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Abstract: Time-series analysis is a widely used method for studying past data to make future predic-
tions. This paper focuses on utilizing time-series analysis techniques to forecast the resource needs of
logistics delivery companies, enabling them to meet their objectives and ensure sustained growth.
The study aims to build a model that optimizes the prediction of order volume during specific time
periods and determines the staffing requirements for the company. The prediction of order volume in
logistics companies involves analyzing trend and seasonality components in the data. Autoregressive
(AR), Autoregressive Integrated Moving Average (ARIMA), and Seasonal Autoregressive Integrated
Moving Average with Exogenous Variables (SARIMAX) are well-established and effective in cap-
turing these patterns, providing interpretable results. Deep-learning algorithms require more data
for training, which may be limited in certain logistics scenarios. In such cases, traditional models
like SARIMAX, ARIMA, and AR can still deliver reliable predictions with fewer data points. Deep-
learning models like LSTM can capture complex patterns but lack interpretability, which is crucial
in the logistics industry. Balancing performance and practicality, our study combined SARIMAX,
ARIMA, AR, and Long Short-Term Memory (LSTM) models to provide a comprehensive analysis
and insights into predicting order volume in logistics companies. A real dataset from an international
shipping company, consisting of the number of orders during specific time periods, was used to
generate a comprehensive time-series dataset. Additionally, new features such as holidays, off days,
and sales seasons were incorporated into the dataset to assess their impact on order forecasting and
workforce demands. The paper compares the performance of the four different time-series analysis
methods in predicting order trends for three countries: United Arab Emirates (UAE), Kingdom of
Saudi Arabia (KSA), and Kuwait (KWT), as well as across all countries. By analyzing the data and
applying the SARIMAX, ARIMA, LSTM, and AR models to predict future order volume and trends,
it was found that the SARIMAX model outperformed the other methods. The SARIMAX model
demonstrated superior accuracy in predicting order volumes and trends in the UAE (MAPE: 0.097,
RMSE: 0.134), KSA (MAPE: 0.158, RMSE: 0.199), and KWT (MAPE: 0.137, RMSE: 0.215).

Keywords: SARIMAX; ARIMA; AR; LSTM; logistics; time-series; forecasting; supply chain; machine
learning; neural networks; orders forecasting

1. Introduction

Accurate prediction of order volume is crucial for logistics companies to effectively
allocate resources and meet customer demand. Inadequate resources can lead to delays and
dissatisfied customers, while excessive resources can result in increased costs. Therefore,
developing precise prediction models for order volumes is essential for efficient resource
allocation and successful business planning. However, despite the availability of various
time-series analysis methods and the complexity of the data, determining the most accurate
prediction model remains a challenge in this field. Time-series analysis is a powerful
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technique used to analyze data patterns and trends and make predictions based on his-
torical data within a specific time period. Widely employed in business, economics, and
finance, this approach enables forecasting market trends, analyzing financial data, and
predicting future demand. In conjunction with time-series analysis, machine learning
leverages large datasets to develop predictive algorithms capable of identifying patterns
and generating accurate predictions. By harnessing the power of data, machine learning
empowers businesses to make informed decisions and anticipate future outcomes.

For 3PL providers, accurate order volume prediction is particularly important for
effective resource planning and management. By utilizing advanced techniques such as
time-series analysis and machine learning, 3PL providers can optimize their warehouse
space, transportation resources, and labor allocation. This enables them to meet the ex-
pected demand efficiently, avoid resource shortages or excess, and ultimately enhance
operational efficiency and customer satisfaction. However, given the dynamic nature of
the logistics industry and the diverse factors influencing order volumes, developing accu-
rate prediction models requires ongoing research and improvement. Despite the existing
challenges, the continued advancement of data analysis techniques holds great promise for
improving order volume predictions and enabling more efficient utilization of resources in
the 3PL sector.

This paper aims to evaluate the performance of four distinct time-series analysis meth-
ods: Autoregressive (AR), Autoregressive Integrated Moving Average (ARIMA), Seasonal
Autoregressive Integrated Moving Average with Exogenous Variables (SARIMAX), and
Long Short-Term Memory (LSTM). The current time-series analysis methods employed in
the logistics industry for order volume prediction have certain limitations that affect their
accuracy. The dynamic nature of the logistics sector, characterized by constantly changing
market trends, customer preferences, and external factors, poses a challenge to the existing
methods. These methods may struggle to capture the intricate relationships and complexi-
ties inherent in the data, resulting in suboptimal predictions. Moreover, variations in order
volumes due to seasonal patterns, exogenous variables, and other influential factors further
add to the complexity of accurate prediction. Recognizing the need to overcome these
limitations, our study introduces and evaluates four distinct time-series analysis methods:
SARIMAX, ARIMA, AR, and LSTM. By examining the effectiveness of these methods in
addressing the shortcomings of existing approaches, we aim to enhance decision-making
in shipping operations and contribute to the field of order volume prediction in the logis-
tics industry. The evaluation seeks to identify the most accurate method for improving
decision-making in shipping operations by predicting order volume across three different
countries. By comparing the methods using order volume data obtained from a shipping
company, their effectiveness in predicting order volumes in the United Arab Emirates
(UAE), Kingdom of Saudi Arabia (KSA), Kuwait (KWT), and overall will be examined.

