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Abstract: We propose two accurate and efficient spectral collocation techniques based on a (novel)
domain-splitting strategy to handle a nonlinear fractional system consisting of three ODEs arising in
financial modeling and with chaotic behavior. One of the major numerical difficulties in designing
traditional spectral methods is in the handling of model problems on a long computational domain,
which usually yields to loss of accuracy. One remedy is to split the underlying domain and apply the
spectral method locally in each subdomain rather than on the global domain of interest. To treat the
chaotic financial system numerically, we use the generalized version of modified Bessel polynomials
(GMBPs) in the collocation matrix approaches along with the domain-splitting strategy. Whereas
the first matrix collocation scheme is directly applied to the financial model problem, the second one
is a combination of the quasilinearization method and the direct first numerical matrix method. In
the former approach, we arrive at nonlinear algebraic matrix equations while the resulting systems
are linear in the latter method and can be solved more efficiently. A convergence theorem related
to GMBPs is proved and an upper bound for the error is derived. Several simulation outcomes are
provided to show the utility and applicability of the presented matrix collocation procedures.

Keywords: collocation points; Liouville-Caputo fractional operator; chaotic system; convergent
analysis; financial model; modified Bessel functions

1. Introduction

There has been a great deal of interest in working with nonlinear ordinary differential
equations (ODEs) and dynamical systems over the past decades. Diverse physical as well
as nonphysical phenomena including economical, epidemiological, and biological models
belong to these category. Among others, nonlinear systems with chaotic behavior are of
particularly of interest. Chaos theory of nonlinear dynamics is a branch of mathematical
science that deals with highly complex systems, where small changes now in their inputs
cause large changes in their outputs later [1]. The notion of chaos was first introduced to
the modern world by Edward Lorenz in 1972 with conceptualization of “Butterfly Effect”.
By understanding this theory we are able to predict the behavioral representation of a
complex system more accurately. Chaotic systems are unstable since they tend not to
resist any outside disturbances but instead react in significant manner. As a meteorologist,
Lorenz developed a mathematical model for the air movement in the atmosphere. It caused
various differences in the outcome of the given model. In this manner he discovered the
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principle of sensitive dependence on initial conditions, which is now considered as a key
element in any chaotic system [2]. Indeed, systems with chaotic behavior are common in
nature and diverse real-life phenomena can also be classified in the framework of a chaotic
system. Beside of their appearance in meteorology, they can be found also in solar system,
chemical reactions, climate dynamic, population dynamic, economics, and so on.

In the economic setting, Ma and Chen [3,4] were one of the pioneering who studied and
analyzed the chaotic economic systems. The study of memory effects and fractional-order
derivative on a chaotic financial system was given by Chen [5]. The concept of fractional
calculus provides more insight in predicting the behavior of complex dynamical systems
especially those with chaotic characteristics, see [6]. Various fractional order systems with
chaos have been considered in literature such as Chua [7], Chen [8], Rössler [9], Lorentz [10]
to name a few. Finding the exact or analytical solutions of the most fractional-order
systems cannot be possible. Alternately, the researchers have been tried to develop effective
semi-analytical as well as numerical procedures to deal with such systems of fractional
order. Among diverse existing proposed methods, we refer to the recent published works
including the spectral collocation approaches [11–13], the fractional Adams-Bashforth
approach [14], the residual power series method and Laplace technique [15], the variational
iteration scheme [16], and the wavelet technique [17] to name a few.

The main objective of the current research is to investigate a real-life model arising
in the financial market. The model equation consists of three differential equations with
quadratic nonlinearities given by [5]

LCDψ
t u(t) = −λ1 u(t) + u(t) v(t) + w(t),

LCDψ
t v(t) = −u2(t)− λ2 v(t) + 1,

LCDψ
t w(t) = −u(t)− λ3 w(t),

(1)

where t > 0 and λi for i = 1, 2, 3 are constants. Here, λ1 denotes the saving amount
rate, λ2 represents the costs per investment, and λ3 shows the elasticity of demand of
commercial markets. In the model (1) by LCDψ

t we denote the fractional derivative operator
of order ψ in the sense of Liouville–Caputo (LC). Let u0, v0, and w0 be given real numbers.
The supplemented initial conditions are as follow

u(0) = u0, v(0) = v0, w(0) = w0. (2)

It should be emphasized that the dynamic analysis and chaotic intrinsic nature of the
financial system (1) have already been investigated by researchers, see cf. [5].

Based on our knowledge, only a few works have been proposed to solve the system (1)
numerically. The Adams-Bashforth-Moulton scheme used in [18] to deal with the variable-
order fractional counterpart of (1). The integer-order of the above model solved by a robust
spectral Chebyshev method [19]. The fractional-order of model (1) in the sense of both
Caputo and Atangana-Baleanu-Caputo (ABC) derivatives considered in [20] and solved by
the modified homotopy analysis transform method. They also proved the existence and
uniqueness of the solutions based on Picard-Lindelof’s approach. The variable-order of
the underlying model in the sense of ABC derivative invsetiagted in [21]. A computational
stochastic approach based on the artificial neural networks introduced recenlty in [22].
Furthermore, the authors in [23] proposed a new robust nonlinear controller that stabilizes
the chaotic finance system (1). Some other financial models related to (1) with some
proposed approximate methods were given in [24–27].

In this work, we solve the nonlinear system (1) with two spectral collocation ap-
proaches based on (novel) modified Bessel functions. To preserve the high accuracy of
the proposed methods on a long computational domain, we further employ the domain-
splitting methodology. In the first and direct collocation procedure, we convert the financial
model into an algebraic system of nonlinear equations. On the other hand, in the next and
more efficient algorithm, we utilize first the methodology of quasilinearization to (1) and
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then employ the former direct technique to the resulting sequence of the linearized system
of equations. In the latter technique we arrive at a family of linear matrix equations to be
solved easily. Using the domain-splitting methodology enables us to keep the accuracy high
on a long time domain. For this purpose, it is sufficient to divide the domain into several
subdomains and then employ the traditional collocation schemes on each subintervals
more accurately.

