7. The absolute errors of PPINN (29) approximations uc,a,b(z, δ), basis functions (30), and
vc,a,b(z, δ), basis functions (31), of exact solution θ(x, δ) to problems (9) and (10) with n = 30 neurons
at δ = 2 (left) and δ = 16 (right).

4.1.4. Adapting PINN and PPINN Models

Further, we have performed computational experiments to adapt the neural networks
constructed in the first step, PINN and PPINN, using dynamically changing data. To
generate the data, we utilised model (24) with different parameter δ dependency options
based on the iteration number i.

The time needed to produce five steps for the minimisation of a loss function (6)
was denoted by tadapt. Then, at each number of adaptation process i = t/tadapt for each
dependence δ(t), the mean squared error (MSE) was calculated for each model u(z) at 100
points zk evenly distributed over the segment [0, 1]

MSEi(u) =
1

100

100

∑
k=1

(u(zk)− θ(zk, i))2, (36)

where θ(z, i) is the solution to the system (9) and (10) for δ(t) = δ(itadapt) (12) and (13).
At each consecutive point i during the adaptation process to pseudo-measurements,

Figure 8 showcases the relationship between the dependency δ1(t, 0.1, 15, 2, 4) on time and
the corresponding MSE of the adapting models.

Figure 8. Parameter dependence δ(i) = δ1(itadapt, 0.1, 1.5, 2, 4) (12) and log(MSE) (36) of correspond-
ing real-time adapting PINN, basis functions (26), and PINNp, basis functions (27), with 2 neurons
and PPINN, basis functions (30), and PPINNp, basis functions (31), with 30 neurons of a hidden layer
at each adaptation step i for tasks (9) and (10).



Computation 2023, 11, 168 13 of 27

Figure 8 demonstrates that the perceptron PINN exhibits substantial advantages
during the initial step, but these advantages diminish when there is a significant change in
the parameter δ.

Figures 9–11 present comparable results for dependencies δ1(t, 0.002, 15, 2, 4) and
δ2(t, 0.004, 4), respectively, and confirm that the perceptron does not demonstrate notewor-
thy advantages.

Figure 9. Parameter dependence δ(i) = δ1(itadapt, 0.1, 15, 2, 4) (12) and log(MSE) (36) of corresponding
real-time adapting PINN(1), basis functions (26), with 2 neurons; PPINN(1), basis functions (30), with
30 neurons of a hidden layer at each adaptation step i; PINN(50), basis functions (26), with 2 neurons;
and PPINN(50), basis functions (30), with 30 neurons. The data generated using the model (24), with
the parameter change law during 50 iterations of training, occurring between the moments of data
acquisition for task (9) and (10).

Figure 10. log(MSE) (36) of corresponding real-time adapting PINNp(1), basis functions (27), with 2
neurons; PPINNp(1), basis functions (31), with 30 neurons of a hidden layer at each adaptation step
i; PINNp(50), basis functions (27), with 2 neurons; and PPINNp(50), basis functions (31), with 30
neurons. The data generated using the model (24) with the parameter change law during 50 iterations
of training, occurring between the moments of data acquisition for task (9) and (10) parameter
dependence δ(i) = δ1(itadapt, 0.1, 15, 2, 4) (12).

The presented results lead us to the conclusion that the error in the PINN model is
primarily attributed to its adaptive characteristics. Conversely, for PPINN models, the
main source of errors can be traced back to inaccuracies in the initial training process.
These findings shed light on the distinct sources of errors in the PINN (3) and PPINN (5)



Computation 2023, 11, 168 14 of 27

models, emphasising the importance of considering the specific characteristics and training
procedures when analysing and improving their performance.

The time-dependent behaviour of δ2(t, 0.004, 4) and δ2(t, 0.004, 14) simulates a short-
term deviation of the parameter from its stationary value. In Figures 11–13, we observe
how the dependencies δ2(t, 0.004, 4) and δ2(t, 0.004, 14) change over time and its impact on
the mean squared error (MSE) of the adapting models with different basis functions.

Figure 11. Parameter dependence δ(i) = δ2(t, 0.004, 4) (13) and log(MSE) (36) of corresponding
real-time adapting PINN, basis functions (26), with 2 neurons and PPINN, basis functions (30), with
30 neurons of a hidden layer at each adaptation step i for tasks (9) and (10); 5 and 500 iterations of
training are considered between the moments of data reception.

Figure 12. Parameter dependence δ(i) = δ2(t, 0.004, 14) (13) and log(MSE) (36) of according real-time
adapting PINN, basis functions (26), with 2 neurons and PPINN, basis functions (30), with 30 neurons
of a hidden layer at each adaptation step i for tasks (9) and (10); 5 and 50 iterations of training are
considered between the moments of data reception.

Figure 13 clearly demonstrates that the perceptron does not possess any advantages
over a network employing a Gaussian basis function. As a result, the perceptron is not
employed in the subsequent experiments.



Computation 2023, 11, 168 15 of 27

Figure 13. log(MSE) (36) of corresponding real-time adapting PINNp, basis functions (27), with 2
neurons and PPINNp, basis functions (31), with 30 neurons of a hidden layer at each adaptation step
i for tasks (9) and (10); 5 and 500 iterations of training are considered between the moments of data
reception, for parameter dependencies (13) δ(i) = δ2(t, 0.004, 4) (left), δ(i) = δ2(t, 0.004, 14) (right).

