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Abstract: Today, graph theory represents one of the most important modeling techniques in biology.
One of the most important applications is in the study of metabolic networks. During metabolism, a
set of sequential biochemical reactions takes place, which convert one or more molecules into one or
more final products. In a biochemical reaction, the transformation of one metabolite into the next
requires a class of proteins called enzymes that are responsible for catalyzing the reaction. Whether
by applying differential equations or automata theory, it is not easy to explain how the evolution
of metabolic networks could have taken place within living organisms. Obviously, in the past, the
assembly of biochemical reactions into a metabolic network depended on the independent evolution
of the enzymes involved in the isolated biochemical reactions. In this work, a simulation model is
presented where enzymes are modeled as automata, and their evolution is simulated with a genetic
algorithm. This protocol is applied to the evolution of glycolysis and the Krebs cycle, two of the
most important metabolic networks for the survival of organisms. The results obtained show how
Darwinian evolution is able to optimize a biological network, such as in the case of glycolysis and
Krebs metabolic networks.

Keywords: evolution of metabolic networks; glycolysis; Krebs cycle; enzyme evolution; electronic
enzyme; evolutionary graph theory

1. Introduction

Graph theory is one of the main modeling tools used in biology [1] as it enables the
mathematical analysis of networks composed of proteins, genes, transduction signals,
metabolites, etc. As a modeling method, graph theory has provided, along with other
modeling techniques, a procedure for the study of complex biological systems by means
of a bottom-up approach. An example is the study of metabolic pathways (Figure 1), i.e.,
the succession of biochemical reactions, where an initial substrate is transformed into one
or more final products through a series of intermediary molecules or metabolites. The
different reactions of all metabolic pathways are catalyzed by enzymes, i.e., by proteins
that accelerate the rate of a reaction. In DNA, genes encode proteins, and since an enzyme
is a protein, the expression of a gene results in an enzyme. Consequently, metabolism is
ultimately governed by genetic control.

Graph theory is very useful in the analysis of complex systems consisting of objects
connected to each other, e.g., metabolites. Therefore, through the use of graphs, we can
model the biochemical transformations involved in a metabolic pathway. In graph theory, it
is usual to represent a metabolic pathway as a directed graph in which the nodes represent
the metabolic substances and the edges represent the biochemical reactions catalyzed by
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the enzymes. Thus, each of the enzymes involved in the metabolic pathway is identified by
a label.

In agreement with [2], the use of graphs in biochemistry dates back to 1949. However,
the study of metabolic networks as dynamic systems ‘within organisms’ is an issue that
is not straightforward to address [3,4]. The current view of metabolism is based on the
consideration of two opposing approaches. On the one hand, [5] views the metabolic
network of an organism as a hierarchical organization of highly interconnected minor
metabolic pathways. On the other hand, according to [6], the metabolic network of an
organism exhibits the characteristics of a small-world network model similar to computer
networks, neural networks, and certain social networks. According to the latter approach,
the biochemical reactions would be represented in the nodes of a graph and the metabolites
in the connections between nodes.

Now, while a graph captures the structure of a metabolic network, its behavior can
be studied by means of a system of ordinary differential equations that model the rates of
change of the concentrations of the different metabolites comprising the metabolic pathway.
Given a vector S of metabolite concentrations and a vector v of reaction rates (or quantity
of metabolic substance that is transformed in a given biochemical reaction per unit of time),
the equation that describes the system of equations modeling the behavior of a metabolic
pathway is as follows [7]:

dS
dt

= N · v (1)