The balance of the current work is given next. A review of fundamental facts on frac-
tional integral and derivatives is provided in Section 2. Section 3 contains of introducing
the fundamental definitions and main properties of the modified Bessel functions. The gen-
eralized form of these polynomials is introduced next. The error estimate of the given basis
functions is also established. In Section 4, we first develop the direct GMBPs collocation
based on domain-splitting strategy. Afterward, the hybrid QLM-GMBPs procedure relied
on the quasilinearization process is implemented in detail. We also testify the accuracy of
two proposed collocation technique via defining the technique of residual error functions in
this section. Experiments and computational results are carried out in Section 5. A concise
conclusion of the current manuscript is discussed in Section 6.

2. Basic Preliminaries on Fractional Calculus

Here and in this section, our aim is to provide some facts associated to fractional
calculus. The definition of Liouville–Caputo (LC) is first given and some of its properties
will be mentioned. At the end, we provide a theorem for the generalized Taylor’s formula
with LC operator.

Definition 1 ([6]). Let suppose that e(t) is a continuously differentiable function r-times. The LC
fractional operator LCDψ

t of order ψ > 0 of e(t) is defined as follows

LCDψ
t (e(t)) =

{
0I r−ψ

t (e(r)(t)), if r− 1 < ψ < r,
e(r)(t), if ψ = r, r ∈ N,

(3)

where

0Iψ
t (e(t)) =

1
Γ(ψ)

∫ t

0

e(z)
(t− z)1−ψ

dz, t > 0.

Let c1 and c2 be two constants. The LC operator has linear property in the sense that

LCDψ
t (c1 e1(t) + c2 e2(t)) = c1

LCDψ
t (e1(t)) + c2

LCDψ
t (e2(t)),

where two functions ei(t) for i = 1, 2 are r-times continuously differentiable. In addition
to the above linear property, we utilize the next properties of LC operator will be used
frequently throughout the paper as follow

LCDψ
t (c1) = 0, (4)

LCDψ
t tω =


Γ(1 + ω)

Γ(1 + ω− ψ)
tω−ψ, if ω ∈ N0 and ω ≥ dψe, or ω /∈ N0 and ω > bψc,

0, if ω ∈ N0 and ω < dψe,
(5)

where N0 := N∪ {0}, bψc and dψe denote the floor and ceiling functions of ψ respectively.
The next Theorem states the generalized form of Taylor series expansion when we have the
LC fractional derivative operator. To see a proof, we refer the readers to [28]. Towards this
end, let us have the convention that

LCDrψ
t = LCDψ

t
LCDψ

t · · · LCDψ
t︸ ︷︷ ︸

r times

.
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Theorem 1. Let 0 < ψ ≤ 1 and the functions LCDrψ
t e(t) are continuous on (0, T ] for

r = 0, 1, . . . , p. Then, the series representation of e(t) is written as follows

e(t) =
p

∑
r=0

trψ

Γ(1 + rψ)
LCDrψ

t e(0+) +
tψ(p+1)

Γ(1 + ψ(p + 1))
LCD(p+1)ψ

t e(ξ), ∀t ∈ [0, T ],

for some ξ ∈ (0, T ).

The immediate consequence of the former Theorem is given next.

Corollary 1 (Fractional Taylor inequality). Let assume that the hypotheses of Theorem 1 hold
and we have Cmax := supt∈[0,T ] |LCDψ(p+1)

t |. Then, we get the upper bound for remainder of
Taylor’s formula as∣∣∣∣∣e(t)− p

∑
r=0

trψ

Γ(1 + rψ)
LCDrψ

t e(0+)

∣∣∣∣∣ ≤ tψ(p+1)

Γ(1 + ψ(p + 1))
Cmax, ∀t ∈ [0, T ].

3. The Modified Bessel Polynomials: An Overview

Let us begin first by introducing the modified Bessel polynomials (MBPs) were studied
in [29] to define a set of totally positive polynomials. The original Bessel polynomials
were first given by Krall and Frank [30] systematically. Due to vast applications, this set
of polynomials has been recently used to solve various model problems in science and
applied engineering ranging from integer to fractional models. see [31–36]. See also [37]
for a recent introductory overview of these polynomials.

3.1. The Basic Facts on MBPs

Let assume that Bp(s) denotes the Bessel polynomial of order p. The modified Bessel
polynomial MBp(s) of this order is defined by

MBp(s) :=
p!

(2p)!
Bp(2s), p ≥ 0. (6)

In the explicit format, the MBPs can be written as

MBp(s) =
p!

(2p)!

p

∑
j=0

(p + j)!
j! (p− j)!

sj, s ≥ 0. (7)

By using p = 0, 1, one can easily check that MB0(s) = 1 and MB1(s) = 1
2 + s. A simple

calculation is also indicated that MB2(s) = 1
12 + 1

2 s + s2. The next recursive relation will be
used to get the remaining MBPs for p = 2, 3, . . . as

MBp+1(s) = sMBp(s) +
1

4(4p2 − 1)
MBp−1(s). (8)

Therefore, the next a few MBPs are obtained via the former formula given as

MB3(s) =
1

120
+

1
10

s +
1
2

s2 + s3,

MB4(s) =
1

1680
+

1
84

s +
3

28
s2 +

1
2

s3 + s4,

MB5(s) =
1

30240
+

1
1008

s +
1
72

s2 +
1
9

s3 +
1
2

s4 + s5.

It is evident the leading coefficients are all equal to one and MBp(0) = p!/(2p)!.
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The additional property of these polynomials is that they are polynomial solutions of
the next second-order differential equations

s2 MB′′p(s) + (1 + 2s)MB′p(s) = p(p + 1)MBp(s), p ∈ N0. (9)

The another interesting characteristic of these MBPs is the orthogonality relation. This
condition can be deduced on the circle |s| = 1/2. The orthogonality condition was shown
with regard to weight function w(s) ≡ e−1/s. Thus, we have

1
2πi

∮
|s|= 1

2

MBp(s)MBq(s)w(s) ds =

0, p 6= q,
(−1)p

2p+1

(
p!