To fit the models and forecast future order volume and trends, the time-series data
will be preprocessed, and the four methods will be applied. The findings of this study
will shed light on the most reliable method for predicting order volumes. Additionally,
the paper will discuss a formula for estimating staffing needs in organizations handling
orders, acknowledging its limitations and emphasizing the need for further research to
enhance its accuracy. In conclusion, accurate prediction of order volumes is crucial for
logistics companies to optimize resource allocation and ensure efficient operations. Time-
series analysis, combined with machine learning algorithms, offers a powerful approach
to forecasting order volumes. Through evaluating different methods, this paper aims to
contribute to the field by identifying the most accurate model for predicting order volume
and enhancing decision-making in the shipping industry.

2. Related Works

Managing staffing levels and order volumes accurately is crucial to a logistics com-
pany’s ability to remain competitive. By using time-series forecasting and machine learning,
logistics demand forecasting can be improved in terms of efficiency and accuracy. The
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literature review summarizes recent studies on time-series forecasting models and machine-
learning techniques for logistics and supply chain forecasting.

According to a study by Singha and Panse [1], when managing supply chains, fore-
casting customer demand is important, but forecasting errors can lead to challenges. The
study examined advanced algorithms for machine learning, such as MLP, CNN, and LSTM
networks, specifically for time-series forecasting. Singha and Panse conducted their analy-
sis using Kaggle’s ‘Store Item Demand Forecasting’ dataset. They created a comparative
forecasting mechanism using the ANN approach to determine the most effective training
technique for predicting demand signals. The results showed that the MLP technique
outperformed other techniques in terms of accuracy estimation, although the characteristics
of the data also influenced the model’s accuracy. Singha and Panse recommended trying
different techniques and preprocessing the data accordingly to achieve better results. By
providing on-time delivery and improving forecasting accuracy, costs can be reduced, and
customer satisfaction can be increased, thereby creating a powerful decision-support tool.
Singha and Panse suggested that future studies should explore other types of ANN for
improved prediction accuracy and even better results.

Lee et al. [2] suggested an enhanced prediction model for container volume in Busan
ports, employing external variables and time-series decomposition techniques. The authors
recognized that container volume data is influenced by various external factors, making
it more complex and diverse than what traditional statistical methods can handle. While
deep learning models excel at analyzing patterns, capturing time-series, external variables,
and outliers, they have not extensively explored the overall trends of container volumes. To
address this, the authors introduced a multivariate LSTM prediction approach combined
with port volume time-series decomposition, resulting in improved prediction accuracy.
It is anticipated that future research focusing on a more detailed approach will further
enhance container volume forecasting capabilities.

Forecasts of containerized freight volumes are crucial for port terminal operators, port
authorities, regulators, and governmental agencies. Ferretti et al. [3] compared multivariate
regression models based on deep learning and seasonal autoregressive integrated moving
averages to illustrate the potential of using deep learning models for forecasting container
throughput. A mapping in latent space is proposed as an innovative representation of
seasonality. According to the study, SARIMA and CNN did not perform as well as recurrent
neural networks in either forecasting scenario. A more accurate forecast can be achieved
by incorporating external regressors and additional available information. According to
the study, adopting deep learning forecasting models is beneficial not only for container
terminal operators but also for local and national government institutions responsible for
port management.

The SARIMA is used in another study by Clarabelle and Gatc [4] to predict the number
of passengers aboard a ship. The study aims to address the issue of inadequate safety
equipment due to the fluctuating visitors to the Thousand Islands. AR (Autoregression) and
MA (Moving Average) parameters were determined using ACF (Autocorrelation Function)
and PACF (Partial Autocorrelation Function) plots. The study used SARIMA because
it can provide short-term predictions with seasonal elements. An analysis of SARIMA
(3,0,1) (1,0,1)7 was conducted to predict 90 days in advance. According to the results of the
study, the predictions obtained were based on predictions for passengers on ships without
COVID-19 outbreaks.

To avoid risks and maximize benefits, a study by Li and Wei [5] examines the impact
of e-commerce and the novel Coronavirus pandemic on the logistics industry. The authors
proposed using freight volume as a measure of logistics needs and LSTM networks as
a predictor model. Based on the Changsha logistics needs prediction index system, the
authors compare LSTM results with the following: Grey Model (1, 1), linear regression,
and backpropagation neural networks. Based on the results, the LSTM model has the
smallest prediction errors compared to other models used to predict regional logistics
needs post-epidemic. As well as noting several limitations, the study suggested that the
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LSTM network could be further optimized, including the subjective selection of the index
system. Research on regional logistics forecasting indexes should be extended to other
angles in the future, according to the authors.

