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Abstract: This paper is devoted to the comparison of discrete velocity models used for simulation of
compressible flows with arbitrary specific heat ratios in the lattice Boltzmann method. The stability of
the governing equations is analyzed for the steady flow regime. A technique for the construction of
stability domains in parametric space based on the analysis of eigenvalues is proposed. A comparison
of stability domains for different models is performed. It is demonstrated that the maximum value of
macrovelocity, which defines instability initiation, is dependent on the values of relaxation time, and
plots of this dependence are constructed. For double-distribution-function models, it is demonstrated
that the value of the Prantdl number does not seriously affect stability. The off-lattice parametric
finite-difference scheme is proposed for the practical realization of the considered kinetic models.
The Riemann problems and the problem of Kelvin–Helmholtz instability simulation are numerically
solved. It is demonstrated that different models lead to close numerical results. The proposed
technique of stability investigation can be used as an effective tool for the theoretical comparison of
different kinetic models used in applications of the lattice Boltzmann method.

Keywords: kinetic equations; lattice Boltzmann method; stability; compressible flow

1. Introduction

In recent years, the lattice Boltzmann method (LBM) has been widely used for numer-
ical simulation of different physical phenomena [1,2]. Unlike the conventional methods,
which are based on discretization of the equations for macrovariables (density, velocity,
energy, etc.), in the LBM, the systems of fully discrete kinetic equations (so-called lattice
Boltzmann equations, LBEs) are considered.

Based on LBEs, the computational schemes deal with the intrinsic coupling of time
and space steps. It leads to the fixed value of the Courant–Friedrichs–Lewi (CFL) number.
For LBEs, the CFL number is equal to unity, and it is a constraint stated on the values of grid
steps. It brings a limitation to the standard LBM, because it leads to the impossibility of us-
ing variable time and space steps. This problem is relevant, for example, for the simulation
of gas flows, where shock and rarefication waves take place [3]. Such phenomena can lead
to the necessity of the application of unstructured and adaptive grids and variable time
steps. To overcome this problem, so-called off-lattice schemes, which are constructed using
finite-difference [4], finite-volume [5] and finite-element [6] methods, are proposed. These
approaches are based on the independent discretization of continuous kinetic equations
with discrete velocities on time and space variables.

Most existing schemes, based on LBEs, are restricted to weakly compressible simu-
lations. However, for highly compressible flows, such schemes lead to some difficulties.
One of the main reasons is that the equilibrium distribution functions used in the standard
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LBM are derived from the truncated Taylor expansions of Maxwellian distributions with
the assumption of a low or moderate Mach number.

The straightforward extension of the LBM to the simulation of compressible flows
can be achieved by increasing the number of discrete velocities and using appropriate
equilibrium distributions. This leads to the commonly known multi-speed models [7]. The
standard approach for LBEs, based on collide-and-stream techniques, is less computation-
ally expensive than off-lattice schemes. However, its application to multi-speed lattices
leads to numerical instabilities [8]. To avoid this problem, for many multi-speed models,
the off-lattice approach is used [9,10].

Different compressible models are constructed for the opportunities to vary specific
heat ratio, and Mach and Prandtl numbers. For the case of the fixed specific heat ratio, Yan
et al. [11] proposed a compressible model with more than one rest energy level. In [12],
the LB model for the compressible Navier–Stokes system with an adjustable specific heat
ratio is constructed by adding a new molecular velocity. Watari [13] constructs the kinetic
equations with discrete velocities and additional degrees of freedom for 2D Navier–Stokes
and 3D Euler models with flexible specific heat ratios and Prandtl numbers. Nie et al. [14]
propose an approach for treating the internal degrees of freedom of the polyatomic gas
molecules. As it is mentioned above, traditional equilibrium distribution functions are
based on the truncated Taylor expansion of the Maxwellian distribution, limited to low and
moderate Mach number [3]. Authors of [15,16] proposed the general approach equilibrium
distribution functions constructing, based on the expansions on generalized Hermite
polynomials presented in [17]. Qu et al. [18] obtained equilibrium distributions based on
the circular function, which is not related to the Maxwellian distribution. In [19], a general
technique for the construction of equilibrium distributions for kinetic models of high-speed
compressible flows is proposed. The approach is based on the solution of a linear algebraic
system based on the equations for moments of distribution functions for the selected lattice
and velocity set. In [20], the control of the Prandtl number is realized by the modification
of the collision term. In [21], the multiple-relaxation-time scheme with a flexible value of
this number is constructed. Zhang et al. [22] tried to control the Prandtl number in the case
of Burnett equations using an ellipsoidal statistical model.

Another class of discrete velocity models used for the computation of compressible
flows is the double distribution function (DDF) models. In addition to a set of distribution
functions for the computation of hydrodynamic variables (density, velocity), a set of
functions for energy (or temperature) is introduced. One of the first models where functions
for temperature are introduced is proposed in the paper of He et al. [23]. Li et al. [24]
propose a coupled DDF-LB model for the compressible Navier–Stokes equations in order
to achieve a flexible specific heat ratio. In [25], this model is applied for the simulation of
high-speed compressible viscous flows with a boundary layer. In [26], this model is used
for the simulation of shock wave propagation and its interactions with the boundary layer
in a shock tube. As for the multi-speed models, in DDF models at high Mach numbers,
the traditional collide-and-stream method, typical for the standard LBM, is not used due to
the numerical instabilities (for example, see works [27–29], where the off-lattice schemes
are used). Saadat et al. [30] propose a DDF model for the D2Q9 lattice with a correction of
the collision term and a shifted lattice, proposed in [31] for the simulation of flows with
high Mach numbers. Qiu et al. [32] constructed a DDF model based on the D2Q17 lattice
for the simulation of viscous compressible flows.

In the literature, alternative approaches for compressible flow simulations, distin-
guished from multi-speed and DDF models, are used. The typical examples are the hybrid
LBM, which uses both kinetic equations and equations for macrovariables [33]; the pressure-
based regularized LBM, which uses explicit correction terms for the pressure [34]; hybrid
recursive regularized versions of the LBM [35–37]; and multiple-relaxation-time (MRT)
models (e.g., see [38]).

The presented paper is devoted to the analysis of discrete velocity models used
in the LBM for the simulation of compressible flows and for construction of off-lattice
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computational schemes for practical simulations. In the theoretical aspect, attention is
focused on the stability analysis of the solutions associated with the steady flow regimes.
Multi-speed and DDF models, widely used in literature, are considered. The analysis is
based on the stability criterion, related to the negativity of the real parts of the eigenvalues of
matrices of systems, obtained after linearization of the governing equations and separation
of variables. The stability domains in the parameter space are constructed and analyzed. It
is demonstrated that some models can have larger stability domains than others. Selected
multi-speed and DDF models in practice are compared on the numerical solutions of
nonlinear problems, such as the Riemann problem and the Kelvin–Helmholtz instability
(KHI) simulation. For the numerical solution, the parametric off-lattice finite-difference
scheme is used. It is demonstrated that the numerical solutions obtained by different
models are close to each other.