(2p)!

)2
, p = q.

(10)

We lastly emphasize that the locations of roots of the MBPs MBp(s) are inside the circle
|s| = 1/2. The exception is MB1(s), which is zero at s = −1/2.

In practical investigations, we shall utilize the MBPs on the interval [0, T ]. Conse-
quently, the fractional form or the generalized MBPs are taken into consideration and will
be defined next:

Definition 2. The generalized MBPs (GMBPs) on [0, T ] signify by MBδ
p(s) is defined via relation

MBδ
p(s) = MBp

(
sδ

T

)
, s ∈ [0, T ], (11)

where 0 < δ ≤ 1 is a real number.

Note, with δ = 1, we recover the integer-order form of these polynomials on [0, T ].
From this new transformation, we can represent the series form (7)

MBδ
p(s) =

p

∑
j=0

mp,j sδ j, mp,j :=
p!

(2p)!
(p + j)!

T j j! (p− j)!
, (12)

for p = 0, 1, . . . With the above given change of variable, the orthogonality condition (10)
will be modified accordingly. The orthogonality of the set {MBδ

p(s)}∞
p=0 is derived with

respect to the weight function wδ(s) = sδ−1e−T /sδ
. We have indeed the next formula

1
2πi

∮
|s|= 1

2

MBδ
p(s)MBδ

q(s)wδ(s) ds =
T (−1)p

(2p + 1)δ

(
p!

(2p)!

)2
δpq, (13)

where δqp stands for the Kronecker delta function.

3.2. Function Approximation: Convergence and Error Analysis of GMBPs

It is known that a function e(t) belongs to the weighted L2 space on [0, T ] can be
represented as a summation of GMBPs. It follows that

e(t) =
∞

∑
p=0

ξp MBδ
p(t), t ∈ [0, T ]. (14)

To make known the unknown coefficients ξp, p ≥ 0, one can utilize the orthogonality
property (13). However, to deal with our model problem (1) in practical situations, we need
to cut the above series form into a finite series, say with (P + 1) basis functions, where
P ∈ N. Therefore, we can approximate e(t) in the form

e(t) ≈ eP,δ(t) :=
P

∑
p=0

ξp MBδ
p(t) = Λδ(t) ZP, t ∈ [0, T ], (15)
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where we have used the following vectors to rewrite it in a concise representation format

Λδ(t) :=
[
MBδ

0(t) MBδ
1(t) . . . MBδ

P(t)
]
,

ZP := [ξ0 ξ1 . . . ξP]
T .

So, we restrict ourselves to a finite-dimensional subspace WP ⊆ L2
wδ
[0, T ] defined by

WP := Span〈MBδ
0(t),MBδ

1(t), . . . ,MBδ
P(t)〉.

We now investigate the norm of the error term between e(t) and its approximation
eP,δ(t) defined by the formula

EP(t) := e(t)− eP,δ(t).

The following results indicates that the norm ‖EP‖2,wδ
converges to zero if one tends P

to infinity.

Theorem 2. Let 0 < δ ≤ 1 and assume that LCDrδ
t (t), (r = 0, 1, . . . , P) belong to the space of

continuous funtions over (0, T ]. If eP,δ(t) = Λδ(t) ZP be the closet possible approximation to e(t)
in the space WP, then, eP,δ(t) converges to e(t) as P→ ∞, i.e.,

‖EP‖2,wδ
→ 0.

Proof. We first set

AP(t) = e(0+) +
tδ

Γ(δ + 1)
LCDδ

t e(0+) + . . . +
tPδ

Γ(Pδ + 1)
LCDPδ

t e(0+).

Since 0 < δ ≤ 1, we can apply Theorem 1 to e(t) and its generalized Taylor expansion series
AP(t) of e(t). The immediate consequence of Corollary 1 is that

|AP(t)− e(t)| ≤ t(P+1)δ

Γ((P + 1)δ + 1)
Cmax, 0 < t < T . (16)

We have eP,δ(t) ∈WP and we know that eP,δ(t) is the finest possible approximation to e(t).
The conclusion is

‖e(t)− eP,δ(t)‖2,wδ
≤ ‖e(t)− h(t)‖2,wδ

, ∀h ∈WP.

If utilize h(t) = AP(t) ∈WP in the preceding relation, we find that

‖e(t)− eP,δ(t)‖2
2,wδ
≤ ‖e(t)− AP(t)‖2

2,wδ
=
∫ T

0
|e(s)− AP(s)|2wδ(s)ds,

where wδ(s) = sδ−1e−T /sδ
. The definition of the error term followed by using (16) we get

‖EP‖2
2,w ≤

[
Cmax

Γ((P + 1)δ + 1)

]2 ∫ T
0

sδ(2P+3)−1 e−T /sδ
ds.

We then use the inequality e−T /sδ
< 1/e holds for all s > 0. By a simple integration, we

find that

‖EP‖2
2,w ≤

[
Cmax

Γ((P + 1)δ + 1)

]2 T δ(2P+3)

δ(2P + 3)e
.