Fadda et al. [6] introduce a novel approach to address the challenges faced in managing
vehicle fleets in last-mile logistics. With the rise of the on-demand economy and the
increasing demand for fast and extensive parcel deliveries, last-mile operators often rely
on third-party services and rented vehicles to optimize operational costs. To estimate the
required quantity and types of vehicles for the next day’s deliveries, the authors tackle the
Tactical Capacity Planning (TCP) problem. They propose a solution that combines machine
learning and optimization techniques to forecast vehicle requirements using historical data.
Their approach introduces the concept of microzones in the city and solves the deterministic
Variable Cost and Size Bin Packing Problem (VCSBPP). The paper provides a detailed
description of the implementation, examines various forecasting methods, and compares
their performance. Significantly, this study represents the first attempt to incorporate
microzones in demand forecasting for the TCP problem. The paper concludes by discussing
related approaches, outlining the methodology, presenting the results, and suggesting
future directions.

The study by Bruni et al. [7] explores the challenges and solutions in the last-mile
delivery sector, which is affected by the growing urban population and increased demand
for services and goods. The study focuses on the adoption of third-party logistics (3PL) as a
management solution to enhance efficiency and mitigate uncertainties. The authors discuss
the Variable Cost and Size Bin Packing problem with Stochastic Items (VCSBPPSI) and the
limitations of traditional solvers. They propose a machine learning (ML) heuristic based
on supervised classification techniques to address these limitations and improve solution
accuracy. The study highlights the contributions of the proposed ML heuristic, including
its application to other two-stage stochastic problems, its independence from other solution
methods, and its integration into a real case study.

The growing global demand for power load forecasting has led to the development of
the Informer model, which aims to predict future power loads using historical load data.
Xu et al. [8] proposed a multi-step power-load forecasting model based on Informer, em-
ploying a seq2seq structure with a sparse self-attention mechanism and specific input and
output modules. By effectively addressing long-range relationships in time-series data and
leveraging the parallel advantages of self-attention, the Informer model improves both pre-
diction accuracy and efficiency. The authors validate the model by training, verifying, and
testing it using the power-load dataset from the Taoyuan substation in Nanchang. Compar-
ative analysis against traditional models, including RNN, LSTM, and LSTM with attention
mechanisms, demonstrates the superior performance of the Informer-based power-load
forecasting model, particularly within 1440 time steps. This research contributes to the
potential of the Informer model in power-load forecasting, offering more refined predictions
for complex application scenarios and valuable insights for long-term grid system planning.
Future research will focus on refining the model through improved experimental environ-
ments, exploring the incorporation of additional environmental factors, and investigating
its application in other domains, such as photovoltaic and wind power.

3. Methodology
3.1. Data Collection

The statistical data used in this paper was collected from the database of a shipping
company. The data was exported from the database using NetSuite, a comprehensive
software suite that integrates various business functions such as accounting, ERP, CRM,
and e-commerce. The dataset focused on the volume of orders during specific time peri-
ods, collected from different countries and clients. The dataset comprises approximately
8,505,971 records. It contains various information, including client names, order placement
and receipt dates, delivery country, and shipment description. The data used in the ex-
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periment consists of the daily volume of orders, covering a time frame of 730 days from
1 January 2021 to 31 December 2022.

3.2. Preprocessing

The data collection process involved using NetSuite to gather daily order information
from 2021 to 2022, including deliveries, returns, and closures. Each country’s order count
was separately recorded. Before proceeding with the data analysis, several preprocessing
steps were implemented. This involved cleaning the data to handle missing values and
removing test-generated orders that could distort the results. Empty or duplicated values
were eliminated using MS Excel to ensure data accuracy and consistency. After these
operations, the dataset included the following columns: date, order counts for UAE,
Kuwait, and KSA, counts for delivered, closed, and returned orders, a column indicating
public holidays with corresponding descriptions, and a column indicating sales seasons.
The final dataset consisted of 730 rows, properly arranged and ready for further analysis.
Table 1 presents the size and type of the dataset across the countries examined.

Table 1. Data set size and type across studied countries.

Country Years Type of Data Columns Prior-
Preprocessing

Columns Post-
Preprocessing

Number of
Orders

UAE 2021–2022 Daily Data 12 16 4,285,173
KSA 2021–2022 Daily Data 12 16 3,555,205
KWT 2021–2022 Daily Data 12 16 678,903

All Countries 2021–2022 Daily Data 12 16 8,519,281
Data size prior to preprocessing: 7.55 GB.

3.3. Models and Procedure

In this experiment, we evaluated the performance of four time-series analysis models,
namely SARIMAX, ARIMA, AR, and LSTM, for predicting future order volumes in a
shipping company. SARIMAX is a classic model that combines autoregressive, moving
average, and seasonal factors for data modeling. ARIMA utilizes autoregressive and
moving average components, while AR solely relies on autoregressive factors. In contrast,
LSTM is a deep learning model capable of capturing long-term dependencies in time-series
data. These models were chosen due to their widespread use in time-series analysis and
their proven effectiveness in predicting future values. The accuracy of predicting future
order volumes served as the evaluation criterion for each model’s performance.

