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Abstract: In a nuclear power plant (NPP), the used tools are visually inspected to ensure their
integrity before and after their use in the nuclear reactor. The manual inspection is usually performed
by qualified technicians and takes a large amount of time (weeks up to months). In this work, we
propose an automated tool inspection that uses a classification model for anomaly detection. The
deep learning model classifies the computed tomography (CT) images as defective (with missing
components) or defect-free. Moreover, the proposed algorithm enables incremental learning (IL)
using a proposed thresholding technique to ensure a high prediction confidence by continuous
online training of the deployed online anomaly detection model. The proposed algorithm is tested
with existing state-of-the-art IL methods showing that it helps the model quickly learn the anomaly
patterns. In addition, it enhances the classification model confidence while preserving a desired
minimal performance.

Keywords: incremental learning; continual learning; computed tomography; anomaly detection;
classification; industrial inspection

1. Introduction

The term incremental learning (IL) is usually used interchangeably with continual,
lifelong, or sequential learning. It refers to a machine learning paradigm that studies
how model learning occurs as new data or example(s) emerge, even from an infinite data
stream. In particular, it differs from the conventional machine learning approach, such that
it assumes that the training examples appear progressively over time as opposed to having
the entire training dataset initially [1,2]. Thus, the past knowledge from the previous data is
acquired over time and can be extended for future learning and problem solving [3,4]. This
concept of incremental learning is used in different applications in various areas such as
intelligent robotics, unmanned aerial vehicles, and autonomous driving [5]. Because such
an application deals with a dynamic environment, it uses the online or dynamic adaptation
of the model to these changes. A major challenge of incremental learning is the catastrophic
forgetting or interference that occurs when a model is trained with new information, and
this affects the previously learned knowledge. When controlling catastrophic forgetting, the
stability–plasticity dilemma comes into play. The stability–plasticity dilemma is the extent
to which an incremental learning system is plastic enough to fuse new information and
the extent to which it is stable enough to avoid catastrophic interference with consolidated
knowledge [2].

Incremental or continual learning techniques can be categorized into three categories:
regularization-based, dynamic architectures, and complementary learning systems (CLS)
and memory replay approaches, as shown in Figure 1. The regularization-based approach
includes the use of knowledge distillation to enforce the similarity between the network
of previously learned tasks and the current task [6]. However, this kind of method, the
so-called learning without forgetting (LwF), is highly dependent on task relevance and
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training time. The memory-aware synapses (MAS) method uses the sensitivity of the
output function to assign significant weights to the network parameters and is not loss
dependent [7]. The Elastic Weight Consolidation (EWC) method is useful in the supervised
and reinforcement learning space [8]. The dynamic architecture approach includes the
progressive network method, which blocks any change that occurs to the network trained
on previous knowledge while expanding the network’s architectural properties [9]. The
incremental denoising autoencoder method adds neurons for high-loss samples [10]. The
model evaluation on the MNIST [11] and CIFAR-10 [12] datasets showed better performance
when compared to nonincremental denoising autoencoders [2]. The network structure and
weight adaptation method balances the model complexity and empirical risk minimization
through network structure and weight adaptation, and the necessary model complexity is
learned adaptively by the algorithm [13]. Finally, the CLS and memory replay approach
includes different methods based on dual memory and complementary learning systems
theory to mitigate catastrophic forgetting. Eden Beloudah et al. [14] introduced incremental
learning with dual memory (IL2M) and a fine-tuning-based approach. Srivastava et al. [15]
used vector quantization as a replay-based scheme to overcome catastrophic forgetting and
applied it to classify chest X-ray pathologies.

Figure 1. Illustration of the existing continual learning approaches.

In this paper, a new algorithm is proposed to enhance the accuracy of existing IL
methods while ensuring stable training towards a desired prediction accuracy for super-
vised anomaly detection using a classification model. To our knowledge, this is the first
work applying a notion of continual learning for classification-based supervised anomaly
detection on industrial computed tomography (CT) scans. This paper is organized as
follows. Section 2 describes the materials and methods featuring the proposed incremental
learning schemes including the dataset and the proposed algorithms in use. Section 3
discusses the obtained results. Finally, the conclusions and future work are outlined in
Section 4.