The following new results are obtained in the presented work:
1. The numerical procedure for stability analysis, based on the construction of stability

domains in parametric space, is proposed.
2. The comparison of stability domains, constructed by the proposed procedure,

is performed.
3. It is demonstrated that the value of the Prandtl number does not seriously affect the

stability of DDF models.
4. The models are compared on the nonlinear problems of gas dynamics: Riemann prob-

lems and simulation of KHI. It is demonstrated that models lead to close numerical solutions.
The paper has the following structure. Section 2 presents the discrete velocity models

considered in the paper. Section 3 is devoted to the stability analysis of the governing
equations of these models. The approach of constructing stability domains in parametric
space is proposed. The domains, constructed for different models, are compared. Section 4
is devoted to the numerical experiments. A parametric off-lattice finite-difference scheme
for the numerical simulations is proposed. Selected nonlinear problems in gas dynamics
are solved numerically. Some concluding remarks are made in Section 5.

2. Kinetic Models with Discrete Velocities

The Boltzmann equation, which describes gas dynamics in the case of an arbitrary
value of the Knudsen number, is written as follows:

∂ f
∂t

+ v · ∇ f +
F
m
· ∇v f = I( f ), (1)

where term I( f ) can be treated as the model of particle interactions.
The macrovariables ρ(t, r) and u(t, r) are computed as moments of the distribu-

tion function:
ρ(t, r) =

∫
f (t, r, v)dv, u(t, r) =

1
ρ

∫
v f (t, r, v)dv.

The exact solution of Equation (1), known as a Maxwellian equilibrium distribution
function, is written as [39]

f (eq)(t, r, v) =
ρ

m

( m
2πkT

) 3
2 exp

(
−m(v− u)2

2kT

)
. (2)

In the presented paper, Equation (1) is considered in the absence of body force action
(F = 0) and the Bhatnagar–Gross-Krook model of collision term (see [40]) is considered:

∂ f
∂t

+ v · ∇ f = − f − f (eq)

λ
. (3)

One of the main methods of numerical solution of problems for the Boltzmann equa-
tion is the so-called discrete velocities method. According to this approach, a finite set of
velocities is introduced: vi = vei, i = 1, n, where v = l/δt and ei are the given vectors.
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After considering Equation (3) on this set of velocities, the following system of kinetic
equations with discrete velocities is obtained:

∂ fi
∂t

+ vi · ∇ fi = −
fi − f (eq)

i
λ

, (4)

where fi = fi(t, r) = f (t, r, vi).
The specific model with discrete velocities for simulation of compressible gas flow is

defined by the specific velocity set and by the expression, which approximates Equation (2).
In the presented paper, we consider four models widely used in the literature to simulate
highly compressible flows. These models are constructed for the following equation-of-
state: p = (γ− 1)ρe. We focus our attention on the models constructed for 2D flows. We
chose two typical examples from the class of multi-speed models and two from the class
of DDF models. Considered models are widely used in many works on LB simulation of
compressible flows.

2.1. Multispeed Model, Based on D2Q16 Lattice

This model is presented by the system of kinetic Equation (4). The D2Q16 lattice,
represented by the following velocity set (see Figure 1, a for schematic representation of
velocity set) is used:

v1 = v(1, 0), v2 = v(0, 1), v3 = v(−1, 0), v4 = v(0,−1),

v5 = v(1, 1), v6 = v(−1, 1), v7 = v(−1,−1), v8 = v(1,−1),

v9 = 2v(1, 0), v10 = 2v(0, 1), v11 = 2v(−1, 0), v12 = 2v(0,−1),

v13 = 2v(1, 1), v14 = 2v(−1, 1), v15 = 2v(−1,−1), v16 = 2v(1,−1).

The macrovariables are computed as follows:

ρ = ∑
i

fi, ρu = ∑
i

fivi, ρ

(
e +

u2

2

)
= ∑

i
fi

(
v2

i
2

+
η2

i
2

)
,

where ηi are the free parameters introduced to describe the extra degrees of freedom,
corresponding to the molecular rotation and vibration: ηi = η0 6= 0, i = 1, 4, ηi = 0,
i = 5, 16.

The vector of equilibrium distributions is computed as: feq = C−1M, where M is
the vector of moments and C is a square matrix, presented in Table 1. The value of γ
is incorporated into the model in the following way: the parameter b = 2/(γ − 1) is
substituted in the expressions for f (eq)

i .
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Figure 1. The sets of discrete velocities for kinetic models, used for compressible flow simulations:
(a) model from [19]; (b) model from [13]; (c) model from [24]; (d) model from [32].

Table 1. The expressions for component of vector M and matrix C [19].

M1 ρ Ci1 1
M2 ρux Ci2 vix
M3 ρuy Ci3 viy

M4 ρ
(

bT + u2
x + u2

y

)
Ci4 v2

ix + v2
iy + η2

i

M5 ρuxuy Ci5 vixviy
M6 ρu2

x + P Ci6 v2
ix

M7 ρu2
y + P Ci7 v2

iy

M8 ρux

(
(b + 2)T + u2

x + u2
y

)
Ci8 vix

(
v2

ix + v2
iy + η2

i

)
M9 ρuy

(
(b + 2)T + u2

x + u2
y

)
Ci9 viy

(
v2

ix + v2
iy + η2

i

)
M10 ρux

(
3T + u2

x
)

Ci10 v3
ix

M11 ρuy

(
3T + u2

y

)
Ci11 v3

iy

M12 ρuy
(
T + u2

x
)

Ci12 v2
ixviy

M13 ρux

(
T + u2

y

)
Ci13 vixv2

iy

M14
(b + 4)ρTuxuy +

ρuxuy

(
u2

x + u2
y

) Ci14 vixviy

(
v2

ix + v2
iy + η2

i

)

M15

(b + 2)ρT2 +(
(b + 4)u2

x + u2
x + u2

y

)
ρT+

ρu2
x

(
u2

x + u2
y

) Ci15 v2
ix

(
v2

ix + v2
iy + η2

i

)

M16

(b + 2)ρT2 +(
(b + 4)u2

y + u2
x + u2

y

)
ρT+

ρu2
y

(
u2

x + u2
y

) Ci16 v2
iy

(
v2

ix + v2
iy + η2

i

)
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2.2. Multispeed Model, Based on D2Q8 Lattice

This model is based on the following system:

∂ fki
∂t

+ vki · ∇ fki = −
1
λ
( fki − f (eq)

ki ), (5)

where in the 2D case index k = 0, 8, is related to the groups of particles with extra (k = 1, 4)
and without degrees of freedom (k = 5, 8), with corresponding velocities, i = 1 for k = 0,
i = 1, 8 if k > 0. So, the D2Q8 lattice is used for the model (see Figure 1b for schematic
representation of velocity set):

v0 = 0, vki =
(

vkix, vkiy

)
= vk

[
cos
(

2πi
N

)
, sin

(
2πi
N

)]
, i = 1, 8,

where v5 = v1, v6 = v2, v7 = v3, v8 = v4, v1 = v, v2 = 2v1, v3 = 3v1 and v4 = 4v1.
The system (4) consists of 65 equations. The values of ηk are defined as for the model
from [19], but ηk 6= 0, k = 1, 4, ηk = 0 and k = 5, 8.