SARIMAX: A SARIMAX model incorporates extra external predictors, or exogenous
variables, to extend the traditional ARIMA model. Unlike ARIMA, this model takes
seasonality and external factors into account and assumes that the time series is stationary.
SARIMAX can provide more accurate forecasts by capturing the effects of external factors
on the time series [4]. The application of seasonal difference to time-series data can remove
seasonal fluctuations, as indicated by the following equation for SARIMA [9]:

Φp(Bs)φp(B)(1− Bs)D(1− B)dyt = ΘQ(Bs)θq(B)εt (1)

ARIMA: An ARIMA, a combination of an autoregressive model and a moving average
model, is an effective technique for analyzing and stabilizing non-stationary time-series
data. As a result, we obtain the following equation [9]:

φp(B)(1− Bs)dyt = θq(B)εt (2)

AR: the autoregressive model (AR) assumes that a variable’s current value is a linear
combination of its past values plus a random error term. Economic, finance, and engineer-
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ing fields use this model to forecast future values of a time series by analyzing its past
behavior. The AR model is mathematically expressed by the following equation [10].

y_t = c + Σ_(i = 1)̂pϕ_iy_(t− i) + ε_t (3)

LSTM: LSTM is an innovative and powerful architecture for deep learning based
on recurrent neural networks (RNN) [11]. It was developed to overcome the problem of
vanishing gradients that are encountered by traditional RNNs during training. Speech
recognition and handwriting recognition are two of the many tasks in which LSTM net-
works are used today. As this architecture captures underlying information between events
with unknown time lags, it is particularly suitable for analyzing time-series data. A typical
LSTM unit or neuron consists of various components, as depicted in Figure 1, such as a cell,
an input gate, an output gate, and a forget gate [11].
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Figure 1. The organization of an LSTM unit.

The diagram illustrates an activation vector for each of the gates in memory, input,
output, and forget as ft, it, and ot, respectively. The LSTM unit takes input vector xt and
generates a vector representing the hidden state ht while preserving the cell state vector ct
and cell input activation vector c̃t. These gates operate collaboratively using the following
equations, where this equation involves weight matrices and bias vectors denoted by W, U,
and b. And σg, σc, and σh represent distinct activation functions. The operator ◦ denotes
element-wise multiplication [11].

ft = σg
(
W f xt + U f ht − 1 + b f

)
it = σg(Wixt + Uiht − 1 + bi)

ot = σg(Woxt + Uoht − 1 + bo)
c̃t = σc(Wcxt + Ucht − 1 + bc)

ct = ft ◦ ct − 1 + it ◦ c̃t
ht = ot ◦ σh(ct)

(4)

The LSTM (Long Short-Term Memory) model receives an input, x(t), which can either
be the output of a CNN (Convolutional Neural Network) or the input sequence itself. The
model takes into account the inputs from the previous time step, ht−1 and ct−1. It generates
an output, ot, for the current time step and produces the values ct and ht to be utilized by
the next time step LSTM.

The LSTM equations additionally compute ft, it, and c̃t, which are internal values
utilized by the LSTM to generate ct and ht [11].

The aforementioned equations are specific to a single time step, requiring recomputa-
tion for subsequent time steps. For instance, if there is a sequence of 10 time steps, these
equations will be executed 10 times, once for each respective time step. Notably, the weight
matrices (Wf, Wi, Wo, Wc, Uf, Ui, Uo, Uc) and biases (bf, bi, bo, bc) remain constant over
time. Therefore, the same weight matrices are employed to calculate outputs for different
time steps, ensuring consistency in the model’s computations [11].
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4. Experiments and Results

These experiments describe how time-series forecasting techniques can be used to
predict order volumes in logistics companies. Identifying reliable and accurate forecasting
methods for these critical business metrics was the objective of this study. Furthermore,
these techniques can be incorporated into logistics operations to achieve potential benefits.
Our predictions were based on data collected from a shipping company. We then compared
these predictions with actual order volume data to predict future order volume in the
logistics industry. Figure 2 illustrates the process flow for the study.
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The experiments in this study were conducted on Intel® Core™ i7-8550U and running
Microsoft Windows 11 Pro 64-bit. The system is implemented with version 3.10 of the
Python programming language, which is one of the most popular data science and DM
languages; it is portable and open-source.