Our proof is established by performing the square roots and tending P to infinity.
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4. Domain-Splitting QLM-GMBPs/GMBPs Collocation Techniques

As previously mentioned in the Section 1, the spectral collocation procedure may
be failed to converge if the computational domain of interest is large. To overcome this
inaccuracy, the idea is to split the given (large) domain into a sequence of sub-domains and
then apply the spectral approach in each subdomain. To this end, we consider a (uniform)
partitioning of the interval [0, T ] into M ≥ 1 subintervals

Im := [tm−1, tm], m = 1, 2, . . . , M,

where t0 := 0 and tM := T . The length of each Im will denote by |Im| and is equal to
` = T /M. When M = 1, we recover the traditional spectral collocation strategy, see
cf. [31–36]. In each subdomain Im we now consider the approximate solution to be in the
form (15) as

em
P,δ(t) :=

P

∑
p=0

ζm
p MBδ

p(t) = Λδ(t) Zm
P , t ∈ Im, (17)

where Zm
P :=

[
ζm

0 ζm
1 . . . ζm

P
]T is the vector of unknown coefficients and Λδ(t) is de-

fined in (15). After obtaining the approximate solutions for m = 0, 1, . . . , M− 1, the desired
approximation on the whole domain [0, T ] can be expressed as

eP,δ(t) =
M

∑
m=0

χm(t) em
P,δ(t),

where the characteristic function χm(t) is given by

χm(t) :=

{
1, t ∈ Im,
0, otherwise.

Furthermore, at each subinterval Im, we utilize the followinng collocation nodes

tm,k := tm−1 +
tm − tm−1

P
k, k = 0, 1, . . . , P. (18)

Finally, we emphasize that the initial conditions on the first subinterval I0 are taken as the
original initial conditions for our model problem (1) whilst on the remaining subintervals
Im, m ≥ 1 we will use the approximate solutions obtained on the previous subintervals
Im−1. The fundamental idea of the spectral collocation for the model (1) will be illustrated
next. Towards this end, we only consider the proposed approach on an arbitrary domain
Im for m = 0, 1, . . . , M− 1 .

4.1. The GMBPs Collocation Approach

Let us first represent the financial system (1) into a matrix format on the subinterval
Im. It can be expressed as

LCDψ
t y(t) + π y(t) + π1 n1(t) + π2 n2(t) = g(t), t ∈ Im. (19)

Here, we have utilized the following notations

y(t) =

u(t)
v(t)
w(t)

, π =

λ1 0 0
0 λ2 0
1 0 λ3

, π1 =

−1
0
0

, π2 =

0
1
0

, g = π2.

Furthermore, the nonlinear terms ni(t) for i = 1, 2 are

n1(t) = [u(t) · v(t)], n2(t) = [u2(t)].
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Now, the task is that to state the unknown solutions u(t), v(t), and w(t) as a finite
combination of cutted series form (17) using (P + 1) GMBPs bases. It follows that

u(t) ≈ um
P,δ(t) = ∑P

p=0 ζm
p,1 MBδ

p(t) = Λδ(t) Zm
P,1,

v(t) ≈ vm
P,δ(t) = ∑P

p=0 ζm
p,2 MBδ

p(t) = Λδ(t) Zm
P,2,

w(t) ≈ wm
P,δ(t) = ∑P

p=0 ζm
p,3 MBδ

p(t) = Λδ(t) Zm
P,3,

t ∈ Im. (20)

To find the coefficients {ζm
p,q}P

p=0 for q = 1, 2, 3, we apply the spectral matrix collocation
procedure by using the GMBPs. A decomposition of the vector Λδ(t) is provided next:

Lemma 1. We can write the vector Λδ(t) as the following

Λδ(t) = Xδ
P(t) EP, (21)

where
Xδ

P(t) =
[
1 t t2δ . . . tPδ

]
,

represents the vector of standard bases and the second matrix EP is a non-singular matrix whose
components are given in (12). It has a triangular structure and det(EP) = 1 given by

EP =



1 m1,0 m2,0 . . . mP−1,0 mP,0

0 1 m2,1 . . . mP−1,1 mP,1

0 0 1 . . . mP−1,2 mP,2

...
...

. . . . . . . . .
...

0 0 0 . . . 1 mP,P−1

0 0 0 . . . 0 1



.

Proof. By expanding the relation (12) in terms of powers of t followed by using the defini-
tions of Xδ

P(t) and EP we conclude the result easily.

By inserting the expression Λδ(t) in (21) into (20) we render
um

P,δ(t) = Λδ(t) Zm
P,1 = Xδ

P(t) EP Zm
P,1,

vm
P,δ(t) = Λδ(t) Zm

P,2 = Xδ
P(t) EP Zm

P,2,
wm

P,δ(t) = Λδ(t) Zm
P,3 = Xδ

P(t) EP Zm
P,3.

t ∈ Im. (22)

The next job is to compute the ψ-derivative of the aforementioned approximate solutions.
It is evident that we need to calculate only the ψ-derivative of Xδ

P(t). Towards this end,
we exploit the property (4) as well property (5) to calculate LCDψ

t Xδ
P(t), which is denoted

by Xψ,δ
P (t). Note that we can calculate it algorithmically with linear complexity O(P), see

Algorithm 3.1 in [38]. Therefore, we get
LCDψ

t um
P,δ(t) = Xψ,δ

P (t) EP Zm
P,1,

LCDψ
t vm

P,δ(t) = Xψ,δ
P (t) EP Zm

P,2,
LCDψ

t wm
P,δ(t) = Xψ,δ

P (t) EP Zm
P,3.

t ∈ Im. (23)
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In the vector format, we can approximate the true solutions of system (19) in the form

y(t) ≈ yP(t) :=

um
P,δ(t)

vm
P,δ(t)

wm
P,δ(t)

, LCDψ
t y(t) ≈ LCDψ

t yP(t) :=


LCDψ

t um
P,δ(t)

LCDψ
t vm

P,δ(t)
LCDψ

t wm
P,δ(t)

. (24)

By introducing the following matrix notations

X̃(t) =

Xδ
P(t) 0 0
0 Xδ

P(t) 0
0 0 Xδ

P(t)

, Ẽ =

EP 0 0
0 EP 0
0 0 EP

,

W̃(t) =

Xψ,δ
P (t) 0 0
0 Xψ,δ

P (t) 0
0 0 Xψ,δ

P (t)

,

we are able to rewrite yP(t) and LCDψ
t yP(t) in the forms of matrices. It follows that

yP(t) = X̃(t) Ẽ Zm, LCDψ
t yP(t) = W̃(t) Ẽ Zm, (25)

where we have used the notation Zm =
[
Zm

P,1 Zm
P,2 Zm

P,3
]T .