The equilibrium distributions are computed as [13]

f (eq)
ki = ρFk

((
1− u2

2e
+

u4

8e2

)
+

(
1− u2

2e

)
vkiαuα

e
+

(
1− u2

2e

)vkiαvkiβuαuβ

2e2 +

vkiαvkiβvkiγuαuβuγ

6e3 +
vkiαvkiβvkiγvkiξ uαuβuγuξ

24e4

)
,

where the weights Fk are obtained in such a way, that the moment of these functions are
equal to the moments of distribution functions:

F0 = 1− 8(F1 + F2 + F3 + F4 + F5 + F6 + F7 + F8),

F1 =
n
η2

1

6e4 −
(
v2

2 + v2
3 + v2

4
)
e3 + 1

4
(
v2

2v2
3 + v2

3v2
4 + v2

4v2
2
)
e2 − 1

8 v2
2v2

3v2
4e(

v2
1 − v2

3
)(

v2
1 − v2

3
)(

v2
1 − v2

4
) ,

F2 =
n
η2

2

6e4 −
(
v2

3 + v2
4 + v2

1
)
e3 + 1

4
(
v2

3v2
4 + v2

4v2
1 + v2

1v2
3
)
e2 − 1

8 v2
3v2

4v2
1e(

v2
2 − v2

3
)(

v2
2 − v2

4
)(

v2
2 − v2

1
) ,

F3 =
n
η2

3

6e4 −
(
v2

4 + v2
1 + v2

2
)
e3 + 1

4
(
v2

4v2
1 + v2

1v2
2 + v2

2v2
4
)
e2 − 1

8 v2
4v2

1v2
2e(

v2
3 − v2

4
)(

v2
3 − v2

1
)(

v2
3 − v2

2
) ,

F4 =
n
η2

4

6e4 −
(
v2

1 + v2
2 + v2

3
)
e3 + 1

4
(
v2

1v2
2 + v2

2v2
3 + v2

3v2
1
)
e2 − 1

8 v2
3v2

2v2
3e(

v2
4 − v2

1
)(

v2
4 − v2

2
)(

v2
4 − v2

3
) ,

F5 = −F1 +
48e4 − 6

(
v2

2 + v2
3 + v2

4
)
e3 +

(
v2

2v2
3 + v2

3v2
4 + v2

4v2
2
)
e2 − 1

8 v2
2v2

3v2
4e

v2
1
(
v2

1 − v2
2
)(

v2
1 − v2

3
)(

v2
1 − v2

4
) ,

F6 = −F2 +
48e4 − 6

(
v2

3 + v2
4 + v2

1
)
e3 +

(
v2

3v2
4 + v2

4v2
1 + v2

1v2
3
)
e2 − 1

4 v2
3v2

4v2
1e

v2
2
(
v2

2 − v2
3
)(

v2
2 − v2

4
)(

v2
2 − v2

1
) ,

F7 = −F3 +
48e4 − 6

(
v2

4 + v2
1 + v2

2
)
e3 +

(
v2

4v2
1 + v2

1v2
2 + v2

2v2
4
)
e2 − 1

4 v2
4v2

1v2
2e

v2
3
(
v2

3 − v2
4
)(

v2
3 − v2

1
)(

v2
3 − v2

2
) ,

F8 = −F4 +
48e4 − 6

(
v2

1 + v2
2 + v2

3
)
e3 +

(
v2

1v2
2 + v2

2v2
3 + v2

3v2
1
)
e2 − 1

4 v2
1v2

2v2
3e

v2
4
(
v2

4 − v2
1
)(

v2
4 − v2

2
)(

v2
4 − v2

3
) .

The macrovariables are computed as follows:

ρ = ∑
ki

fki, ρu = ∑
ki

fkivki, ρ

(
D + σ

σ
e +

u2

2

)
= ∑

ki
fki

(
v2

ki
2

+
η2

k
2

)
,
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where D = 2, the energy level, which corresponds to the extra degree of freedom, is defined
as η2

k /2.
Specific heat ratio is computed as follows:

γ =
D + σ + 2

D + σ
.

2.3. DDF Model, Based on D2Q13 Lattice

The model is presented by the following system:

∂ fi
∂t

+ vi · ∇ fi = −
1

λ f

(
fi − f eq

i

)
, (6)

∂hi
∂t

+ vi · ∇hi = −
1

λh

(
hi − heq

i

)
+

1
λh f

(vi · u)
(

fi − f (eq)
i

)
, i = 0, n, (7)

where fi are the density distribution functions, 1/λh f = 1/λh − 1/λ f . For this model,
the D2Q13 lattice (n = 12) is used (see Figure 1c for schematic representation of velocity set):

v0 = (0, 0), v1 = v(1, 0), v2 = v(0, 1), v3 = v(−1, 0), v4 = v(0,−1),

v5 = v(1, 1), v6 = v(−1, 1), v7 = v(−1,−1), v8 = v(1,−1),

v9 = 2v(1, 0), v10 = 2v(0, 1), v11 = 2v(−1, 0), v12 = 2v(0,−1).

Equilibrium distributions f (eq)
i are computed as follows:

f (eq)
0
(
ux, uy

)
=

ρ

4

(
u4

x + 5p2 − 10p + 4 + 4u2
xu2

y + u4
y + (10p− 5)

(
u2

x + u2
y

))
,

f (eq)
1
(
ux, uy

)
= −ρ

6

(
−4u2

x + 3p2 + u4
x − 4p + 3uxu2

y + 9pu2
x + 6pux + 3u2

xu2
y − ux + u3

x

)
,

f (eq)
5
(
ux, uy

)
=

ρ

4

(
uxu2

y + uxuy + pux + puy + u2
xuy + 0.5p2 + u2

xu2
y + pu2

x + pu2
y

)
,

f (eq)
9
(
ux, uy

)
=

ρ

24

(
−2ux + u4

x − p− u2
x + 6pu2

x + 1.5p2 + 2u3
x + 6pux

)
,

f (eq)
2
(
ux, uy

)
= f (eq)

1
(
uy, ux

)
, f (eq)

6
(
ux, uy

)
= f (eq)

5
(
−ux, uy

)
,

f (eq)
3
(
ux, uy

)
= f (eq)

1
(
−ux, uy

)
, f (eq)

7
(
ux, uy

)
= f (eq)

5
(
−ux,−uy

)
,

f (eq)
4
(
ux, uy

)
= f (eq)

1
(
−uy, ux

)
, f (eq)

8
(
ux, uy

)
= f (eq)

5
(
ux,−uy

)
,

f (eq)
10
(
ux, uy

)
= f (eq)

9
(
uy, ux

)
, f (eq)

11
(
ux, uy

)
= f (eq)

9
(
−ux, uy

)
,

f (eq)
12
(
ux, uy

)
= f (eq)

9
(
−uy, ux

)
.