4.1. Descriptive Statistics

The order volume of the company varies across different operating countries, with
some countries experiencing high volumes while others have relatively low volumes.
Unique patterns and trends specific to the company and its operating countries were
observed in the data. Certain countries exhibit higher demand for logistics services, and
there are consistent variations in demand throughout the year. By analyzing the data
characteristics in detail, we gain insights into the factors influencing demand and how they
differ across countries.
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To explore the relationships between variables in the time-series data, a heatmap
was used to visualize correlations. The heatmap revealed a strong correlation between
variables such as “Delivered”, “KSA”, and “Orders”. However, since these variables are
part of the “Orders” column, they cannot be used as exogenous variables. On the other
hand, the heatmap indicated a strong association between the “Sales” and “Holidays”
columns with the “Orders” column. Based on this observation, the decision was made
to include the “Sales” and “Holidays” columns as exogenous variables in the SARIMAX
model. This inclusion improved the model’s performance and enabled better capturing
of the underlying structure of the data. Figure 3 illustrates the correlation between the
incorporated features.
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4.2. Stationarity Test

In time-series analysis, determining stationarity is crucial as it assesses whether the
statistical properties of a time series remain constant over time. Stationary time series
exhibit consistent mean, variance, and autocorrelation, while non-stationary time series
undergo changes in these properties. To test for stationarity, the Dickey–Fuller test was
employed in this study [12]. This statistical test involves a null hypothesis that assumes
the data is non-stationary. If the null hypothesis is rejected, it indicates stationarity. The
adfuller() function from the statsmodels.tsa.stattools library was utilized to calculate the
test statistic and p-value, using a significance level of 0.05. By comparing the test statistic
to the critical value, it was determined whether to reject the null hypothesis. If the test
statistic was lower than the critical value, the data was considered stationary; otherwise, it
was deemed non-stationary. Based on the results of the Dickey–Fuller test, the time-series
data used in the study was found to be stationary.

4.3. Data Splitting

We applied the 80:20 split method, a commonly used technique in time-series analysis
and machine learning. This method divides the dataset into a training set (80%) and a
test set (20%), which are used to train the model and evaluate its performance on unseen
data, respectively. The advantage of this method is that it allows us to assess the model’s
performance in a realistic setting and to detect overfitting or underfitting issues. This
approach is crucial in ensuring that our model will perform well on new data in the future.

4.4. Model Implementation

SARIMAX: It is essential to determine the parameters of the SARIMAX model,
i.e., p, d, q, P, D, and Q, in advance. By using a partial autocorrelation function (PACF)
and an autocorrelation function (ACF), one can examine the presence of stationary and
autocorrelation structures or the SARIMAX model can be used in some packages to identify
the characteristics of the data and set parameters automatically [13].

In order to identify the appropriate parameters for the SARIMAX model, we combined
two methods. To identify significant lags that had a correlation with the time series, we
first examined partial autocorrelation functions (PACF) and autocorrelation functions
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(ACF). As a result, we were able to estimate the orders of the seasonal and non-seasonal
components of the model, namely p, d, q, P, D, and Q. The plots in Figure 4 illustrate partial
autocorrelation functions (PACFs) and autocorrelation functions (ACFs). In addition, we
applied a hyperparameter tuning procedure to maximize the model’s performance. Various
combinations of parameters were systematically tested in the code, and the parameter
combination that produced the lowest mean squared error (MSE) was selected.
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Non-seasonal component orders:

By identifying the lag at which the PACF value drops to zero or close to zero, we can
determine p, the order of the autoregressive (AR) component [14].
By identifying the lag at which the ACF value drops to zero and near zero, we were able to
determine q, which is the order of the MA component [14].
Using the ACF plot, we determined the value of d, which represents the degree of differ-
encing. It is necessary to differentiate until the ACF plot shows a gradual decline [14].

Seasonal component orders:

In order to obtain the seasonal autoregressive (SAR) component order, the seasonal differ-
ences of time series were plotted using the PACF statistic [14].
Using the ACF plot of seasonal differences, we determined the order of the seasonal moving
average (SMA) component [14].
Using the seasonal ACF plot, we were able to determine the value of D, which is the degree
of seasonal differentiation. ACF plots must differ until they show a gradual decline over
time [14].

The results of the finest parameters analysis can be seen in Table 2. Using these
parameters, we will create SARIMAX, predicting future trends in order volumes in the
countries listed.



Computation 2023, 11, 141 10 of 17

Table 2. SARIMAX inputs.

Country/Region Seasonal p d q P D Q m

UAE Yes 4 0 4 2 1 2 7

KSA Yes 4 0 4 2 1 3 7

KWT Yes 3 0 3 2 1 1 7

All Countries Yes 3 0 3 3 1 3 7

ARIMA: The values for the parameters p, d, and q of the ARIMA model are determined
by analyzing the autocorrelation and partial autocorrelation plots. Once the parameters
are determined, the ARIMA model is trained on the training set and then tested on the
testing set. The efficacy of the model is evaluated using root mean squared error (RMSE)
and mean squared error (MSE).

To ensure that the residuals of the model follow a normal distribution, diagnostic
plots are created for the model’s predictions and actual values. These plots help assess the
goodness of fit and validate the assumptions of the ARIMA model. The results of the finest
parameters analysis can be seen in Table 3.