We now insert the collocation nodes (18) of the subinterval Im into the matrix represe-
nation form (19). The next set of equations are obtained

LCDψ
t y(tm,k) + π y(tm,k) + π1 n1(tm,k) + π2 n2(tm,k) = g(tm,k), k = 0, 1, . . . , P. (26)

If we introduce the next notations

Y (ψ)
m =


LCDψ

t yP(tm,0)
LCDψ

t yP(tm,1)
...

LCDψ
t yP(tm,P)

, Ym =


yP(tm,0)
yP(tm,1)

...
yP(tm,P)

, Π =


π 0 . . . 0
0 π . . . 0
...

...
. . .

...
0 0 . . . π

,

Gm =


g(tm,0)
g(tm,1)

...
g(tm,P)

, N i,m =


ni(tm,0)
ni(tm,1)

...
ni(tm,P)

, Πi =


πi 0 . . . 0
0 πi . . . 0
...

...
. . .

...
0 0 . . . πi

, i = 1, 2,

we are able to represent the system of equations in a concise form as

Y (ψ)
m + Π Ym + Π1 N1,m + Π2 N2,m = Gm. (27)

Our goal is to write the involved vectors in (27) in a matrix format.

Lemma 2. In matrix representation form, two vectors yP(t) and LCDψ
t yP(t) in (25) at the collo-

cation nodes (18) can be written as

Ym = ¯̃X Ẽ Zm, Y (ψ)
m = ¯̃W Ẽ Zm. (28)

Here, two matrices ¯̃X and ¯̃W are defined as

¯̃X = [X̃(tm,0) X̃(tm,1) . . . X̃(tm,P)]
T ,

¯̃W = [W̃(tm,0) W̃(tm,1) . . . W̃(tm,P)]
T ,
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where three matrices X̃, Ẽ, W̃ as well as the vector Zm are introduced in (25).

The proof of the foregoing Lemma can be done easily by just considering relations (25)
followed by inserting the nodes (18) into them. Similarly, two nonlinear terms N i,m for
i = 1, 2 still need to be written in the matrix expressions. We have

Lemma 3. We can express N i,m in (27) for i = 1, 2 in the forms

N1,m = Û1 V̂1, N2,m = Û1 Û2. (29)

Here, we have the representations Û1 = X̂ Ê Ẑ
m
1 , and V̂1 = ̂̄X Ē1 Zm so that

X̂ =


Xδ

P(tm,0) 0 . . . 0
0 Xδ

P(tm,1) . . . 0
...

...
. . .

...
0 0 . . . Xδ

P(tm,P)

, Ê =


EP 0 . . . 0
0 EP . . . 0
...

...
. . .

...
0 0 . . . EP

,

Ẑ
m
1 =


Zm

P,1 0 . . . 0
0 Zm

P,1 . . . 0
...

...
. . .

...
0 0 . . . Zm

P,1

, ̂̄X =


Xδ

P(tm,0)

Xδ
P(tm,1)

...
Xδ

P(tm,P)

, Ē1 =
[
R EP R

]
,

R =


0 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0


(P+1)×(P+1)

, Zm =

Zm
P,1

Zm
P,2

Zm
P,3

.

Also, we have Û2 = ̂̄X Ē2 Zm, where Ē2 =
[
EP R R

]
.

Proof. To prove the first assertion, let us note the following relation

N1,m =


um

P,δ(tm,0) · vm
P,δ(tm,0)

um
P,δ(tm,1) · vm

P,δ(tm,1)
...

um
P,δ(tm,P) · vm

P,δ(tm,P)

 =


um

P,δ(tm,0) 0 . . . 0
0 um

P,δ(tm,1) . . . 0
...

...
. . .

...
0 0 . . . um

P,δ(tm,P)




vm
P,δ(tm,0)

vm
P,δ(tm,1)

...
vm

P,δ(tm,P)

.

In accordance to relations (22), it is no difficult to show that the first diagonal matrix is
written as Û1 and the second column matrix can be expressed as V̂1. Similar arguments
hold for N2,m, where the second column vector is terms of um

P,δ instead of vm
P,δ.

We now turn our attention to (27) and insert all obtained matrix forms into it. To be
more precise, we replace Y (ψ)

m , Ym, N1,m, and N2,m by the corresponding representation
form in relations (28) and (29). We reach at the fundamental matrix equation, which has
the representation

Am Zm = Gm, or [Am; Gm], (30)

where
Am := ¯̃W Ẽ + Π X̃ Ẽ + Π1 X̂ Ê Ẑ

m
1
̂̄X Ē1 + Π2

̂̄X Ē2.

It should be noted that the resultant matrix Equation (30) is a nonlinear system with 3P + 3
unknowns ζm

p,q for p = 0, 1, . . . , P and q = 1, 2, 3 to be determined by our proposed algorithm.
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Next, we incorporate the intial conditions (2) into (30). Towards this end, we provide
the matrix form of (2). By tending t→ 0 in the first relation in (25) we reach at the next form

Am,0 Zm = Gm,0, Am,0 := X̃(0) Ẽ, Gm,0 =

u0
v0
w0

.

Let us emphasize that the three constants u0, v0, and w0 are at hand by (2). The rows one
to third of the augmented matrix [Am; Gm] will now be substituted by the above three
rows [Am,0; Gm,0]. Thus, we reach at the modified and final version of fundamental matrix
equation as

Ãm Zm = G̃m, or
[

Ãm; G̃m

]
. (31)

We solve (31) to acquire the approximate solution of the financial model (1) on the subinter-
vals Im for m = 1, 2, . . . , M. As stated before, for the first subinterval I0, we use the original
initial conditions (2). By iterating on m, the approximate solutions on Im are obtained by
using the previously approximate solutions on Im−1 as the initial conditions evaluated at
the starting point of Im−1.