2. Materials and Methods

In this work, incremental learning is applied to an automated inspection framework
developed for the X-ray CT inspection of industrial maintenance tools within the nuclear
industry [16]. The maintenance tools need to be properly inspected for discrepancies such
as scratches and missing components, before and after use for nuclear vault inspection.
This manual inspection process can last from a few minutes to months depending on the
complexity of the maintenance tools and the available human resources. It is important
to note that while this manual tool inspection takes place, the nuclear reactor has to
remain shut down to ensure that no missing component of the tool is left behind for safety
reasons. However, this outage time of the nuclear reactor comes at a cost to the nuclear
power plant operators, with a possible extended outage time resulting in an even higher
cost. Hence, the manual tool inspection process can lead to a loss of time, money, and
resources. Therefore, an automated inspection solution, which allows for increased reactor
availability or decreased outage time and a lower cost of human resources due to manual
labor, would play a significant role in this field. The proposed automated tool inspection



Computation 2023, 11, 139 3 of 13

solution aims to analyze the CT scan of the maintenance tool and predict whether it is
defect-free, defective, or anomalous (i.e., with missing components such as spring holders).
Moreover, in practical digital industrial applications, the data acquired are dynamically
increasing over time. Therefore, incremental learning comes into play by allowing the
trained model to learn continually without having to train from scratch each time new data
arrive. There are three major types of incremental learning, including task [3], class, and
domain incremental learning. In this paper, we focused on domain incremental learning, in
which new data streams can appear in the previous or new classes, and the task boundaries
are unknown [17] (see Figure 2). The domain incremental learning is used to train a model in
a stream across various contexts and applications [18]. It preserves past domain knowledge
by enabling the trained model to combine the knowledge learned across different tasks or
domains during the training phase [19].

Figure 2. Illustration of the domain incremental learning. (Adapted from [20]).

The proposed incremental learning scheme presents a dynamic and automated training
mechanism for stable prediction performance. The proposed scheme is integrated into
existing continual learning frameworks for supervised anomaly detection using X-ray
computed tomography images.

2.1. Experimental CT Dataset

The dataset used in this work consists of a set of CT images acquired from a case
study tool used for nuclear power plant maintenance. The CT image scans were acquired
using an industrial CT scanner by Diondo Gmbh [21]. The acquired dataset contained the
2D image projections that were transformed using 3D reconstructions to 2D cross-section
or slice images used in the experimental dataset. Figure 3 shows an example of both the
projection scan and the reconstruction slice of the nuclear power plant tool scanned in five
parts due to the small size of the used scanner [22]. It is worth mentioning that because of
the limited computational resources, the studied defects are introduced in the bottom part
from which the training dataset is built. Each defect is scanned multiple times to consider
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the possible noise related to the scanning artifact (see Table 1). In addition, this allows us to
have more data to feed the incremental learning tasks streamlining.

Figure 3. The used NPP tool (left) with samples of the 2D projection image (middle) and reconstruc-
tion slice (right).

The CT images of the tool were taken with complete and incomplete components. Each
image had a resolution of 1500 × 750 pixels. The dataset consisted of 21 scans categorized
as follows:

• Defect-free scans [M1 and M2] are two reference scans of a complete tool with no
missing pieces.

• Defective scans [M3–M21] are scans with various missing components such as spring
stoppers, an internal disk pin, spring holders, spring support components, and/or
inner disk clips (see Table 1 for more details on the defect types).

Table 1. Summary of the experimental CT dataset provided by our NVS collaborators [22].

CT-Scan Name Defect Picture Image Examples

M1 and M2

M3 and M4

M6, M7,
M8, and M9
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Table 1. Cont.

CT-Scan Name Defect Picture Image Examples

M10, M11,
M12, and M13

M14, M15,
M16, and M17

M18, M19,
M20, and M21

2.2. Anomaly Detection Model

For supervised-based anomaly detection, classification-based models are trained
to distinguish between normal (associated with the defect-free class) and anomalous
(associated with the defective class) slice images. The defect-free and defective slice images
were derived from all the 18 scans of our custom dataset CT data types (M1, M2, and
M6–M21) depending on the presence of the defect in the slice (see Table 1). The input
images were preprocessed by resizing to a shape of 32 × 32, and normalization with a
mean of 0.1000 and a standard deviation of 0.2752 were used. Two different backbone
architectures, ResNet18 and Multilayer Perceptron (MLP), were used to evaluate and
analyze the proposed classification-based incremental learning tasks. Figure 4 shows an
illustration of the classification framework.

Figure 4. Overview of the classification-based method.