Table 3. ARIMA inputs.

Country/Region Seasonal p d q

UAE Yes 10 2 7

KSA Yes 11 1 9

KWT Yes 10 1 7

All Countries Yes 14 1 8

AR: To implement the AR model in Python, we used the pandas [12] library to load
the dataset and set the index to the date column. We then used the statsmodels library [12]
to fit the AR model and predict future values based on the best number of lags determined
by the AIC value. To evaluate the model’s performance, we calculated the mean squared
error (MSE), root mean squared error (RMSE), and mean absolute percentage error (MAPE).
The actual and predicted values were also plotted to visualize the model’s accuracy. The
implementation of the AR model does not require stationarity testing or differencing, as it
is designed to work with stationary time-series data.

LSTM: In order to build the model, we utilized the Python programming language
along with the pandas, Keras, NumPy, and matplotlib libraries [12]. The dataset was loaded
using pandas and preprocessed by dropping the date column and normalizing the features
and target. We then created input and target sequences using a sliding window approach
with a window size of 7. There were two sets of data, training and testing, with 80 percent
of the data used for training. We then constructed an LSTM model using Keras with a
single hidden layer containing 100 neurons and compiled it using mean squared error as
the loss function and Adam optimizer. The training process involved training the model on
the training set using a batch size of 32 for 30 epochs. After training, we made predictions
on the test data and denormalized both the predictions and test data to calculate the root
mean squared error (RMSE) and mean absolute percentage error (MAPE) using NumPy.

4.5. Data Analysis

In order to thoroughly evaluate the performance of our time-series forecasting model,
the residuals were visually analyzed using the plot_diagnostics() function to produce
histograms, normal Q-Q plots, and correlogram plots. These diagnostic plots helped us to
understand the distribution of the residuals, identify any patterns or biases, and assess the
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relationship between the residuals and their lags. Figure 5 illustrates the plot diagnostics
results for the All Courtiers dataset.
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Diagnostic Plots for Time-Series Models

Standardized Residual Plot: The residuals are shown in this plot standardized by
their estimated standard deviations. Normally distributed residuals should be scattered
randomly around the zero line without any pattern, and their values should fall within
the [−2, 2] range when the model has been correctly specified. In the plot, if there are any
patterns or trends, it may indicate that the model needs to be fine-tuned [14].

Histogram plus Estimated Density: A histogram and a kernel density estimate are used
to illustrate the residual distribution. Normally distributed residuals should be represented
by a normal histogram and density plot. Using the plot, we can identify any patterns in the
residual data that seem unusual, such as skewness or bimodality [14].

Normal Q-Q Plot: In this plot, the residual distribution is compared with a theoretical
normal distribution. It would be expected that the residuals would follow a straight line
if the distribution were normally distributed. When the residuals deviate from the line,
it means that the residuals are not normally distributed. We can use the plot to identify
outliers or other unusual patterns in the residuals [14].

Correlogram: In this plot, the residuals are autocorrelated at various lags. It would be
expected that the autocorrelation values for all lags would be close to zero if the residuals
were uncorrelated. A significant autocorrelation value would be expected at some lags if
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the residuals are correlated. We can use the plot to identify any patterns or cycles in the
residuals that were missed by the model [14].

4.6. Evaluation Metrics

The evaluation of the models in this study was carried out using Root Mean Square Error
(RMSE) and Mean Absolute Percentage Error (MAPE) shown in Equations (5) and (6), as
given below:

MAPE =
100%

n

n

∑
t=1

∣∣∣∣At − Ft

At

∣∣∣∣ (5)

The division of the discrepancy between the actual value (At) and the forecasted value
(Ft) by the actual value At yields a ratio. By taking the absolute value of this ratio for each
forecasted point in time and summing them, we obtain a total. Finally, this total is divided
by the number of fitted points (n) to obtain a measure of accuracy [15].

RMSE =

√
∑N

i=1 ‖y(i)− ŷ(i)‖2

N
(6)

In the given scenario, N represents the total count of data points. Each measurement
is denoted as y(i), while its corresponding prediction is indicated as ŷ(i) [16].

It is crucial to note that RMSE (Root Mean Square Error) is not insensitive to the scale
of the data. Consequently, when comparing models using this evaluation metric, the scale
of the data can impact the outcomes. To address this concern, it is commonly recommended
to compute RMSE on standardized data, where the scale has been adjusted or transformed
to eliminate inherent dissimilarities [16].

By employing MAPE and RMSE in this thesis, we leveraged the most common and
widely accepted techniques in the field to evaluate the performance of our predictive
models. These evaluation metrics have been extensively used and acknowledged in the
literature, enabling us to compare and assess the accuracy of our predictions against
established benchmarks and prior research findings.