Equilibrium distributions for total energy h(eq)
i are computed as follows:

h(eq)
i = (E + (vi − u) · u) f (eq)

i + ωi
p
v2

1
RT,

where ω0 = 0, ωi = − 1
3 i = 1, 4, ωi =

1
4 i = 5, 8, ωi =

1
12 i = 9, 12 and E = e + 1

2 u2 is the
total energy.

The system (6)–(7) consists of 26 equations. The macrovariables are computed as
follows:

ρ = ∑
i

fi, ρu = ∑
i

fivi, ρ

(
e +

u2

2

)
= ∑

i
hi

v2
i

2
.
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2.4. DDF Model, Based on D2Q17 Lattice

The model is based on system (6)–(7) in the case of D2Q17 lattice (see Figure 1d for
schematic representation of velocity set):

v0 = (0, 0), v1 =
2
3

v(1, 0), v2 =
2
3

v(0, 1), v3 =
2
3

v(−1, 0),

v4 =
2
3

v(0,−1), v5 =
2
3

v(2, 1), v6 =
2
3

v(1, 2), v7 =
2
3

v(−1, 2),

v8 =
2
3

v(−2, 1), v9 =
2
3

v(−2,−1), v10 =
2
3

v(−1,−2), v11 =
2
3

v(1,−2),

v12 =
2
3

v(2,−1), v13 =
2
3

v(3, 0),

v14 =
2
3

v(0, 3), v15 =
2
3

v(−3, 0), v16 =
2
3

v(0,−3).

The presented model consists of 34 equations.
Equilibrium distributions f (eq)

i are computed as follows:

f (eq)
0
(
ux, uy

)
=

1
16

ρ
(

6u4
x + 33u4

xu2
y + 6u2

yux + 69θu2
x + 69θu2

y + 69θ2−

28u2
x − 28u2

y − 56θ + 16
)

,

f (eq)
1
(
ux, uy

)
=

3
1280

ρ
(

27u5
x + 27u5

y + 270θu3
x + 270θu3

y − 60u4
x − 180u3

xuy − 420u2
xu2

y−

180uxu3
y − 60u4

y + 405θ2ux + 405θ5uy − 780θu2
x − 1080θuxuy − 780θu2

y − 180u3
x−

120u2
xuy − 120uxu2

y − 180u3
y − 780θ2 − 660θux − 660θuy + 240u2

x + 400uxuy + 240u2
y+

480θ + 288ux + 288uy

)
,

f (eq)
5
(
ux, uy

)
= − 3

5120
ρ
(

108u5
x − 27u5

y + 1080θu3
x − 270θu3

y + 60u4
x − 360u3

xuy − 480u2
xu2

y−

120u4
y + 1620θ2ux − 405θ2uy − 120θu2

x − 1080θuxuy − 1200θu2
y − 480u3

x − 480u2
xuy+

60u3
y − 660θ2 − 1440θux − 300θuy − 240u2

x + 160uxuy + 480u2
y + 240θ + 192ux + 192uy

)
,

f (eq)
13
(
ux, uy

)
=

1
2560

ρ
(

81u5
x + 810θu3

x + 120u4
x − 240u2

xu2
y − 60u4

y + 1215θ2ux + 480θu2
x−

600θu2
y − 180u3

x − 60θ2 − 540θux − 160u2
x + 240u2

y + 80θ + 64ux

)
,

f (eq)
2
(
ux, uy

)
= f (eq)

1
(
−ux, uy

)
, f (eq)

6
(
ux, uy

)
= f (eq)

5
(
uy, ux

)
,

f (eq)
3
(
ux, uy

)
= f (eq)

1
(
−ux,−uy

)
, f (eq)

7
(
ux, uy

)
= f (eq)

5
(
uy,−ux

)
,

f (eq)
4
(
ux, uy

)
= f (eq)

1
(
ux,−uy

)
, f (eq)

8
(
ux, uy

)
= f (eq)

5
(
−ux, uy

)
,

f (eq)
14
(
ux, uy

)
= f (eq)

13
(
uy, ux

)
, f (eq)

9
(
ux, uy

)
= f (eq)

5
(
−ux,−uy

)
,

f (eq)
15
(
ux, uy

)
= f (eq)

13
(
−ux, uy

)
, f (eq)

10
(
ux, uy

)
= f (eq)

5
(
−uy,−ux

)
,

f (eq)
16
(
ux, uy

)
= f (eq)

13
(
−uy, ux

)
, f (eq)

11
(
ux, uy

)
= f (eq)

5
(
−uy, ux

)
,

f (eq)
12
(
ux, uy

)
= f (eq)

5
(
ux,−uy

)
,
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where θ = T/Tc. Functions h(eq)
i are presented as follows:

h(eq)
i = (E + (vi − u) · u) f (eq)

i + ωi
p
v2 RT,

where ω0 = 0, ωi = − 17
56 i = 1, 4, ωi =

1
8 i = 5, 12 and ωi =

3
56 i = 13, 16. Macrovariables

are computed in the same way as the model from [24].

3. Stability Analysis

Let the following dimensionless variables be introduced:

t̃ =
t
δt

, r̃ =
r
l
, f̃i =

fi
Φ

, h̃i =
hi
H

, (8)

where Φ and H are the typical values of fi and hi.
After the substitution of (8) into (4), the dimensionless system is obtained:

∂ f̃i

∂t̃
+ ei · ∇ f̃i = −

f̃i − f (eq)
i (f̃)
τ

, (9)

where τ = λ/δt. The tilde sign will be ignored in the text below.
As in previous works (e.g., see [8,41]) the stability only on the initial conditions is

investigated, so the flows in the unbouded domain are considered. The stability of the
steady-state solutions of (9), associated with the steady flow regimes, is analyzed. Let f̂i
correspond to the steady flow in the unbounded domain, defined by the constant values
of dimensionless macrovariables: ρ = ρ0, u = U0 and e = e0. These solutions are derived
from f (eq)

i , as f̂i = f (eq)
i (ρ0, U0, e0).