Upon analysing the graphs presented in Figures 11 and 12, we observe a sharp increase
in the error of both the PINN and PPINN models at the moment of the highest rate of
parameter increase. This finding reaffirms that the adaptive characteristics of these models
remain the primary cause of their error. Notably, the error of the PINN model does not
significantly decrease even with an increase in the number of training iterations between
data points, particularly when the parameter experiences a substantial increase. This
suggests that the main source of errors for PINN (3) models is the instability of the learning
process when confronted with drastic changes in the data. It is worth mentioning that,
with a significant increase in the parameter, some model runs were unsuccessful, indicating
that PINN can exhibit high error rates despite prolonged training. On the other hand, the
error of the PPINN model exhibits a substantial decrease with an increase in the number
of training iterations between data points, especially in the case of a significant parameter
increase. Consequently, for PPINN (5) models, errors primarily stem from inaccuracies in
the initial training phase of the network.

4.2. Non-Stationary Problem of a Thermal Explosion in the Plane-Parallel Case
4.2.1. PINN Model

We constructed a PINN (3) solution to (15) for fixed δ and with a Gaussian basis
function:

ϕ(x, ai) = exp
(
−ai1(x− ai2)

2
)

. (37)

The PINN parameters c, a were adjusted by minimising the loss function:

J(c, a) =
MD

∑
j=1

(
d2uc,a

dx2 (xj) + δ exp
(
uc,a(xj)

))2

+ A

((
duc,a

dx
(0)
)2

+ (uc,a(1))
2

)
. (38)

The penalty parameter A was computed during network initialisation to maintain
consistent ordering of the terms in the loss function.

4.2.2. PPINN Model

As an approximate PPINN to the (5) solution, we constructed a PPINN solution to (15)
that depends on the parameter δ. Thus, we chose the basis function of the form

ϕ(x, ai, δ, bi) = exp
(
−ai1(x− ai2)

2
)

tanh(bi1(δ− bi2)). (39)



Computation 2023, 11, 168 16 of 27

The corresponding loss function has the form

J(c, a, b) =
MD

∑
j=1

(d2uc,a,b

dx2 (xj, δj) + δj exp
(
uc,a,b(xj, δj)

))2

+ A

((
duc,a,b

dx
(0, δj)

)2
+
(
uc,a,b(1, δj)

)2
). (40)

In computational experiments for both the PINN and PPINN models, the number
M = 100 of test points has been selected to train initial networks. The PPINNs have been
trained on the parameter change interval [0.2; 0.85]. The positive penalty parameter A was
computed during network initialisation to maintain consistent ordering of the terms in the
loss function.

4.2.3. Initial PINN and PPINN Models

A non-parametric PINN solution to the task (15) at a fixed parameter value is suffi-
ciently accurate even in the case of two neurons of a hidden layer. Thus, Figure 14 illustrates
an absolute error and compares the PINN approximation

uc,a(x) = −0.377 + 0.29e−0.677(x−0.878)2
+ 0.376e−0.603(x+0.538)2

(41)

with the exact solution to a system (15) at δ = 0.2.

Figure 14. The exact solution u(x) to a system (15) at δ = 0.2, its two-neuron PINN (3) approximation
uc,a(x) (41), and the absolute error.

In the case of δ = 0.8, the PINN (3) solution

uc,a(x) = 1.034− 2.45e−0.483(x−2.34)2 − 0.496e−2.07(x+0.845)2
(42)

has an absolute error that does not exceed 0.0013. Thus, it is a desired result for the PINN
with two neurons in the case of the growth of the parameter δ from 0.2 to 0.8 during the
adaptation process.

The parametric PINN (5) requires a larger number of neurons (terms) n for an accept-
able approximation and gives a lower accuracy. The one with n = 10 neurons of a hidden
layer has the form

uc,a,b(x, δ) = −0.416− 2.48e−5.09(x−0.594)2
tanh(0.047(δ− 1.55))− 0.354e−4.504(x+0.169)2

tanh(0.771(δ− 0.893))

+ 0.219e−7.37(x−0.553)2
tanh(0.524(δ− 0.689)) + 0.248e−6.55(x+0.133)2

tanh(0.591(δ− 0.447))

− 2.08e−2.43(x−1.42)2
tanh(0.442(δ− 0.445)) + 1.76e−3.4(x−0.264)2

tanh(0.21(δ− 0.359))

+ 0.445e−4.4(x−1.05)2
tanh(0.787(δ− 0.045)) + 3.61e−0.848(x+0.106)2

tanh(0.253(δ + 0.131))

+ 0.096e−11.1(x+0.455)2
tanh(0.983(δ + 0.283)). (43)



Computation 2023, 11, 168 17 of 27

We have not given the formula for the output of the 30-neuron PPINN because of its
bulkiness.

Figure 15 represents an absolute error and the PPINN approximation. Similar results
for the parametric PINN with 30 neurons were obtained. It is supported by the values
0.0344 and 0.0280 of the loss function (48) for these approximate solutions.

Figure 15. The exact solution u(x) to a system (15) and their 10-neuron PPINN (5) approximation
uc,a,b(x, δ) (43) at δ = 0.3 (left) and δ = 0.8 (right).