2.3. The Proposed Thresholding-Based Algorithms

In this work, we designed two different algorithms based on the thresholding tech-
nique to ensure the optimal possible dynamic training of the classification model. The
proposed thresholding scheme has two main advantages. First, it can be used as an add-on
to any existing baseline algorithms. In other words, this is similar to a plug-and-play set-
ting whereby the proposed scheme is implemented on existing baseline continual learning
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methods making it easy to integrate. Lastly, as each incremental task is introduced and
trained, the proposed soft thresholding scheme can often enhance the model accuracy of
the existing baseline results by training the model following a desired performance, which
is the confidence threshold (Cth). The two proposed thresholding schemes to be applied to
existing IL methods to optimize model performance are defined as follows:

• Soft-thresholding-based training: The soft thresholding scheme uses all exemplars
of the past data (that is, the data used previously for training) and combines them
with the new data.
The flowchart of the proposed scheme as shown in Figure 5 is summarized as follows.
First, the new labelled scans of data are acquired. The next step is to determine whether
old labelled scans of the data exist. If old data scans exist, the soft thresholding scheme
will combine all the old data scans and new data scans and build a balanced dataset
for training. Therefore, an equal number of image instances is represented per class
for each training, validation, and testing set. If no old scans exist, only the new data
scans will be used to build a balanced training set for training. If there is an existing
model, the model is reloaded and used for training; otherwise, a new model is trained.
The model is trained and validated using the training and validation sets, respectively,
and the confidence score is obtained. The model retrains until the confidence score
is greater than a specified confidence threshold (95%) or until the maximum number
of times to repeat training (Rmax) is achieved. The final model is saved. The entire
process continues if new labeled scans of data are received.

Figure 5. Illustration of the proposed thresholding scheme: soft thresholding (without the yellow
box) and selective soft thresholding (with the yellow box).

Algorithm 1 provides the proposed algorithm.
• Selective soft-thresholding-based training: The selective soft thresholding scheme

uses the optimal training dataset selection process to select the old data or scans to be
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combined with the new data during training. The optimal training dataset selection
process involves selecting old scan data whose accuracy fell below the specified
threshold of accth. If no previously trained data fall within the specified threshold
interval [accth, Cth], the threshold accth will automatically be increased gradually
(e.g., by 5% each time) until at least one scan is selected to start the training process.
If no optimal old data are returned, all old data are selected for training. After the
selection of these old data, they are combined with the new data forming the training
set of the task as shown in detail in Algorithm 2. This selection process is very
important because it recognizes the previously trained data that falls outside the
category of the specified accuracy threshold and selects them for further training with
the model. Therefore, this saves some memory by selecting a subset of the old scan
data to be trained further in combination with the new scan data. In addition, this
also provides an opportunity to further train on the data in cases where the model
performance was still below the desired threshold. The flowchart of the selective soft
thresholding scheme is outlined in Figure 5.

Algorithm 1: The proposed soft thresholding training algorithm

1 Input : dataold : all old data
2 datanew : new data
3 modelpath : optimal model
4 Cth : confidence threshold. Default = 95%
5 Rmax : maximum number of training repeat
6 Output: Cop : The new model confidence
7 modelop : path to the optimal model

8 � Build the dataset
9 if dataold = ∅ then

10 dataset = [datanew]
11 else
12 � Compile the dataset
13 dataset = [dataold, datanew]
14 end

15 � Initializations
16 cnt = 0; Cop = 0
17 � Split the dataset into training and validation set
18 trainset, validationset = dataset
19 while cnt < Rmax or Cop < Cth do
20 � Train the model
21 modelpath = train the model (trainset, modelpath)
22 cnt+ = 1
23 � Compute the model confidence
24 Cop, modelop = test the model (validationset, modelpath)
25 end

26 return Cop, modelop
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Algorithm 2: Select optimal scans from old data

1 Input : dataold: data pipeline history
2 modelpath: trained model
3 accth: maximal accuracy threshold
4 Output : datasetop: optimal training dataset

5 Initialization
6 data = ∅
7 while data = ∅ do
8 � Evaluate the model confidence
9 acc, data = evaluate (modelpath, dataold)

10 � Increase the accuracy threshold
11 accth += 5
12 end

13 � Re-select the optimal scans with acc ≤ accth
14 if data = ∅ then
15 datasetop = dataold
16 else
17 datasetop = data
18 end