For the stability analysis of this steady flow regime, the solutions of (9) are presented:

fi(t, r) = f̂i + δ fi(t, r), (10)

where ||δf|| � 1 is a vector of small perturbations.
Let us consider the dynamics of δ fi at t → ∞. For this purpose, (10) is substituted

into (9):

∂

∂t

(
f̂i + δ fi

)
+ ei · ∇

(
f̂i + δ fi

)
= − 1

τ

(
f̂i + δ fi − f (eq)

i

(
f̂i + δfi

))
. (11)

According to the proposition on the small values of perturbations, the Taylor expansion
can be used:

f (eq)
i (f̂i + δfi) ≈ f (eq)

i

(
f̂
)
+

n

∑
s=1

∂ f (eq)
i

∂ fs

(
f̂
)

f̃s.

After the substitution of this expression into (11), the following linearized system is obtained
for the perturbations δ fi:

∂(δ fi)

∂t
+ ei · ∇δ fi = −

1
τ

(
δ fi −

n

∑
s=1

Aisδ fs

)
, (12)

where the components Ais are computed as

Ais =
∂ f (eq)

i
∂ fs

(
f̂
)

.

According to the Fourier method, the solutions of (12) can be presented as follows:

δ fi(t, r) = Fi(t) exp(−jkr), (13)
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where j2 = −1 and k is the wave vector, kx, ky ∈ [−π, π]. The structure of the solutions,
defined by (13), corresponds to the idea of separation of variables. After the substitution of
(13) into (12), the following system is obtained for Fi(t):

Ḟ = GF, (14)

where the components of G are written as follows:

Gis =

{
j(eixkx + eiyky)− 1

τ (1− Ais), i = s,
1
τ Ais, i 6= s.

For the model from [19], the dimension of G is 16× 16; for the model from [13], it is
equal to 65× 65.

For the DDF models presented by system (6)–(7), the steady-state solutions, asso-
ciated with the same steady flow regime, are computed as f̂i = f (eq)

i (ρ0, U0, e0), ĥi =

h(eq)
i (ρ0, U0, e0). System (6)–(7) in dimensionless form is written as

∂ fi
∂t

+ ei · ∇ fi = −
1
τf

( fi − f (eq)
i ), (15)

∂hi
∂t

+ ei · ∇hi = −
1
τh

(
hi − heq

i

)
+

1
τh f

(ei · u)
(

fi − f (eq)
i

)
, (16)

τf =
λ f
δt , τh = λh

δt , 1/τh f = 1/τh − 1/τf .
The solution of (15)–(16) is presented in the same form as the previous case:

fi(t, r) = f̂i + δ fi(t, r), hi(t, r) = ĥi + δhi(t, r),

where it is proposed, that ‖δf‖ � 1, ‖δh‖ � 1.
The dynamics of perturbations δ fi and δhi are described by the following system of

differential equations:

∂(δ fi)

∂t
+ ei · ∇(δ fi) = −

1
τf

(
δ fi −

n

∑
s=1

B1
isδ fs −

n

∑
s=1

B2
isδhs

)
,

∂(δhi)

∂t
+ ei · ∇(δhi) = −

1
τh

(
δhi −

n

∑
s=1

B3
isδ fs −

n

∑
s=1

B4
isδhs

)
+

(
n

∑
s=1

D1
isδ fs +

n

∑
s=1

D2
isδhs

)
,

where

B1
is =

∂ f (eq)
i

∂ fs

(
f̂, ĥ
)

, B2
is =

∂ f (eq)
i

∂hs

(
f̂, ĥ
)

, B3
is =

∂h(eq)
i

∂ fs

(
f̂, ĥ
)

, B4
is =

∂h(eq)
i

∂hs

(
f̂, ĥ
)

,

D1
is =

∂Ci
∂ fs

(
f̂, ĥ
)

, D2
is =

∂Ci
∂hs

(
f̂, ĥ
)

, Ci(f, h) =
1

τh f
(ei · u)

(
fi − f (eq)

i (f, h)
)

.

The solution of this system can be presented as follows:

δ fi(t, r) = Fi(t) exp(−jkr), δhi(t, r) = Hi(t) exp(−jkr),

where functions Fi(t) and Hi(t) are the solutions of the following system:

Ḟi(t) =
n

∑
s=1

G1
isFs(t) +

n

∑
s=1

G2
is Hs(t),
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Ḣi(t) =
n

∑
s=1

G3
isFs(t) +

n

∑
s=1

G4
isHs(t),

where

G1is =

j(eixkx + eiyky)− 1
τf

(
1− B1

is
)
, i = s,

− 1
τf

B1
is, i 6= s,

G2is =
1
τf

B2
is,

G3is =

{
j(eixkx + eiyky)− 1

τh

(
1− B3

is
)
+ D1

is, i = s,
1
τh

B3
is + D3

is, i 6= s,
G4is =

1
τh

B4
is + D2

is.

If the extended vector S = (F1, . . . , Fn, H1, . . . , Hn)T is introduced, this system can be
rewritten as

Ṡ = GS, (17)

where

G =

(
G1 G2
G3 G4

)
.

By this approach, the problems of stability analysis of steady-state solutions are
reduced to the problems of stability analysis of zero solutions of linear systems (14) and
(17). These solutions are asymptotically stable if and only if the real parts of all eigenvalues
of matrix G are negative. These eigenvalues are dependent on the following parameters:
τ, U0x, U0y, ρ0, e0, kx and ky (the models from [24,32] are analyzed at a fixed value of
Prandtl number Pr = τf /τh, so only the value τf = τ can be varied if the value of Pr
is inputted), where only the components of k are considered as the internal parameters.
For the simplification of analysis, the values of two dimensionless macrovariables are fixed:
ρ0 = e0 = 1.

The stability is analyzed for the case of the following flow regime: U0x = U, U0y = 0,
as it is realized for other LB models [41,42]. The wave vector k can rotate relatively to U0 in
all 2D space, as it is realized in [8]. So, we restrict the parametric dependence of eigenvalues
to the dependence of two internal parameters, kx and ky, and two input parameters τ and
U. The values of τ are chosen in small intervals near zero because the presented models in
most problems are applied to the simulation of inviscid flows (when τ = 0). The values of
U are varied in a bounded interval including zero, in order to check the maximum value,
which defines the stability interval on this parameter.

The stability is investigated by the construction and analysis of the stability domains
in the 2D space of the input parameters (τ, U). These domains are constructed by the
following algorithm:

(1) The grids with nodes τk, Ul , (kxp, kyp) are constructed in the intervals (0, T], (0,U ]
and rectangle [−π, π] × [−π, π], respectively. The values of T and U are selected by
the investigator.