4.2.4. Adapting PINN and PPINN Models

We have conducted numerical experiments for various initial PINN models and time
dependences of the parameter δ(t). We studied the initial PINN model (41) with 2 neurons
and PPINN models with 10 (43) and 30 neurons of a hidden layer discussed above.

Similar to the previous approach, for each adaptation process number i = t/tadapt, we
evaluated the mean squared error (MSE) of the approximate solution u(x) at 100 points
xk evenly distributed over the segment [0, 1]. This evaluation was performed for each
dependency δ(t)

MSEi(u) =
1

100

100

∑
k=1

(u(xk)− v(xk, i))2, (44)

where v(x, i) is the solution to the system (14) for δ(t) = δ(itadapt).
Figure 16 illustrates the dependency δ1(t, 0.0045, 0, 0.6, 0.2) on time and the correspond-

ing MSE of the adapted models under consideration at consecutive points i of adaptation
to pseudo-measurements. The MSE of the adapted PINN model increased sharply at the
initial moment, reached a maximum, and quickly decreased to small values with stabili-
sation of the parameter near a new value. The error of both PPINN models had a similar
behaviour. The MSE grew, while δ(t) tended toward a new stable value. Further, it re-
mained consistently higher than the initial value. Despite a smaller difference in the loss
function value of the initial models, the maximal MSE of the PPINN with 10 neurons was
about two times greater than that of the PPINN with 30 neurons.

When the change rate of the parameter δ1(t, α, 0, 0.6, 0.2) increases to α = 0.1 , the
process of adapting the initial PINN model—the minimisation of loss function (7)—loses
stability. The behaviour of the adapting PPINN MSE is similar to that shown in Figure 14
but with much more earlier stabilisation of the error. Its maximal values are presented in
Table 1.



Computation 2023, 11, 168 18 of 27

Figure 16. Parameter dependence δ(i) = δ1(itadapt, 0.0045, 0, 0.6, 0.2) and Log[MSE] (44) of corre-
sponding real-time adapting PINN with 2 neurons and PPINN with 10 and 30 neurons of a hidden
layer at each adaptation step i.

Table 1. max{MSE} for PINN and PPINN adaptive solutions to second problem and various parameter
dependencies.

δ1(t, α, 0, 0.6, 0.2) δ3(t, α) δ1(t, α, 2, 0.3, 0.5) δ4(t)

Model α = 0.0045 α = 0.1 α = 0.003 α = 0.03 α = 0.0025 α = 0.003

PINN, n = 2 14.1× 10−6 – 18.8× 10−5 30× 10−5 10× 10−5 33.3× 10−3 35.3× 10−5

PPINN, n = 10 35.3× 10−6 35.3× 10−6 32.6× 10−5 26× 10−5 20× 10−6 23.3× 10−6 32.7× 10−5

PPINN, n = 30 8.8× 10−6 8.8× 10−6 23× 10−6 25× 10−6 5.3× 10−6 5.7× 10−6 23× 10−6

The next dependency δ3(t, α) (17) that we considered simulates a short-term deviation
of the parameter from a stationary value. Figure 17 shows the results for δ3(t,= 0.04) on
the parameter change time interval [0, 150]. The maximal MSEs are presented in Table 1.

Figure 17. Parameter dependence δ(i) = δ3(itadapt, 0.04) and Log[MSE] (44) of corresponding real-
time adapting PINN with 2 neurons and PPINN with 10 and 30 neurons of a hidden layer at each
adaptation step i.

We can see that the MSE of the adapting PINN model increases dramatically at the
moment of the highest rate of parameter δ change. Another maximal error is achieved
when the parameter value is close to critical δ∗ ≈ 0.878458. The MSE of the adapting
PPINN model loses its stability when the parameter begin to tends to δ∗. The maximal
error for the PPINN with 10 neurons of a hidden layer is more than an order of magnitude
greater than the error for the PPINN with 30 neurons.



Computation 2023, 11, 168 19 of 27

We also have studied dependencies like δ1(t, α, 2, 0.3, 0.5) (18). Thus, we consider a
situation when the moment of essential parameter change occurs after some time from the
start of the adaptive algorithm (see Figure 4) and the different rates of this change. The
behaviour of the adapting PPINN MSE is similar to that shown in Figure 15 but with a shift
of the maximal error to the right end of the time interval studied. The maximal errors are
also presented in Table 1. Even a small increase in the rate of parameter change from 0.025
to 0.03 affects the accuracy of the adapting PINN model.

The last dependence δ4(t) (19) is a jump at the initial time point to the vicinity of the
parameter critical value δ∗. Note that the parameter value in this case goes beyond the
interval at which PPINNs have been trained. Figure 18 represents the MSE of the adapting
PINN and PPINN models. The maximum of errors can be found in Table 1. The MSE of
the PINN model is maximal at the initial moment when the parameter changes abruptly
and decreases sharply when the parameter value is stable. The error of the PPINN models
changes slightly, corresponding to the values of the parameter in the neighborhood of
δ∗. The MSE for the network with a smaller number of neurons is more than an order of
magnitude greater than the error for the PPINN with 30 neurons of a hidden layer.

Figure 18. Parameter dependence δ(i) = δ4(itadapt) = 0.87 and Log[MSE] (44) of according real-
time adapting PINN with 2 neurons and PPINN with 10 and 30 neurons of a hidden layer at each
adaptation step i.