19 return datasetop

3. Results and Discussion

The two proposed soft thresholding and selective soft thresholding algorithms were
implemented using the PyTorch deep learning framework. For each experimental run, a
pipeline of training sets of two classes (defect-free and defective) was built for the training
of a given scan stream. These continuous training data are known as a task and consist
of a batch of defect-free and defective slice images fed incrementally into the model for
training. This kind of incremental learning follows the domain incremental-learning type,
where the different batches of data are fed from the same predefined classes (see Figure 2).
For each experimental run, the order of the task was shuffled and selected at random
among the available CT scans list (see Table 1). This was carried out to observe whether
the order of the task pipeline had any significant effect on the incrementally trained model
performance. The reported results are the averaged performance of three experimental
runs of the shuffled task pipeline for each algorithm as summarized in the different tables.

3.1. Comparison of the Proposed Soft Thresholding Schemes and the Nonincremental Scheme

To evaluate the improvement of the continual training compared to the static training,
an experiment was conducted by training a classification model with incremental and
nonincremental runs. The obtained performance was compared using the conventional
testing accuracy and a confidence score metric defined as the minimum of the testing
accuracy of the trained model on the last five tasks. Table 2 shows that the soft thresholding
achieved higher accuracy as expected because the model was gradually trained compared
to the nonincremental cases, where the model was tested on all the data at once. In addition,
the selective soft thresholding scheme seemed to achieve better task-wise performance by
obtainiing a higher confidence score of 88.07% compared to the soft thresholding scheme.
The generalization of this assumption was evaluated by applying the proposed thresholding
scheme to the existing incremental learning scheme method.
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Table 2. The comparison of the average performance over three runs of the nonincremental and the
proposed incremental schemes on 10 tasks.

Scheme Number of Tasks Accuracy (%) Confidence
Score (%)

Soft Thresholding 10 100 85.33

Selective Soft
Thresholding 10 86 88.07

Nonincremental
approach NA 99.67 NA

3.2. Performance Sensitivity Analysis Using Existing Incremental Learning Methods

The proposed scheme was integrated with some existing baseline methods that consist
of four regularization-based continual learning methods which are: Elastic Weight Con-
solidation (EWC), Online EWC, Synaptic Intelligence (SI), and Memory-aware Synapses
(MAS) [20]. The four continual learning methods were tested using the ResNet18 and
multilayer perceptron (MLP) model architectures. The proposed thresholding schemes
handled the batch selection in the training process. The experiments included the base-
line (i.e., the original existing methods), selective (i.e., the baseline + optimal training
dataset selection), soft thresholding, and the selective soft thresholding scheme. The default
training hyperparameters used for the experiments are outlined in Table 3. The default
regularization coefficients defined by Hsu et al. [20] were used with 100, 700, 3000, and
10,000 for the EWC, Online EWC, SI, and MAS methods, respectively.

Table 3. Summary of the default hyperparameters used to implement the existing IL methods [20].

Parameter Number of Tasks

Epoch 100 (per task)

Batch size 128

Model architecture MLP and ResNet18

Loss function Cross entropy

Optimizer Adam

Learning rate 0.001

Figures 6 and 7 show the obtained testing accuracy of the incrementally trained model
using the MLP and Resnet18 models, respectively. The figures show the performance of
the different IL baseline algorithms compared to the integrated proposed algorithms. The
selective implementation denoted as (S) refers to the use of the optimal training dataset
selection, and the soft thresholding scheme is denoted as (+). For instance, the different
implementations of the EWC method are denoted as the baseline EWC, selective baseline
EWC(S), soft thresholding EWC(+), and selective soft thresholding EWC(S+). Table 4
shows that the nonselective scheme, which comprises the baseline and the soft thresholding
scheme, achieved a higher accuracy performance by the last task (T18) compared to the
selective scheme for both model architectures. In addition, the soft thresholding algorithm
improved most of the baseline IL methods. Overall, it achieved the highest last accuracy of
99.29% using the Resnet18 architecture.

Table 5 summarizes the best achievable average accuracy and standard deviation
computed from tasks T14–T18 (i.e., the average and standard deviation of the last five tasks)
across all IL methods. It demonstrates that the EWC(+) method outperformed the other
methods in terms of the average accuracy.



Computation 2023, 11, 139 10 of 13

Figure 6. Performance comparison on custom data using the MLP architecture.

Figure 7. Performance comparison on custom data using the ResNet18 architecture.

Table 4. The averaged last accuracy performance comparison of the three averaged experimental
runs of 18 tasks.