4.7. Results

The outcomes are evaluated using the suggested criteria and presented in tabular
form to demonstrate the predictive capability of order volume trends. The study utilized
the SARIMAX, ARIMA, LSTM, and AR models, and the predictions were made for a
period of 146 days. The performance of the model was evaluated using the Mean Absolute
Percentage Error (MAPE) and Root Mean Squared Error (RMSE) metrics. The results are
depicted through figures, which compare the predicted trend with the actual trend and
provide insight into the accuracy of the model. Table 4 shows the MAPE and RMSE metrics
for the models in this project.

Table 4. Appraisal of every model.

Model Metrics/Region All Countries UAE KSA KWT

SARIMAX
MAPE 0.087 0.097 0.158 0.137

RMSE 0.127 0.134 0.199 0.215

ARIMA
MAPE 0.143 0.157 0.196 0.192

RMSE 0.287 1.25 0.309 0.414

LSTM
MAPE 0.108 0.156 0.172 0.185

RMSE 0.169 0.259 0.214 0.367

AR
MAPE 0.153 0.206 0.218 0.194

RMSE 0.287 0.3772 0.302 0.4097
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According to the results, SARIMAX can provide an effective tool for predicting order
volume for shipping companies, but its performance depends on the country or region.
Shipping companies may find these findings useful in planning and managing their logistics
operations more efficiently. Figure 6 illustrates how the SARIMAX model fares according
to 80:20.
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Figure 6 illustrates a comparison between the predicted and actual values across all
countries obtained from the SARIMAX model, which incorporates Seasonal Autoregressive
Integrated Moving Average with Exogenous Variables. The data was split into an 80:20
ratio for training and testing purposes. The figure is color-coded, with orange representing
the predicted values and blue representing the actual values, while the gray lines indicate
an off or holiday on that day. Through a visual analysis of the orange and blue lines, we
can assess the model’s performance. Notably, the orange line closely aligns with the blue
line, indicating that the model accurately predicts the observed values.

5. Conclusions

This study compared the effectiveness of four different time-series analysis methods
for forecasting order volume in three countries: UAE, KSA, and KWT. The study collected
daily new order data from a shipping company and preprocessed the time-series data. The
four methods used for modeling and forecasting were SARIMAX, ARIMA, LSTM, and AR.

Based on the comparison of prediction outcomes, SARIMAX showed exceptional
performance in predicting both order volume and trend across all countries. Therefore, the
study concluded that SARIMAX is the most accurate model for predicting order volumes
in the combined countries as well as individually for UAE, KSA, and KWT. These findings
can help shipping companies in managing and planning their order volumes effectively.
Operational efficiency plays a crucial role in helping shipping companies estimate the time
and manpower required for packing based on the predicted order volume. This involves
analyzing the average time taken to pack different types of orders, allowing companies
to establish benchmarks and standards for packing time and manpower requirements.
By utilizing this information, along with the forecasted order volume, companies can
effectively estimate the necessary resources needed for packing. The combination of
operational efficiency and accurate forecasts provides valuable insights into the expected
workload, enabling shipping companies to optimize their manpower allocation and plan
their packing activities accordingly. Future research can explore the inclusion of other
factors in order volume prediction models.

Additionally, the study provided a formula for predicting staffing needs based on
order volume. The formula suggests multiplying the expected order volume by the tasks
per order amount (usually 0.2) to estimate the number of tasks. Then, dividing the expected
tasks by the number of hours each agent is expected to work per month (typically 160)
provides an estimate of the number of agents needed. It is important to consider other



Computation 2023, 11, 141 14 of 17

factors, such as agent skills, order complexity, and operational considerations, as the
formula provides a rough estimate. This formula can guide businesses in determining
staffing requirements, especially in industries with seasonal or fluctuating demand.

6. Discussion

In order to enhance the predictions made by a previous study [4], we worked on
the data used in their study. The data used in their study was downloaded in order to
apply our technique and model to determine if the predictions could be improved. A 90:10
split technique was used to study the data, which was the same technique they used, and
the same sample of data was used without the outbreak of COVID-19 from 2018 to 2020.
Our results were enhanced, and better predictions were obtained by using the SARIMAX
model, which uses ships departing as an exogenous variable. We used this variable since
the heatmap showed a high correlation between the number of passenger ships and the
ships departing. Ports usually have a schedule or timetable that shows when ships are
expected to arrive and depart. These times are often communicated to the port in advance
by the shipping company or the ship’s captain [17]. Therefore, it would be easy to obtain
the number of ships departing in advance and use it for predictions. It is possible for a
port’s departure number to differ from its initial schedule because of unexpected delays or
changes in plans. On the same dataset, our model and their model are compared in Table 5,
with ours being the first model in the table.

Table 5. Number of passenger ships from Port X comparison.