4.3. The Problem with an Equation of Mixed Type
4.3.1. PINN Model

For a PINN (3) solution to (20) for fixed δ, we use a Gaussian basis function of two
spatial variables :

ϕ(x, y, ai) = exp
(
−ai1

(
(x− ai2)

2 + (y− ai3)
2
))

. (45)

The PINN parameters c and a are adjusted by minimising the loss function:

J(c, a) =
MD

∑
j=1

(
∂2uc,a

∂x2 (xj, yj) + δ
∂2uc,a(xj, yj)

∂y2

)2

+ A
MB

∑
j=1

((
uc,a(x̄j, 0)− δx̄2

j

)2
+
(

uc,a(x̄j, 1)− δx̄2
j + 1

)2
+
(

uc,a(0, ȳj) + ȳ2
j

)2
+
(

uc,a(1, ȳj)− δ + ȳ2
j

)2
)

(46)

The penalty parameter A is computed during network initialisation to maintain consistent
ordering of the terms in the loss function.



Computation 2023, 11, 168 20 of 27

4.3.2. PPINN Model

As an approximate PPINN solution, we construct a PINN solution that depends on
the parameter δ. Thus, we chose the basis function of the form

ϕ(x, ai, δ, bi) = exp
(
−ai1(x− ai2)

2
)

tanh(bi1(δ− bi2)). (47)

We typically employ the following activation functions. For tasks in this work, various
functions have been examined, including those with two tangents and those with two
Gaussians. It has been found that the option presented in the article yielded better results.
Similar observations were made when tackling other problems, where Gaussian functions
were found to be more suitable for spatial variables (in the absence of abrupt solution
changes), while hyperbolic tangent functions were more effective for parametrisation.

The corresponding loss function has the form

J(c, a, b) =
MD

∑
j=1

(
∂2uc,a,b

∂x2 (xj, yj, δj) + δj
∂2uc,a,b(xj, yj, δj)

∂y2

)2

+ γ
MB

∑
j=1

((
uc,a(1, ȳj, δj)− δj + ȳ2

j

)2
)

+ A
MB

∑
j=1

((
uc,a(x̄j, 0, δj)− δj x̄2

j

)2
+
(

uc,a(x̄j, 1, δj)− δj x̄2
j + 1

)2
+
(

uc,a(0, ȳj, δj) + ȳ2
j

)2
)

(48)

The penalty parameter A is computed during network initialisation to maintain consistent
ordering of the terms in the loss function.

4.3.3. Initial PINN and PPINN Models

The computational experiment for problem (20), as for the previous one, has been
carried out in two steps. In the first step, PINN and PPINN have been trained without
taking into account dynamically changing data to obtain initial models. Let us start from
δ = 1. The PINN

uc,a(x, y) = −39.3− 1.03e−1.92((x−0.089)2+(y−1.71)2) + 0.5e0.629((x+0.058)2+(y−0.439)2)

+ 2.94e−0.781((x−1.82)2+(y−0.314)2) + 38.6e−0.016((x+0.355)2+(y+0.016)2) (49)

with four neurons of a hidden layer has a quite small error on the entire domain Ω =
[0, 1]× [0, 1]. The absolute difference between an exact solution and PINN (49) does not
exceed 0.02. Figure 19 illustrates their behaviour on the diagonal and the boundary of Ω.

Figure 19. The exact solution w(x, y, δ) to a system (20) and its four-neuron PINN (3) approximation
uc,a(x, y) (49) at δ = 1 on the diagonal y = 1− x of Ω (left) and the boundary y = 0 (right).



Computation 2023, 11, 168 21 of 27

The PPINN (5) requires a much larger number of neurons. We present results for a
PPINN with a number of neurons n = 50. The network has been trained on the parameter
change interval [−1.2, 1.2]. We do not provide the formula for this model due to its bulkiness.
The absolute difference between an exact solution and the PPINN model obtained does not
exceed 0.02. The mean square error for 10,000 random points in the domain 0 ≤ x, y ≤ 1,
−1 ≤ δ ≤ 1 was 0.0331. Figure 20 compares the PPINN model with the exact solutions for
different values of δ.

Figure 20. The exact solution w(x, y, δ) to a system (20) and its 50-neuron PPINN (5) approximation
uc,a,b(x, y, δ) at δ = 1 on the diagonal y = 1− x of Ω (top left) and the boundary y = 1 (top right),
on the diagonal y = 1− x at δ = 0 (bottom left) and at δ = −1 (bottom right).

4.3.4. Adapting PINN and PPINN Models

Here, we investigate the adaptation properties of the PINN and PPINNs discussed
above in the case of various time dependences of the parameter δ(t), as for the previous
task. As before, at each number of adaptation process i = t/tadapt for each dependency δ(t),
we calculate the MSE for each approximate solution u(x) at 10000 points (xk, yk) evenly
distributed over [0, 1]× [0, 1]

MSEi(u) =
1

10, 000

10,000

∑
k=1

(
u(xk, yk)− w(xk, yk, δ(itadapt))

)2
, (50)

where w(x, y, δ) is a solution to the system (20).
The first variants of the time dependence of the parameter simulate the short-term de-

viation of the parameter from the stationary value with different rates. For the dependence
δ(t) = 1− 2sech2(0.003t− 2), the results are presented in Figure 21.