Nonselective Scheme Selective Scheme

Model Method Baseline Soft Threshold Selective Baseline Selective Soft Threshold

MLP

EWC 84.44 ± 0.91 84.79 ± 1.38 79.26 ± 5.87 79.79 ± 1.88
Online EWC 82.97 ± 0.35 84.05 ± 1.71 79.76 ± 0.83 82.61 ± 1.16
SI 83.43 ± 0.74 82.48 ± 1.65 81.57 ± 1.48 82.63 ± 0.13

MAS 83.45 ± 2.93 83.44 ± 1.54 82.34 ± 0.95 78.73 ± 2.85

ResNet

EWC 99.06 ± 0.23 98.98 ± 0.28 93.44 ± 0.98 94.64 ± 1.56
Online EWC 98.99 ± 0.16 98.79 ± 0.12 91.83 ± 2.64 93.18 ± 1.51
SI 98.87 ± 0.28 99.29 ± 0.05 92.55 ± 1.34 91.78 ± 1.23

MAS 98.50 ± 0.57 98.91 ± 0.05 93.22 ± 0.50 93.84 ± 0.60
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Table 5. The summary of the best achievable accuracy performance comparison of the three averaged
experimental runs of the T14–T18 (last five) tasks.

Average
Accuracy
(%)

Experiment MLP ResNet

Baseline SI 84.58 ± 0.86 SI 98.70 ± 0.39
Selective MAS (S) 83.02 ± 0.78 MAS (S) 94.87 ± 1.35
Soft Thresholding EWC (+) 84.53 ± 1.10 EWC (+) 98.72 ± 0.32
Selective Soft Thresholding EWC (S+) 84.25 ± 2.59 EWC Online (S+) 94.42 ± 1.03

For the confidence score, Table 6 shows the obtained performance for different incre-
mental learning schemes. The table demonstrates that the EWC method outperformed
other methods specifically and achieved the highest confidence score of 98.30% using the
ResNet architecture with the soft thresholding EWC(+) and baseline EWC schemes. How-
ever, Figure 8 demonstrates a drop in the performance of the EWC compared to the EWC(+)
at task T6. Figure 8 shows that the EWC(+) scheme attained a more stable performance
by T5, unlike the EWC scheme, which encountered a drop in performance at task 5 (T5)
but recovered afterward. Overall, the incrementally trained model using the proposed
framework helps in recognizing new defect patterns from new data streams while training
the model only when needed. In addition, it adapts to dynamic data characteristics and
size by using the selective soft thresholding scheme when the accumulated data are outside
the computational resources limits. The proposed schemes help to improve the quality
control and effectiveness of the industrial inspection applications [23].

Table 6. Confidence score for each scheme using the MLP and ResNet model architecture for three
experimental runs.

Confidence
Score

Experiment MLP ResNet

Baseline SI 83.43 EWC 98.30
Selective MAS (S) 81.91 EWC (S) 93.44
Soft Thresholding EWC (+) 82.81 EWC (+) 98.30
Selective Soft Thresholding EWC Online (S+) 82.61 EWC Online (S+) 93.18

Figure 8. EWC performance comparison on custom data using ResNet18.

3.3. Limitations

The performance comparison with existing continual learning baselines shows that the
proposed soft thresholding method seems to be more adaptable for dynamic and optimal
training to enhance the model prediction. However, the major limitation is the need for
high-quality online data annotation preferably verified by a human in the loop framework.
Finally, the algorithm has an extended (long) training time as more sequences of data or
tasks are trained incrementally. Therefore, this might cause the model to overfit. A possible
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solution is to decrease the number of retraining repetitions to enable shorter and early
stopping that exits the training once the learning starts to saturate.

4. Conclusions and Future Work

Incremental learning, also known as continual learning or lifelong learning, is an
adaptive algorithm that learns progressively over time from a continuous stream of in-
formation. During this process, new knowledge is learned while keeping the previously
learned experiences. In this work, a new soft thresholding scheme was introduced to
optimize the model prediction of existing incremental learning frameworks. The obtained
results show that the proposed algorithm could achieve a steady performance around
the desired prediction accuracy for supervised-based anomaly detection using CT images.
In the future, the proposed schemes will be tested for multiclass and/or multilabel clas-
sification tasks. Finally, they could also be adapted for reinforcement learning, where a
robot learns incrementally a specific manipulation using parameter estimation based on
data-driven models.
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