(2) At every fixed node (τk,Ul), the eigenvalue problems for matrix G are solved at
every node (kxp, kyp) and eigenvalues λm(τk, Ul , kxp, kxq) are obtained at every p and q. If at
some node (kxp, kxq) the following inequality is realized: min

m
Re(λm(τk, Ul , kxp, kxq)) ≥ 0,

so the solutions of the systems (14) or (17) are treated as not asymptotically stable at τ = τk
and U = Ul and node (τk, Ul) is not included into the stability domain in parametric space.

The eigenvalue problems are solved numerically using the QR algorithm, realized
on FORTRAN90 in EISPACK subroutines [43]. We perform the computations for the
monoatomic gas with 3 translational degrees of freedom per atom, which is typical for the
air flow. For this physical condition, the value of γ is equal to 5/3. The models presented
in [13,19] are additionally dependent on the values of η0 [13] and ηi, i = 1, 4. As it is
mentioned in [19,44,45], the value of this parameter can affect the numerical stability. So,
we decided to investigate the influence of these parameters on the solutions. For the model
from [13] the values of ηi are chosen as ηi = iη0. It is inspired by the same approach of
choosing ηi in numerical examples, presented in [13]. In Figures 2 and 3, the boundaries of
the stability domains for different values of η0 are presented. As is demonstrated, for both
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models, the acceptable value of η0 can be chosen as η0 > 0.25, and the greatest values
of U take place for the values τ < 0.05. As can be seen, the largest areas of the stability
domains correspond to the model from [13]. Moreover, its area does not change after the
value τ ≈ 0.05 (see Figure 3).
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0
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Figure 2. Plots of boundaries of stability domains at various values of η0 for the model from [19].
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Figure 3. Plots of boundaries of stability domains at various values of η0 for the model from [13].

For the DDF models, the role of the external parameter at fixed γ is played by the
Prandtl number Pr. For the air, we consider the following values of Pr: 0.674 (corresponds
to 273.15 K), 0.683 (corresponds to 303.15 K), 0.703 (corresponds to 343.15 K) and 0.724
(corresponds to 433.15 K). In Figure 4, the plots of the boundaries of stability domains are
presented. As can be seen, the values of Pr do not seriously affect the area of the domain.
So, the physically correct temperature values do not seriously affect the stability of such
DDF models; it depends only on values of U and relaxation time. It must be noted that the
smallest areas occur for the model from [32], which is based on the D2Q17 lattice. For both
DDF models, the areas of domains decrease with the increase of τ. As for the multi-speed
models, the largest values of U correspond to the interval τ < 0.05. It must be noted that
the constructed models correspond to the case of viscous flows, which is described by the
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Navier–Stokes system, and in the expression for viscosity obtained by the application of
Chapman–Enskog expansions, the dynamic viscosity is directly proportional to the value
of relaxation time. So, the case of small values of τ corresponds to a small value of viscosity.
So, the largest values of U correspond to the case of inviscid flows. In most of the works,
the models are constructed for the simulation of this type of flow in order to simulate many
interesting effects, such as shock and rarefication waves, instabilities, etc., and the best
stability properties are also observed for the conditions typical for these flows.

0 0.05 0.1 0.15 0.2 0.25 0.3
0

1

2

3

4

5

U

Pr=0.674

Pr=0.683

Pr=0.703

Pr=0.724

Instability

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.2

0.4

0.6

0.8

1

1.2
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Pr=0.674

Pr=0.683

Pr=0.703

Pr=0.724
Instability

Stability

Stability

(a) (b)

Figure 4. Plots of boundaries of stability domains at various values of the Prandtl number for the
double-distribution-function models: (a) case of the model from [24]; (b) case of the model from [32].

4. Numerical Experiments

In the presented section, we try to compare the considered models, applied to the
numerical solution of nonlinear 2D problems: the Riemann problems and KHI simulation.
All parameter values from the stated conditions are chosen from the literature where these
problems are stated.

The computations are performed using the finite-difference off-lattice scheme with the
use of the technique based on the splitting of physical processes (e.g., see [46–51]). Let us
consider a time grid constructed with the step ∆t and nodes tk. According to the splitting
conception, on one time step [tk, tk+1] the two processes are considered separately. First,
the collision of particles, which is described by the following system:

∂ f i
∂t

= −
f i − f (eq)

i (f)
λ

, t ∈ (tk, tk+1], (18)

with the initial condition f i(tk, r) = fi(tk, r). Second, their free streaming after the collision,
which is described by the following system of linear advection equations:

∂ fi
∂t

+ vi · ∇ fi = 0, t ∈ (tk, tk+1], (19)

which is solved with the initial condition fi(tk, r) = f i(tk+1, r). By applying this technique,
we can use different schemes for the implementation of both stages in order to improve the
stability and accuracy of the computational procedure.

Let us consider the spatial grid with nodes (xj, ys), constructed with step h on both
variables. For the discretization of the linear system (19) we use the following parametric
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scheme, constructed as a combination of schemes with second-order central differences
and first-order upwind differences:

f k+1
i,js = f k

i,js − κ
∆t
2h

(
vix

(
f k
i,j+1s − f k

i,j−1s

)
+ viy

(
f k
i,js+1 − f k

i,js−1

))
−

(1− κ)
∆t
h
(
vixRix + viyRiy

)
,

(20)

where f k
i,js ≈ fi(tk, xj, ys) and

Rix =

{
f k
i,js − f k

i,j−1s, i f vix ≥ 0,

f k
i,j+1s − f k

i,js, i f vix < 0,
Riy =

{
f k
i,js − f k

i,js−1, i f viy ≥ 0,

f k
i,js+1 − f k

i,js, i f viy < 0,

and κ ∈ [0, 1] is the dimensionless parameter. By choosing the proper value of this
parameter, we can compensate the effects of numerical dispersion, typical for schemes
with central differences, and the effect of numerical dissipation, typical for schemes with
upwind differences [52]. The same approach is used for the equations of the DDF model.

For the implementation of (18) the explicit Euler method is used:

f
k+1
i,js − f

k
i,js

∆t
= − 1

λ

(
f

k
i,js − f eq

i

(
f

k
i,js

))
.

The computations are performed in the case of small value of CFL number (v∆t/h =
0.05) in order to exclude any numerical instabilities.

As an example of the multi-speed model, we consider the model from [19], and as a
DDF model, the model from [24] is used. The model from [13] is not considered due to the
large number of equations; the model from [32] is not considered due to the small areas of
the stability domain (see Figure 4).

The parameter values are selected in such a way that the solutions of kinetic equations
will be stable (the parameter values correspond to the internal points of the stability
domains). For considered problems, the following parameter values are used: For the
model from [19], δt = 1, l = 1, γ = 5/3 and η0 = 25. For the model from [24], δt, l and γ
are the same. For all problems, λ = 1× 10−5 is used as the value of relaxation time in order
to reproduce the inviscid flow because, as is mentioned above, the dynamic viscosity for
this model is proportional to λ [19]. For the DDF model from [24], we set Pr = 0.71 and
λ f = 1× 10−5, λh is computed as λ f /Pr. For all problems, the value σ = 0.75 is used.