Computation 2023, 11, 168 22 of 27

Table 2 contains data about the maximal MSE. It is more than an order of magnitude
greater for the PPINN approximate solution than the error of the adaptive PINN model.
The first one is large during all times when the parameter δ value is negative.

Figure 21. Parameter dependence δ(i) = δ5(itadapt, 0.003, 2) (22) and Log[MSE] (50) of corresponding
real-time adapting PINN with 4 neurons and PPINN with 50 neurons of a hidden layer at each
adaptation step i.

Table 2. max{MSE} for PINN and PPINN adaptive solutions to second problem and various parameter
dependencies.

δ5(t, α, β) δ6(t, α, β) δ6(t, α, β) *

Model α = 0.003, β = 2 α = 0.03, β = 20 α = 0.01, β = 6 α = 0.1, β = 60 α = 0.01, β = 2

PINN, n = 4 1.67× 10−6 28.4× 10−6 1.24× 10−6 23.2× 10−6 9.34× 10−4

PPINN, n = 50 25.8× 10−6 11.2× 10−6 20.2× 10−6 6.21× 10−6 2.48× 10−4

* Additional experiment with a small number of measurements: in the case of the number of measurements
M = 4, the MSE after stabilising a parameter δ value is provided.

Let us change the rate and time amplitude of parameter deviation. In the case of
α = 0.03 and β = 20 for the same dependency δ5(t, α, β), we observe that both adaptive
PINN and PPINN errors are maximal simultaneously with the maximal deviation in the
parameter from the stationary value and decreases sharply when the parameter value tends
to be stable. This is illustrated in Figure 22. Note that the maximum of PINN MSE exceeds
more than twice that of the adaptive PPINN solution. The specific values can be found in
Table 2.

The next two dependencies are sigmoid with a time shift. Thus, we consider a situation
when, during the operation of the algorithm, there is a transition from one stationary state
to another. The results are presented in Table 2 and illustrated in Figures 23 and 24.

In the case of parameter dependency δ(t) = − tanh(0.01t− 6) (23), the PPINN MSE
reaches its maximum at the same time as the rate of parameter change. Moreover, it
increases during the entire calculation process. The deviation in the PINN MSE decreases
during the entire calculation process except for a small section where it can be neglected.
The PPINN MSE is more than an order of magnitude greater than that of the adaptive
PINN model.

A higher rate of parameter change (compare Figures 23 and 24) leads to other results.
For δ(t) = − tanh(0.1t− 60) (23), we concur that the PINN MSE has one outlier at the
moment of the maximal speed of parameter change and remains stable and small for the
rest of the time. The behaviour of the PPINN MSE is also stable almost everywhere besides
the small shift at the moment of the maximal rate of parameter change. Note that the
maximum of PINN MSE is about three times the error of the PPINN solution.



Computation 2023, 11, 168 23 of 27

Figure 22. Parameter dependence δ5(i) = δ5(itadapt, 0.03, 20) (22) and Log[MSE] (50) of corresponding
real-time adapting PINN with 4 neurons and PPINN with 50 neurons of a hidden layer at each
adaptation step i.

Figure 23. Parameter dependence δ6(i) = δ6(itadapt, 0.01, 6) (23) and Log[MSE] (50) of corresponding
real-time adapting PINN with 4 neurons and PPINN with 50 neurons of a hidden layer at each
adaptation step i.

Figure 24. Parameter dependence δ(i) = δ6(itadapt, 0.1, 60) (23) and Log[MSE] (50) of corresponding
real-time adapting PINN with 4 neurons and PPINN with 50 neurons of a hidden layer at each
adaptation step i.



Computation 2023, 11, 168 24 of 27

4.3.5. Experiment with a Small Number of Measurements

It is obvious that a large number of measurements with a stable behaviour of the
parameter makes it easy to minimise the loss function of the form (40) for the PINN
adaptive model, while the PPINN can be overtrained since, in the optimisation process,
just a single parameter of an approximate solution is adjusted for a plenty of data. Thus, it
is natural to consider the case when we obtain a small number of measurements at each
moment of time. Let the number of measurements be M = 4. Moreover, we have chosen
specific points {xj, yj}4

j=1 = {(1/3, 1/3); (2/3, 1/3); (2/3, 2/3); (1/3, 2/3)}.
As a function of parameter change, let us consider that, after a quite smooth shift from

one equation type to another, δ(t) is stable for awhile and δ6(t, 0.01, 2) = − tanh(0.01t− 2).
If we compare the predicted values for a solution in four chosen points, we obtain that
the maximal absolute error of the PINN solution is 1.5× 10−8 s and, for the PPINN, the
maximum of error is 0.009. These results may give the impression that the PINN (3) works
much more accurately than the PPINN (5), although this is not the case. The MSE after
stabilising a parameter δ value for adaptive PINN and PPINN models are given in the last
column of Table 2 and the corresponding solutions are shown in Figure 25.

Figure 25. The exact solution w(x, y, δ) to a system (20) and its 4-neuron PINN (3) approximation
uc,a(x, y) (49) (left) and 50-neuron PPINN (5) approximation uc,a,b(x, y, δ) (right) on the diagonal
y = 1− x of Ω, after stabilising δ(t) ≈ −1. Adaptation with a small number of measurements
(M = 4).