4.2. Computing Errors via Residual Error Function Technique

The true exact form of the solutions of the financial system (1) are not yet known.
To check the quality of approximations, we compute the residual error functions (REFs)
rather than the difference between the exact and obtained numerical solutions. Towards
this end, we first calculate the three approximations um

P,δ(t), vm
P,δ(t), and wm

P,δ(t) via the
proposed GMBPs matrix collocation algorithm as described above. Afterwards, we insert
these approximations into the financial system (1) followed by defining the REFs as the
difference between the left and right hand sides of the involved equations. In the other
words, we set the REFs for (1) on the subintervals Im as

Rm
1,P(t) :=

∣∣∣LCDψ
t um

P,δ(t) + λ1 um
P,δ(t)− um

P,δ(t) vm
P,δ(t)− wm

P,δ(t)
∣∣∣ ∼= 0,

Rm
2,P(t) :=

∣∣∣LCDψ
t vm

P,δ(t) +
(
um

P,δ(t)
)2

+ λ2 vm
P,δ(t)− 1

∣∣∣ ∼= 0,

Rm
3,P(t) :=

∣∣∣LCDψ
t wm

P,δ(t) + um
P,δ(t) + λ3 wm

P,δ(t)
∣∣∣ ∼= 0.

(32)

4.3. The QLM-GMBPs Collocation Approach

The direct matrix collocation procedure based on the GMBPs is illustrated in the last
part for the nonlinear chaotic system (1). We expect that a combination of the proposed
approach with the domain-splitting leads to a better accuracy of the obtained approximate
solutions. However, using a large value for the number of basis function (P) may cause of
some inefficiencies during the execution of the algorithm, which comes from the intrinsic
nonlinearity of the model under consideration. The idea of linearization has usually been
worked to accelerate the running time of proposed algorithms. Applying the technique of
quasi-lineariztion method (QLM) has been successfully proved by many published works,
see cf. [39–41]. The QLM aimed to not only linearize the model but also keep the accuracy
of the proposed algorithm in the same level as the directly employed algorithm.

Let us we rewrite the original model (1) in the form

LCDψ
t y(t) = F(t, y(t)), (33)

where

y(t) =

u(t)
v(t)
w(t)

, F(t, y(t)) =

 f1(t)
f2(t)
f3(t)

 =

−λ1 u(t) + u(t) v(t) + w(t)
−u2(t)− λ2 v(t) + 1
−u(t)− λ3 w(t)

.
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By starting the initial rough guess y0(t) for the solution y(t) of system (33), we propose the
following iterative QLM as follows

LCDψ
t ye(t) ≈ F(t, ye−1(t)) + Fy(t, ye−1(t))

(
ye(t)− ye−1(t)

)
, e = 1, 2, . . . ,

where the matrix Fy represents the Jacobian matrix of size 3× 3. Applying the linearization,
we get

LCDψ
t ye(t) + Je−1(t) ye(t) = ge−1(t), e = 1, 2, . . . . (34)

Here, we have utilized the notations

ye(t) =

ue(t)
ve(t)
we(t)

, Je−1(t) =

−ve−1(t) + λ1 −ue−1(t) −1
2ue−1(t) λ2 0

1 0 λ3

,

ge−1(t) =

−ue−1(t) ve−1(t)
1 + u2

e−1(t)
0

.

The above system has also the initial conditions ye(0) =
[
u0 v0 w0

]T in accordance
to (2).

Now, the direct GMBPs matrix approach can be applied to the set of linearized equa-
tions (34) without any difficulties stem from the nonlinear terms in (19). Supposedly, we
have already the approximate solution y(e)

P (t) available for the solution ye(t) of (34) in the
iteration number e ≥ 1. Then, we take the next approximation on Im as

u(e)
P,δ,m(t) =

P

∑
p=0

ζ
(e)
p,m,1 MBδ

p(t) = Λδ(t) Z(e)
P,m,1 = Xδ

P(t) EP Z(e)
P,m,1,

v(e)P,δ,m(t) =
P

∑
p=0

ζ
(e)
p,m,2 MBδ

p(t) = Λδ(t) Z(e)
P,m,2 = Xδ

P(t) EP Z(e)
P,m,2,

w(e)
P,δ,m(t) =

P

∑
p=0

ζ
(e)
p,m,3 MBδ

p(t) = Λδ(t) Z(e)
P,m,3 = Xδ

P(t) EP Z(e)
P,m,3,

(35)

where Z(e)
P,m,q =

[
ζ
(e)
0,m,q ζ

(e)
1,m,q . . . ζ

(e)
P,m,q

]T
for q = 1, 2, 3 are the vectors of unknowns

in the iteration e = 1, 2, . . .. Moreover, the vector Xδ
P(t) and matrix EP are defined in (21).

We continue by inserting the collocation nods (18) into (34) followed by introducing the
following matrix and vector notations

Ĵe−1 =


Je−1(tm,0) 0 . . . 0

0 Je−1(tm,1) . . . 0
...

...
. . .

...
0 0 . . . Je−1(tm,P)

, Z(e)
m =


Z(e)

P,m,1

Z(e)
P,m,2

Z(e)
P,m,3

,

Ge−1 =


ge−1(tm,0)
ge−1(tm,1)

...
ge−1(tm,P)

.

By employing the relations (28), we reach at the next fundamental matrix equation

A(e)
m Z(e)

m = Ge−1, or [A(e)
m ; Ge−1], (36)
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where A(e)
m :=

{ ¯̃W + Ĵe−1
¯̃X
}

Ẽ for e ≥ 1 on Im. Here, the matrices ¯̃X, ¯̃W , and Ẽ are given

in (28). In analogue to the direct approach, we enter the initial ye(0) =
[
u0 v0 w0

]T

into the matrix equation (36). By solving the alternate matrix equation we arrive at the
unknown coefficients Z(e)

m efficiently and our job is finished.
Finally, let us mention that the REFs related to the QLM-GMBPs approach are obtained

as (32). We denote them by R(e)
P,m,q(t) for q = 1, 2, 3 defined on Im and on the iteration e ≥ 1.