The initial-boundary-value problems considered in this section are stated in the un-
bounded spatial domain (2D for the KHI problem and 1D for Riemann problems). In order to
solve such problems numerically, the computational domain is defined as a rectangle. The ef-
fects of infinite boundaries are simulated by periodic or extrapolated boundary conditions.

4.1. Riemann Problems

Let us consider three problems, stated in the infinite interval x ∈ (−∞,+∞) with the
following initial conditions for macrovariables:

(a) Problem with discontinuous velocity:

ρ(0, x) = 1, p(0, x) = 1, ux(0, x) =

{
0, x ≤ 0,
1, x > 0.

(b) Problem with discontinuous density:

ρ(0, x) =

{
0.25, x ≤ 0,
1, x > 0.

T(0, x) = 1, ux(0, x) = 1,
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where temperature T is related with the internal energy according to the used equation-of-
state: T = (γ− 1)e.

(c) Sod’s problem, which is widely used as a test for solvers in gas dynamics [53,54]:

ρ(0, x) =

{
1, x ≤ 0,
0.125, x > 0.

, p(0, x) =

{
1, x ≤ 0,
0.1, x > 0.

, ux(0, x) = 0.

This initial condition leads to the solution with a right-propagating shock, a right-
propagating contact wave and a left-propagating rarefication wave.

Stated problems can be solved exactly [55], so they can be considered as powerful
tools for testing numerical schemes and their implementations.

For numerical realization, we consider the finite interval on variable x: x ∈ [−L, L],
where the grid with step h and N nodes is constructed. We perform computations in the
rectangular domain, where the interval on y is defined as y ∈ [0, 10h]. On the upper and
lower boundaries, the periodic boundary conditions are stated. At left and right boundaries,
the extrapolated conditions are stated: fi(t,−L, y) = fi(t,−L + h, y), fi(t, L, y) = fi(t, L−
h, y), and the same conditions are stated for hi. The initial values of fi and hi are computed
from the values of equilibrium distributions computed from the initial conditions stated
for macrovariables.

The results demonstrated in Figures 5–7 are obtained in the case of L = 1 for the
spatial grid with N = 500 at the endpoints of time intervals. For problem 1, the time
interval [0, 0.4] is considered, and for problems 2 and 3, the intervals [0, 0.3] and [0, 0.25] are
used. Some minor numerical artifacts, associated with small-amplitude osclillations near
the contact line, are observed according to the presence of the term with a second-order
central difference in the finite-difference scheme (20). As can be seen, both models lead to
very close results.
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Figure 5. Plots of numerical solutions of Riemann problem with discontinuous initial velocity in
comparison with exact solution.
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Figure 6. Plots of numerical solutions of Riemann problem with discontinuous initial density in
comparison with exact solution.
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Figure 7. Plots of numerical solutions of Sod’s problem in comparison with exact solution.

4.2. Kelvin–Helmholtz Instability

The KHI occurs in a system when two immiscible fluids flow at different tangential
velocities (e.g., in opposite directions) and there are exist small perturbations near the
interface (Figure 8). Such perturbations between two fluids grow in time and may evolve
into turbulent mixing through nonlinear interaction. The KHI is observed in nature and in-
dustry and plays an important role in such processes as supernova dynamics, interaction of
the solar wind with the Earth’s magnetosphere, cloud dynamics, etc. [56–58]. Furthermore,
this type of instability is a typical example of non-equilibrium flow, and its non-equilibrium
effect is significant near the interface, where the instabilities grow, which is why the kinetic
equations are intensively used in the analysis of its evolution [59].

L R

x = 0

uuy y

L R

t = 0

t > 0

Figure 8. Schematic representation of statement of problem for KHI simulation.

For the numerical simulation, the system, formed by two immiscible fluids with
different initial densities and tangential velocities, is considered (see Figure 8 for schematic
representation). The interface in the initial time moment is represented by the straight line,
which corresponds to x = 0.

The considered models are not adopted for multiphase simulations or simulations
with interfaces between flows with different physical characteristics. So, the effect of the
interface is simulated by the initial condition with the steep profile [60]. The solution corre-
sponding to this condition evolves as a model that reproduces the dynamics of a system
with immiscible fluids. So, LBM in this situation is considered as shock-capturing method.

The following initial conditions are stated [59,60]:

ρ(0, x, y) =
ρL + ρR

2
− ρL − ρR

2
tanh

(
x

Dρ

)
,

uy(0, x, y) =
uL + uR

2
− uL − uR

2
tanh

(
x

Dv

)
,
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ux(0, x, y) = u0 sin(ky)exp(−k|x|), pL(0, x, y) = pR(0, x, y) = p0,

where ρL, ρR are constants corresponding to densities of fluids, uL and uR are corresponding
tangential velocities, Dρ and Dv are positive constants, which characterize the width of
density and velocity transitional layers, k > 0 is the frequency of the perturbations of the
interface, u0 characterizes its amplitude and p0 > 0 is the initial pressure.

For the computations, we consider the rectangular domain x ∈
[
− L

2 , L
2

]
, y ∈ [0, L] in

the case of L = 0.2. The following parameter values are used: ρL = 5, uL = 0.5, ρR = 2,
uR = −0.5, u0 = 0.05 and p0 = 2.5. On all boundaries, the zeroth-order extrapolation
conditions, as for the Riemann problems, are stated. The distribution functions in the
initial time moment are computed as the equilibrium distributions, computed on the initial
conditions, stated for macrovariables. The computations are performed for the time interval
[0, 1]. A spatial grid consists of 500× 500 nodes.

In Figure 9, the contour plots of ρ in moment t = 0.7 for values k = π, Dρ = 0.004 and
Dv = 0.008 are presented. As can be seen, the results obtained by both models are close to
each other, and the coordinates of the vortex center are similarly predicted by both models.

2

2.5

3

3.5

4

4.5

5

2

2.5

3

3.5

4

4.5

5

(b)

(a)

x

x

Figure 9. Contour plots of the density for t = 0.7: (a) model from [19]; (b) model from [24].

In Figure 10, the plots of density profiles corresponding to the fixed value y = 0.5L
are presented for the values Dρ = 0.002 and Dv = 0.008 in the cases of various values of k,
which characterize the frequency of interface perturbation. As it can be seen, the solutions
obtained by both models lead to similar profiles with weak discrepancies in values of
ρ (not larger than 0.2). The profiles, obtained for various values of Dv, are presented in
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Figure 11 for the case of k = 10π, Dρ = 0.002. As can be seen, both models lead to similar
profiles (discrepancies on values of ρ are not larger than 0.25 (≈5 %)). It should be noted
that the complete investigation of parameters influence on the solution of this problem
is performed and discussed in detail in [60]. In the presented paper, we focus attention
only on the comparison of numerical solutions obtained by different models based on
kinetic equations.