Thus, the error of the PINN adaptive model with a small number of points where the
values of desired function are taken in the adaptation process is poorly characterised by
the loss function (7). For an objective assessment of the adaptation error, we need to track
the error values in additional test points. The error of the PPINN adaptive solution in the
same case is quite well characterised by the loss (8).

5. Conclusions

We have studied the adaptive properties of PINN and PPINN solutions using dynamic
real-time data. The ability of the adaptive parametric and classical PINNs to adapt was
compared for the first time in this study. This comparison was conducted using problem
examples that involved various dependency functions of an unknown dynamic parameter.
A series of experiments have been carried out for three benchmark problems with different
functions of a parameter that reflects the characteristic of changes in an object. The first
problem involved modelling the bending of a cantilever rod under varying loads. In the
second task, the initial model was constructed based on an ordinary differential equation,
while in fact, the modelling object satisfies a partial differential equation, according to
which the corresponding pseudo-measurements have been generated. The third task was
to solve a partial differential equation of mixed type depending on time.



Computation 2023, 11, 168 25 of 27

Based on computational experiments, we can draw the following conclusions. Both
PINN and PPINN approximations have adaptability. The PINN error is caused primarily
by its adaptive characteristics. The greatest errors are due to the high rate of parameter
change or a sharp jump in its value. The similar behaviour of PPINN MSE suggests that
the main source of errors comes from initial training. The larger size of PPINN allows it
better to reflect the subtle features of the problem solution over the entire parameter change
interval compared with the network with fewer neurons.

At the same time, with a fixed parameter, when solving a differential problem, a
simple PINN shows the best result and requires a small number of hidden layer neurons.
PPINN requires a large number of neurons, which increases the pre-training time. On the
other hand, only one parameter is adjusted during the adaptation process, which requires
less computation costs as it was noted by other researchers.

A large number of measurements with a stable behaviour of the parameter makes
it easy to minimise the loss function in the case of the PINN adaptive model, while the
PPINN can be overtrained since, in the optimisation process, just a single parameter of
an approximate solution is adjusted for plenty of data. If the number of measurements is
small, the best result is given using PPINN adaptive model.

Thus, we recommend using PINN adaptive models in a situation when there are a
large number of measurement points and the parameters change at a low rate. At the same
time, the accuracy of pre-training the network does not matter much. We give preference
to PPINN adaptive models when the problem parameters can change dramatically or
when the number of measurement points is small. However, a careful approach to the
pre-training process using networks of sufficient width is required.

In this paper, dynamic models were not utilised as the original models did not possess
any dynamics; dynamic equations were solely employed for data generation purposes. It
would be intriguing to compare these results with the dynamic models of neural networks
that evolve from static models constructed based on initial static differential models during
data processing. However, when examining model problems wherein data are constructed
following a known model, there exists a temptation to tailor the dynamic model to fit the
pre-existing data. A more captivating objective is to construct a dynamic model based on
real measurements. We anticipate tackling this task in the near future, recognising that it
necessitates a separate effort.

Author Contributions: Conceptualisation, D.T., T.L. and V.A.; methodology, D.T., T.L. and V.A.;
software, D.T.; validation, D.T.; formal analysis, D.T., T.L. and V.A.; investigation, D.T.; resources,
D.T.; data curation, D.T.; writing—original draft preparation, D.T.; writing—review and editing, D.T.,
T.L. and V.A.; visualisation, T.L.; supervision, D.T., T.L. and V.A.; project administration, D.T.; funding
acquisition, D.T. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Russian Science Foundation under grant no. 22-21-20004,
https://rscf.ru/project/22-21-20004/ (accessed on 1 April 2022).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data are available from the authors upon request.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

PINN physics-informed neural network
PPINN parametric physics-informed neural network
MSE mean square error

https://rscf.ru/project/22-21-20004/


Computation 2023, 11, 168 26 of 27

References
1. Aziz, I.; Šarler, B. The numerical solution of second-order boundary-value problems by collocation method with the Haar

wavelets. Math. Comput. Model. 2010, 52, 1577–1590.
2. Nobile, F.; Tempone, R.; Webster, C.G. A sparse grid stochastic collocation method for partial differential equations with random

input data. SIAM J. Numer. Anal. 2008, 46, 2309–2345. [CrossRef]
3. Johnson, C. Numerical Solution of Partial Differential Equations by the Finite Element Method; Courier Corporation: Chelmsford, MA,

USA, 2012.
4. Tikhonov, A.N.; Arsenin, V.Y. Solutions of Ill-Posed Problems; Winston: New York, NY, USA, 1977.
5. Tarkhov, D.; Vasilyev, A. New neural network technique to the numerical solution of mathematical physics problems. II:

Complicated and nonstandard problems. Opt. Mem. Neural Netw. (Inf. Opt.) 2005, 14, 97–122.
6. Antonov, V.; Tarkhov, D.; Vasilyev, A. Unified approach to constructing the neural network models of real objects. Part 1. Math.