For a fixed value of e, we further calculate the numerical order of convergence related to
the achieved REFs in the infinity norm as

L∞,q ≡ L∞,q(P) := max
1≤m≤M

(
max
t∈Im

∣∣∣R(e)
P,m,q(t)

∣∣∣), q = 1, 2, 3.

Hence, we set

OrdP,q := log2

(
L∞,q(P)

L∞,q(2P)

)
, q = 1, 2, 3. (37)

5. Experimental and Graphical Results

The financial system (1) will now be solved by using the GMBPs/QLM-GMBPs collo-
cation techniques as described in the last parts. In order to validate our results numerically,
different model parameters will be considered to show the performance of the proposed
spectral collocation approaches. Moreover, various values of fractional order ψ are used in
the simulations to show the applicability of the presented algorithms. All the experimen-
tal simulations are performed by utilizing Matlab 2021a executed on a personnel laptop.
Also, note that employing δ = 5 gives us sufficiently accurate results in the QLM-GMBPs
collocation procedure. The starting vector function y0(t) is taken as the zero function.

Example 1. To begin, we consider the parameters related to the chaotic financial system (1) taking
from [22] as follow

λ1 = 0.3, λ2 = 0.2, λ3 = 0.1.

The initial conditions are given by

u0 = v0 = w0 = 0.2.

We set P = 5 and take ψ, δ = 1 in the computations. We first focus on the performance
of the novel QLM-GMBPs collocation technique based on domain-splitting strategy com-
pared to traditional version of this algorithm. For this purpose, we consider T = 3 and
M = 3 and M = 1 in these two algorithms respectively. The result of approximations are
depicted in Figures 1 and 2 for the three solutions u(t), v(t), and w(t). For validation, we
also plot the results obtained via ode45 routine in Matlab. It is evident that the outcomes
of domain-splitting are accurate than those obtained by using M = 1 especially for the
interest rate u(t). The gap between the results of both approaches will increase if one takes
a longer domain of computation.

We next show that the results of direct and indirect collocation schemes i.e., the
GMBPs and QLM-GMBPs matrix algorithms are coincided. Let us take T = 1 and set the
parameters as above. We only report the results of the direct GMBPs collocation matrix
approach for t ∈ [0, 1] as follow
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u1
5,1(t) = 0.00038622572 t5 − 0.0056827876 t4 + 0.018763555 t3 − 0.026138427 t2

+ 0.17985295 t + 0.2,

v1
5,1(t) = 0.00013208249 t5 − 0.0010136806 t4 + 0.0021680058 t3 − 0.12829803 t2

+ 0.92005533 t + 0.2,

w1
5,1(t) = 0.00093962517 t5 − 0.0045590298 t4 + 0.011052039 t3 − 0.078820297 t2

− 0.22001844 t + 0.2.

It should be noted that the outcomes of QLM-GMBPs technique are very close to the above
approximations and we omit them to save space. However, the achieved REFs related
to both approaches are visualized in Figure 3 graphically. On the left plot, we show the
REFs of direct GMBPs collocation method using P = 5, 10, 15 while on the right picture we
depict the REFs utilizing P = 5, 10, 15, 20 in the QLM-GMBPs matrix technique. It is clearly
seen that in the direct approach we have problem with the convergence of the method if
we increase P. The reason may be the fact that the used nonlinear solver fails to give us
a reasonable approximation. On the other hand, we can utilize larger values of P in the
QLM-GMBPs technique to reach at more accurate results. Moreover, the latter iterative
method has more efficacy than the direct method. For instance, for P = 10, the required
time to solve the fundamental matrix equation (31) is about 23.523 s while the elapsed time
for the corresponding matrix equation via QLM-GMBPs procedure is approximately 2.001 s.
Consequently, in the following experiments, we usually run the latter numerical approach
due to its efficacy.
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Figure 1. Approximate solutions of u(t) (left) and v(t) (right) obtained via QLM-GMBPs based on
traditional (M = 1) and domain-splitting (M = 3) in Example 1 with P = 5, ψ, δ = 1.
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Figure 2. Approximate solutions of w(t) obtained via QLM-GMBPs based on traditional (M = 1)
and domain-splitting (M = 3) in Example 1 with P = 5, ψ, δ = 1.
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Figure 3. The obtained REFs via GMBPs (left) and QLM-GMBPs (right) methods in Example 1 with
ψ, δ = 1 for t ∈ [0, 1] and different P = 5, 10, 15, 20.

We further show the utility of QLM-GMBPs approach by using P = 5 and a relatively
large interval T = 50. The results of approximations on the first and last subibtervals I1
and I50 are obtained as follow

u5
5,1,1(t) = 0.00038622573 t5 − 0.0056827876 t4 + 0.018763555 t3 − 0.026138427 t2

+ 0.17985295 t + 0.2,

v5
5,1,1(t) = 0.00013208242 t5 − 0.0010136805 t4 + 0.0021680057 t3 − 0.12829803 t2

+ 0.92005533 t + 0.2,

w5
5,1,1(t) = 0.00093962517 t5 − 0.0045590298 t4 + 0.011052039 t3 − 0.078820297 t2

− 0.22001844 t + 0.2,

for t ∈ 0 ≤ τ ≤ 1 and

u5
5,1,50(t) = 0.10225624 t5 − 25.288941 t4 + 2501.5109 t3 − 123712.94 t2 + 3058923.9 t

− 30251900.0,

v5
5,1,50(t) = −0.056917986 t5 + 14.097621 t4 − 1397.1477 t3 + 69254.485 t2 − 1716963.7 t

+ 17032175.0,

w5
5,1,50(t) = −0.014757577 t5 + 3.6916847 t4 − 369.36648 t3 + 18477.276 t2 − 462146.33 t