# Splitting
Technique Model p d q P D Q m X RMSE Values

1 (90:10) SARIMAX 5 0 1 1 0 1 7 Ship_Departs 627,763

2 (90:10) SARIMA 3 0 1 1 0 1 7 - 645,296

3 (90:10) SARIMA 3 0 1 2 0 1 7 - 688,982

4 (90:10) SARIMA 3 0 1 1 0 2 7 - 694,836

5 (90:10) SARIMA 3 0 1 2 0 0 7 - 739,864

6 (90:10) SARIMA 3 0 1 1 0 0 7 - 739,982

7 (90:10) SARIMA 3 0 1 0 0 2 7 - 799,582

8 (90:10) SARIMA 3 0 1 0 0 1 7 - 808,420

9 (90:10) SARIMA 3 0 1 0 0 0 7 - 810,832

10 (90:10) SARIMA 3 0 1 2 0 2 7 - 888,593

11 (90:10) SARIMA 3 0 1 2 0 2 7 - 888,593

12 (90:10) SARIMA 3 0 1 2 0 1 7 - 988,982

In addition to employing time-series analysis techniques, both studies share a common
goal of utilizing predictive models to inform decision-making and optimize resource
allocation within their respective industries. While the first study focuses on forecasting the
number of passengers aboard ships using SARIMA, our study extends this line of research
by examining the performance of various time-series models, including SARIMAX, in
predicting order volume within logistics companies. By exploring different industries and
modeling approaches, both studies contribute to the growing body of knowledge on the
application of time-series analysis for accurate predictions and efficient planning.

The objective of our study is to enhance the predictions and to obtain better results by
analyzing data correctly. In order to enhance the predictions made by authors of a previous
study [1], we analyzed the data in order to obtain the separate sales amount for each store
and item based on their historical data (https://www.kaggle.com/competitions/demand-
forecasting-kernels-only/data), (accessed on 15 May 2023). Thus, we reduced the number

https://www.kaggle.com/competitions/demand-forecasting-kernels-only/data
https://www.kaggle.com/competitions/demand-forecasting-kernels-only/data


Computation 2023, 11, 141 15 of 17

of rows and created another sheet as a databank. We created a second sheet that shows
the daily sales for all items across all stores. In addition, we ran our LSTM and SARIMAX
models on the data. We divided the amount of the RMSE values by the mean ratio for
the sales column utilizing the same technique as the study to calculate the RMSE values.
We determined the sales amount for each store and item separately using the data from
the databank sheet, taking advantage of the average values for each item in each store
across all days. Table 6 shows the results of the studies. By emphasizing the importance of
exploring different techniques and preprocessing data, our study aligns with the goal of
enhancing operational efficiency and facilitating informed decision-making in supply chain
and logistics management, as highlighted in the previous study. Together, these studies
contribute to the advancement of forecasting accuracy and resource allocation optimization
in the logistics industry.

Table 6. Summary results.

Data Model RMSE Values Mean Ratio

Original Data

CNN LSTM 19.17 52.25

LSTM 18.75 52.25

CNN LSTM 18.75 52.25

MLP 18.50 52.25

Analyzed data using
cumulative sales

LSTM 0.056 26,125.143

SARIMAX 0.237 26,125.143
Source: [1].

7. Limitations

Although this paper has resolved all the research issues and accomplished the objec-
tives, it has brought to light certain constraints.

Due to the company’s infancy, we were unable to use data from 2020 and earlier due
to its inaccuracy, which would have impacted our projections.

The ARIMA, LSTM, SARIMAX, and AR models have multiple parameter ranges
defined in Section 3.3. We may not have selected the optimal parameter range in our
experiments. While we get good results from our models based on the parameter selections
we provide, we do not know if they can be improved with a wider parameter selection
(i.e., outside the range we provide). Since hardware resources are limited, a greater range
of parameter selection will lead to greater time consumption with grid search algorithms
or similar algorithms. This has resulted in a relatively small parameter selection range, and
it will prevent the model from maximizing its capabilities.

Since each country has its own holidays, off days, and sales seasons, using external
variables like sales season and holidays was challenging. In this case, combining data from
different countries becomes difficult.

As a result of a large amount of data, it took a long time to download, analyze, and
arrange it for the study. This is because Excel is not capable of showing all of the data at
once, so we had to split it into quarters so we could handle it better and then collect it again.

8. Future Work

It has been demonstrated in this comparative study that different time-series analysis
models are capable of accurately predicting order volume in three countries; however,
further research will be necessary to enhance our understanding and improve accuracy.
Future work could include further examination of the effect of external variables on order
volume prediction and experimenting with different parameter ranges.

Such work should include additional examinations of the impact of external factors
on order volume prediction, such as gasoline prices, labor costs, service demand, and
geopolitical events.
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It will also be important to find out if better results can be obtained if different
parameter ranges are used for time-series analysis models.

Additionally, future research should focus on identifying alternative methods of
handling large amounts of data more efficiently by examining alternative data analysis
tools and techniques.

Moreover, future research should analyze how different order types affect order
volume prediction and how to incorporate this information into time-series analysis models.

Our future studies will aim to increase the time period of the study to obtain more
accurate predictions since it was only over two years.

Lastly, future research should explore alternative models and utilize datasets from
different countries.
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