(a)

0.1 0.05 0 0.05 0.1

x

Figure 10. Plots of density profile ρ(t, x, 0.5L) for different values of k in comparison with initial
profile: (a) k = π; (b) k = 30π; (c) k = 60π.
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0.1 0.05 0 0.05 0.1

x

Figure 11. Plots of density profile ρ(t, x, 0.5L) for different values of Dv in comparison with initial
profile: (a) Dv = 0.01; (b) Dv = 0.016.

For the estimation of ρ, obtained by kinetic models in a whole spatial domain, the av-
eraged value can be used:

ρ(t) =
1
L2

L
2∫

− L
2

L∫
0

ρ(t, x, y)dydx.

The computation of this characteristic is performed by the following quadrature
formula:

ρ(ts) ≈
h2

L2 ∑
i,j

ρs
i,j,

where ρs
i,j ≈ ρ(ts, xi, yj) are computed from the values of distribution functions. In Figure 12,

the plots of ρ, obtained for Dv = 0.008 and Dρ = 0.004 for different values of k, are
presented. In Figure 13, the plots for the case of k = 10π, Dρ = 0.004 and different values
of Dv are presented. As can be seen, the values of the averaged density obtained by both
models are close to each other. The highest deviations of values of ρ are not larger than 0.25.
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Figure 12. Plots of averaged density ρ(t) for different values of k: (a) k = π; (b) k = 10π; (c) k = 30π;
(d) k = 60π.
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Figure 13. Plots of averaged density ρ(t) for different values of Dv: (a) Dv = 0.002; (b) Dv = 0.008;
(c) Dv = 0.01; (d) Dv = 0.016.
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5. Conclusions

In the presented paper, the analysis of discrete velocity kinetic models used in the
LBM simulation of compressible flows in the LBM for cases of varied specific heat ratios in
the equation-of-state is performed. The popular multi-speed and DDF models, presented
in the literature, are compared. In the theoretical part, the stability analysis of steady-
state solutions associated with steady flow regimes is performed. The stability analysis
problem is reduced to the analysis of zero solutions of linear systems of ordinary differential
equations. These systems are obtained after the linearization of kinetic equations near
the steady-state solution. The analysis is based on the construction of stability domains
in parametric space. The results obtained for different models are compared. In the
practical part, the selected models are applied to the simulation of compressible flows.
The Riemann problems and the simulation of KHI are considered. For the numerical
simulations, the parametric finite-difference scheme is used. As is demonstrated, different
kinetic models lead to close numerical solutions for both types of problems.

As the main results, the following conclusions can be formulated:
1. The procedure for the linear stability analysis of compressible discrete kinetic

models is proposed, and stability domains are constructed. The approach is based on
the considering of steady-state solutions associated with steady flow regimes. According
to the proposed procedure, we reduce the analysis of steady-state solutions of nonlinear
kinetic equations to the analysis of zero solutions of linear systems of ordinary differential
equations. According to the stability criterion, these solutions are asymptotically stable if
and only if the real parts of the eigenvalues of the matrices of the corresponding systems
have negative real parts. With the use of this criterion, we can construct the stability
domains in the parametric space. Only the stability of solutions of kinetic equations, which
formed the model, is analyzed. In practice, the numerical instabilities associated with the
used computational schemes also take place.

The proposed approach to analysis can be used as an effective tool for the theoretical
comparison of different kinetic models used in the LBM in other fields, for example,
for multiphase and magnetohydrodynamic simulations. It allows for the possibility to
define the range of free parameters presented in the models.

2. The effects of the input parameters on the boundaries of the stability domains
are analyzed. For the models from [13,19], the areas of the domains can be enlarged
by the increase of η0 (see Figures 2–4). For the model from [19], the upper values of U,
which provide stability, decrease with the increase of τ (Figure 2). However, for the model
from [13], this value for τ > 0.05 can be approximated by the constant 2.4 (see Figure 3).
For the DDF models, the value of Pr very slightly affects the boundaries of the stability
domains (see Figure 4).

For both types of models, the largest value of U occurs for the small values of τ
(τ < 0.05). This means that the models provide the most stable results if the semi-inviscid
flows are simulated. Despite the fact that the considered models are developed in order to
mathematically reproduce Navier–Stokes equations, which describe viscous flows, in most
works they are used for the simulation of inviscid flows, which are described by the
Euler equations. The expression for viscosity is obtained by applying the Chapman–
Enskog asymptotic expansion method. As it is demonstrated, the dynamic viscosity µ
is proportional to λ (that is why the inviscid flows are simulated by the use of a small
relaxation time). For example, for the model from [13] the following expression takes place:

µ =
2
D

ρeλ.

The case of the small value of τ corresponds to the small value of λ. So, in the presented
work, it is demonstrated that these models are better suited to be used in practice for the
simulation of inviscid flows because, in this case, they lead to larger stability intervals on
values of U.



Computation 2023, 11, 138 22 of 25

3. As it is obtained after numerical experiments for the case of the air flow, the smallest
areas of the domains are observed for the model from [32] and for the model from [19] at
small values of η0. The best stability properties (largest areas) occur for the model from [13].
However, this model consists of 65 equations, so it is not optimal for practical computations.

4. As is demonstrated in the numerical experiments on the simulation of compressible
flows, both types of models (multi-speed and DDF) provide close values for macrovariables.
So, in practice, any of the constructed models can be used. However, their parameters
should be defined based on the stability conditions obtained after the analysis of stabil-
ity domains.

5. The presented study can be considered as the first stage of the analysis of models
used in the LBM for compressible flow simulations. The presented approach to linear
stability analysis can be used for different models of different physical phenomena. In the
LBM over the last decades, multiparametric methods, which improve stability, have been
proposed; for example, MRT methods [38,61,62] and cascaded models [63–65]. The stability
of such schemes and their variations will be analyzed in future studies.
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Nomenclature

t time
r vector of spatial variables
v particle velocity
f (t, r, v) particle distribution function
m particle mass
F body force
I( f ) collisional term
ρ(t, r) density
u(t, r) macrovelocity
k Boltzmann constant
T(t, r) temperature
λ relaxation time
l mean free path
δt mean free time
fi(t, r) density distribution functions
p(t, r) pressure
e(t, r) internal energy
γ specific heat ratio
D the space dimension
σ number of extra degrees of freedom
hi(t, r) total energy distribution functions
λ f density relaxation time
λh energy relaxation time
Tc typical temperature
R specific gas constant
τ dimensionless relaxation time
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k wave vector
Pr Prandtl number
∆t time step
h spatial step
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