+ 4623649.6,

for t ∈ 49 ≤ τ ≤ 50. In Figures 4 and 5 we depict all approximate solutions on the domains
Im for m = 1, 2, . . . , 50. The results of the ode45 are also plotted to show the validity of
our approximations. By looking at these figures we find that the results of both numerical
strategies are overlapped. We get a higher order accuracy if we increase the number of
bases or use a lager value of subdivisions M. We next take P = 10. The 3D pictorial
representation of uvw-plot as well as the 2D depiction of uv-plot are displayed in Figure 6,
which show the chaotic dynamical behavior of the financial system (1). Furthermore,
the similar results related to 2D representations of uw/vw-plot are shown in the next
Figure 7. For validation, the numerical approximations using the ode45 are also displayed
in this figure for comparison purposes. It is clear that the outcomes of both approaches
are coincided.
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Figure 4. Approximate solutions of u(t) (left) and v(t) (right) obtained via QLM-GMBPs based on
domain-splitting (M = 50) in Example 1 with P = 5, ψ, δ = 1.
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Figure 5. Approximate solutions of w(t) obtained via QLM-GMBPs based domain-splitting (M = 50)
in Example 1 with P = 5, ψ, δ = 1.
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Figure 6. 3D uvw-portrait (left) and 2D uv-portrait (right) of approximate solutions obtained via
QLM-GMBPs based on domain-splitting (M = 50) in Example 1 with P = 10, ψ, δ = 1.
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Figure 7. 2D uw-portrait (left) and 2D vw-portrait (right) of approximate solutions obtained via
QLM-GMBPs based on domain-splitting (M = 50) in Example 1 with P = 10, ψ, δ = 1.

We now pay attention to the non-integer cases and consider ψ = 0.75. Using the
domain-splitting approach along with the QLM-GMBPs strategy we plot the approximate
solutions in Figure 8. We utilize the values of parameter δ to be both 1 and equal to ψ = 0.75.
As shown in this figure, the results obtained to δ = 1 and δ = ψ are very close together.
However, the REFs achieved by using δ = ψ are smaller in magnitude compared to those
obtained by δ = 1 as presented in Figure 9. Note that one gets more accurate results by
increasing P. Towards this end, we employ different values of P in the next experiments and
report the maximum values of REFs and their associated order of convergence, i.e., OrdP,q
for q = 1, 2, 3. These simulation results are tabulated in Table 1. We use M = 1, ψ = 0.5,
and P = 4, 8, 16, 32. The parameter δ is taken as δ = 1, ψ. Clearly, the exponential order of
convergence is visible for the results presented in Table 1. Of course, a slightly higher order
of accuracy is seen for the case δ = 1 compared to δ = 0.5.
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Figure 8. Approximate solutions obtained via QLM-GMBPs based on domain-splitting (M = 2) in
Example 1 with P = 5, ψ = 0.75, and δ = 1, 0.75.
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Figure 9. The obtained REFs via QLM-GMBPs based on domain-splitting (M = 2) in Example 1 with
P = 5, ψ = 0.75, and δ = 1, 0.75.

Table 1. The outcomes of maximum REFs error norms and the related OrdP,q for q = 1, 2, 3 achieved
via QLM-GMBPs in Example 1 with ψ = 0.5, γ = 1, 0.5, M = 1, and different P.

δ = 1 δ = 0.5

P L∞,1 OrdP,1 L∞,2 OrdP,2 L∞,3 OrdP,3 L∞,1 OrdP,1 L∞,2 OrdP,2 L∞,3 OrdP,3

4 4.13−04 − 1.84−05 − 4.29−04 − 5.96−03 − 2.09−03 − 1.56−03 −
8 3.87−07 10.1 1.61−07 6.84 1.11−07 11.9 8.10−05 6.20 9.73−05 4.42 5.82−05 4.75

16 7.09−15 25.7 2.47−14 22.6 1.19−16 29.8 5.73−08 10.5 3.68−08 11.4 3.05−08 10.9
32 9.61−30 49.4 6.73−29 48.4 5.08−31 47.7 1.37−14 22.0 3.90−16 26.5 2.33−15 23.6

Finally, we employ diverse values of fractional orders ψ = 0.25, 0.5, 0.75 and visualize
the numerical simulations for the three approximated solutions of system (1). We utilize
P = 10, M = 3, and the parameter δ is equal to one. These experimental results are depicted
in Figures 10 and 11. We also plotted the results related to ψ = 1 in these figures.
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Figure 10. Approximate solutions of u(t) (left) and v(t) (right) obtained via QLM-GMBPs based
domain-splitting (M = 3) in Example 1 with P = 10, ψ = 0.25, 0.5, 0.75, 1, and δ = 1.
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Figure 11. Approximate solutions of w(t) obtained via QLM-GMBPs based domain-splitting (M = 3)
in Example 1 with P = 10, ψ = 0.25, 0.5, 0.75, 1, and δ = 1.

6. Conclusions

Two spectral matrix collocation methods based on (novel) domain-splitting strategy
developed to handle more accurately the nonlinear fractional chaotic system arsing in
financial market. The considered fractional derivative is Liouville–Caputo operator and
a modified and generalized version of Bessel polynomials (GMBPs) is used in the im-
plementation of the spectral approaches. In the first and direct collocation method, we
converted the underlying model into a nonlinear algebraic system whereas in the second
and efficient version of the first method, we arrived at a family of algebraic system of
equations to be solve iteratively. To solve the model on a long domain, we employed the
technique of domain-splitting together with aforementioned spectral schemes, which lead
to a higher-order accuracy compared to traditional spectral approaches. A convergence the-
orem related to GMBPs established and an upper bound for the error was given. To support
the theoretical findings, diverse computational experiments were conducted to show the
utility of the proposed collocation approaches. The results presented through figures and
tables indicate the improvement of the spectral methods based on domain-splitting strategy.
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