Methods Appl. Sci. 2018, 41, 9244–9251. [CrossRef]
7. Tarkhov, D.; Vasilyev, A.N. Semi-Empirical Neural Network Modeling and Digital Twins Development; Academic Press: Cambridge,

MA, USA, 2019.
8. Rai, R.; Sahu, C.K. Driven by Data or Derived through Physics? A Review of Hybrid Physics Guided Machine Learning

Techniques with Cyber-Physical System (CPS) Focus. IEEE Access 2020, 8, 71050–71073. [CrossRef]
9. Wang, J.; Li, Y.; Gao, R.X.; Zhang, F. Hybrid physics-based and data-driven models for smart manufacturing: Modelling,

simulation, and explainability. J. Manuf. Syst. 2022, 63, 381–391. [CrossRef]
10. Vadyala, S.R.; Betgeri, S.N.; Matthews, J.C.; Matthews, E. A review of physics- machine learning in civil engineering. Results Eng.

2022, 13, 100316. [CrossRef]
11. Wang, H.; Li, B.; Gong, J.; Xuan, F.G. Machine learning-based fatigue life prediction of metal materials: Perspectives of physics-

informed and data-driven hybrid methods. Eng. Fract. Mech. 2023, 284, 109242. [CrossRef]
12. Sarker, I.H. Machine Learning: Algorithms, Real-World Applications and Research Directions. SN Comput. Sci. 2021, 2, 160.

[CrossRef]
13. San, O.; Rasheed, A.; Kvamsdal, T. Hybrid analysis and modeling, eclecticism, and multifidelity computing toward digital twin

revolution. GAMM Mitteilungen 2021, 44, 2. [CrossRef]
14. Zhang, D.; Del Rio-Chanona, E.A.; Petsagkourakis, P.; Wagner, J. Hybrid physics-based and data-driven modeling for bioprocess

online simulation and optimization. Biotechnol. Bioeng. 2019, 116, 2919–2930 [CrossRef]
15. Erge, O.; van Oort, E. Combining physics-based and data-driven modeling in well construction: Hybrid fluid dynamics modeling.

J. Nat. Gas Sci. Eng. 2022, 97, 104348. [CrossRef]
16. Dissanayake, M.W.M.G.; Phan-Thien, N. Neural-network-based approximations for solving partial differential equations.

Commun. Numer. Methods Eng. 1994, 10, 195–201. [CrossRef]
17. Lagaris, I.; Likas, A.; Fotiadis, D. Artificial neural networks for solving ordinary and partial differential equations. IEEE Trans.

Neural Netw. 1998, 9, 987–1000. [CrossRef] [PubMed]
18. Tarkhov, D.; Vasilyev, A. New neural network technique to the numerical solution of mathematical physics problems. I: Simple

problems. Opt. Mem. Neural Netw. (Inf. Opt.) 2005, 14, 59–72.
19. Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics-informed neural networks: A deep learning framework for solving forward

and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 2019, 378, 686–707. [CrossRef]
20. Vasiliev, A.N.; Tarkhov, D.A. Neural network solution to the problem on porous catalyst. SPbPU J. Phys. Math. 2008, 6, 110–112.
21. Tarkhov, D.A.; Vasilyev, A.N. Mathematical Models of Complex Systems on the Basis of Artificial Neural Networks. Nonlinear

Phenom. Complex Syst. 2014, 17, 327–335.
22. Lazovskaya, T.; Malykhina, G.; Tarkhov, D. Physics-Based Neural Network Methods for Solving Parameterized Singular

Perturbation Problem. Computation 2021, 9, 97. [CrossRef]
23. Karniadakis, G.E.; Kevrekidis, I.G.; Lu, L.; Perdikaris, P.; Wang, S.; Yang, L. Physics-informed machine learning. Nat. Rev. Phys.

2021, 3, 422–440. [CrossRef]
24. Cuomo, S.; DiCola, V.S.; Giampaolo, F.; Rozza, G.; Raissi, M.; Piccialli, F. Scientific Machine Learning through Physics—Informed

Neural Networks: Where we are and What’s Next. J. Sci. Comput. 2022, 92, 88. [CrossRef]
25. Arthurs, C.J.; King, A.P. Active training of physics-informed neural networks to aggregate and interpolate parametric solutions to

the Navier-Stokes equations. J. Comput. Phys. 2021, 438, 110364. [CrossRef]
26. Wang, R.; Maddix, D.; Faloutsos, C.; Wang, Y.; Yu, R. Bridging Physics-based and Data-driven modeling for Learning Dynamical

Systems. In Proceedings of the 3rd Conference on Learning for Dynamics and Control, PMLR, Virtual, 7–8 June 2021; Volume 144,
pp. 385–398.

27. Liu, Q.; Liang, J.; Ma, O. A physics-based and data-driven hybrid modeling method for accurately simulating complex contact
phenomenon. Multibody Syst. Dyn. 2020, 50, 97–117. [CrossRef]

28. Garg, S.; Chakraborty, S.; Hazra, B. Physics-integrated hybrid framework for model form error identification in nonlinear
dynamical systems. Mech. Signal Process. 2022, 173, 109039. [CrossRef]

29. Rajendra, P.; Brahmajirao, V. Modeling of dynamical systems through deep learning. Biophys. Rev. 2020, 12, 1311–1320. [CrossRef]
[PubMed]

http://doi.org/10.1137/060663660
http://dx.doi.org/10.1002/mma.5205
http://dx.doi.org/10.1109/ACCESS.2020.2987324
http://dx.doi.org/10.1016/j.jmsy.2022.04.004
http://dx.doi.org/10.1016/j.rineng.2021.100316
http://dx.doi.org/10.1016/j.engfracmech.2023.109242
http://dx.doi.org/10.1007/s42979-021-00592-x
http://dx.doi.org/10.1002/gamm.202100007
http://dx.doi.org/10.1002/bit.27120
http://dx.doi.org/10.1016/j.jngse.2021.104348
http://dx.doi.org/10.1002/cnm.1640100303
http://dx.doi.org/10.1109/72.712178
http://www.ncbi.nlm.nih.gov/pubmed/18255782
http://dx.doi.org/10.1016/j.jcp.2018.10.045
http://dx.doi.org/10.3390/computation9090097
http://dx.doi.org/10.1038/s42254-021-00314-5
http://dx.doi.org/10.1007/s10915-022-01939-z
http://dx.doi.org/10.1016/j.jcp.2021.110364
http://dx.doi.org/10.1007/s11044-020-09746-w
http://dx.doi.org/10.1016/j.ymssp.2022.109039
http://dx.doi.org/10.1007/s12551-020-00776-4
http://www.ncbi.nlm.nih.gov/pubmed/33222032


Computation 2023, 11, 168 27 of 27

30. Yuan, D.; Liu, W.; Ge, Y.; Cui, G.; Shi, L.; Cao, F. Artificial neural networks for solving elliptic differential equations with boundary
layer. Math. Methods Appl. Sci. 2022, 45, 6583–6598. [CrossRef]

31. Zhang, D.; Guo, L.; Karniadakis, G.E. Learning in Modal Space: Solving Time-Dependent Stochastic PDEs Using Physics-Informed
Neural Networks. SIAM J. Sci. Comput. 2020, 42, A639–A665. [CrossRef]

32. Lazovskaya, T.V.; Tarkhov, D.A.; Vasilyev, A.N. Parametric Neural Network Modeling in Engineering. Recent Patents Eng. 2017,
11, 10–15. [CrossRef]

33. Amini Niaki, S.; Haghighat, E.; Campbell, T.; Poursarti, A.P.; Vaziri, R. Physics-informed neural network for modelling the
thermochemical curing process of composite-tool systems during manufacture. Comput. Methods Appl. Mech. Eng. 2021, 384,
113959. [CrossRef]

34. Xu, H.; Zhang, W.; Wang, Y. Explore missing flow dynamics by physicsinformed deep learning: The parameterized governing
systems. Phys. Fluids 2021, 33, 095116. [CrossRef]

35. Basir, S.; Inanc, S. Physics and Equality Constrained Artificial Neural Networks: Application to Partial Differential Equations.
arXiv 2021, arXiv:2109.14860.

36. Zobeiry, N.; Humfeld, K.D. A Physics-Informed Machine Learning Approach for Solving Heat Transfer Equation in Advanced
Manufacturing and Engineering Applications. Eng. Appl. Artif. Intell. 2021, 101, 104232 [CrossRef]

37. Rao, C.; Sun, H.; Liu, Y. Physics-informed deep learning for incompressible laminar flows. arXiv 2021, arXiv:2002.10558.
38. Hlaváček, V.; Marek, M.; Kubíček, M. Modelling of chemical reactors—X Multiple solutions of enthalpy and mass balances for a

catalytic reaction within a porous catalyst particle. Chem. Eng. Sci. 1968, 23, 1083–1097. [CrossRef]
39. Shemyakina, T.A.; Tarkhov, D.A.; Vasilyev, A.N. Neural Network Technique for Processes Modeling in Porous Catalyst and Chemical

Reactor; Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics); Springer: Berlin/Heidelberg, Germany, 2016.

40. Riedmiller, M.A.; Braun, H. A direct adaptive method for faster backpropagation learning: The RPROP algorithm. IEEE Int. Conf.
Neural Netw. 1993, 1, 586–591.

41. Gorbachenko, V.I.; Lazovskaya, T.V.; Tarkhov, D.A.; Vasilyev, A.N.; Zhukov, M.V. Neural Network Technique in Some Inverse Problems
of Mathematical Physics; Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics); Springer: Berlin/Heidelberg, Germany, 2016.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1002/mma.8192
http://dx.doi.org/10.1137/19M1260141
http://dx.doi.org/10.2174/1872212111666161207155157
http://dx.doi.org/10.1016/j.cma.2021.113959
http://dx.doi.org/10.1063/5.0062377
http://dx.doi.org/10.1016/j.engappai.2021.104232
http://dx.doi.org/10.1016/0009-2509(68)87093-9

	Introduction
	Materials and Methods
	Benchmark Problems
	Modelling Bending of the Cantilever Rod under Load
	Non-Stationary Problem of a Thermal Explosion in the Plane-Parallel Case 
	The Problem with an Equation of Mixed Type 

	Computational Experiments and Results
	Modelling Bending of the Cantilever Rod under Load
	PINN Model 
	PPINN Model
	Initial PINN and PPINN Models
	Adapting PINN and PPINN Models

	Non-Stationary Problem of a Thermal Explosion in the Plane-Parallel Case
	PINN Model
	PPINN Model
	Initial PINN and PPINN Models
	Adapting PINN and PPINN Models

	The Problem with an Equation of Mixed Type
	PINN Model
	PPINN Model
	Initial PINN and PPINN Models
	Adapting PINN and PPINN Models
	Experiment with a Small Number of Measurements


	Conclusions
	References