where N is referred to as the stoichiometric matrix, i.e., the matrix whose elements nij
represent the amount of metabolite i formed in reaction j. Therefore, a metabolic network
can be represented either as a graph or as a stoichiometric matrix (N-matrix), the latter
representation being equivalent to a hypergraph [8].
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In this paper, using a simulation model we studied how each of the enzymes in-
volved in a metabolic pathway could evolve during the course of Darwinian evolution,
thereby, how the arcs or edges of a graph connecting one node (metabolite) to the next in
a metabolic pathway evolved. In summary, how did metabolism evolve to yield today’s
metabolic networks?
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There are currently two hypotheses (Figure 2) about how metabolic networks could
have evolved [9,10]. One of these hypotheses, known as the ‘retrograde model’, postulates
that when a metabolite that acts as the substrate Sy of a metabolic reaction catalyzed
by an EB enzyme is depleted, then the EB enzyme evolves, resulting in an EA enzyme
that precedes it, catalyzing the reaction that will produce the depleted substrate Sy. In
contrast, the hypothesis that is referred to as the ‘patchwork hypothesis’ conjectures that
primitive enzymes were quite unspecific, catalyzing the transformation of a wide range
of metabolites or substrates. Over time, these nonspecific enzymes would have evolved
into other specialized descending enzymes. It is now believed that this hypothesis could
explain the topology of the metabolic networks of living organisms.
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Figure 2. Evolution of metabolism: (left) retrograde evolution and (right) patchwork evolution
hypotheses (see text for explanation).

In order to be able to answer this question, we assume that a metabolic network is
a (a) dynamic system whose (b) structure is represented by a graph, studying through
simulation the emergence during the evolution of the different enzymes involved in the
catalysis of metabolic reactions. Likewise, in the graph depicting a metabolic pathway, (c)
nodes represent the molecules or metabolites, and (d) arcs or edges represent the chemical
reactions mediated by enzymes.

Of the set of metabolic pathways present in living organisms (Figure 1), we have
chosen two of the most representative metabolic pathways: glycolysis and the Krebs or
tricarboxylic acid (TCA) cycle. These are two metabolic pathways of great evolutionary
significance in living organisms. Glycolysis is an ancestral metabolic pathway, i.e., one
of the oldest in evolution, responsible for the oxidation of glucose into pyruvic acid. The
result is the production of energy in the cell, and this metabolic pathway occurs in both
oxygen-breathing and non-oxygen-breathing organisms. In oxygen-breathing organisms,
the pyruvic acid resulting from glycolysis will undergo a series of chemical transformations
in the so-called Krebs cycle or TCA cycle. The purpose of this cycle is to continue the
oxidation of the metabolic intermediates, with the electrons from this oxidation being
captured by citric acid, again resulting in additional energy for the cell. The final balance is
the production of energy from glucose in the form of three molecular species (4 ATP, 10
NADH, and 2 FADH2).

Finally, and although this is an additional matter for the purpose of this paper, we
also simulate the evolution of the enzymes involved in the alcoholic fermentation pathway
because of their importance in the biotechnological industry.

2. Materials and Methods
2.1. Simulating Evolution with a Genetic Algorithm

Genetic algorithms (GAs) are stochastic optimization methods inspired by the princi-
ples of natural selection [11] established by Darwin’s evolutionary theory in 1859. Currently,
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they are used in optimization and search problems, being trial-and-error methods in which
the solution space is continuously explored and evaluated until an optimum (global or
local) is found. The search for an optimum simulates the survival of the most valid solu-
tions or “individuals” in an environment or “problem space”. Since they were introduced
by Holland [12] and popularized by Goldberg [13], GAs represent today one of the most
widely used optimization techniques in the field of Artificial Intelligence (AI) due to their
many applications in engineering, market research, commerce, operations development,
biology, sociology, game theory, computer science, etc. [14].

A GA involves the following steps or stages (Figure 3). First, (a) a set of solutions
(individuals) is randomly generated. Individuals are represented by a vector that models
the chromosomes, that is, the structure storing the genetic information (DNA) of a living
being. In the present model, chromosomes were defined as binary strings. Afterward,
(b) the fitness of chromosomes, goodness or validity of the solutions—a metaphor of
adaptation to the environment—is evaluated. Those solutions with a higher fitness value
will have a higher probability of surviving and, therefore, of passing to the next generation
(gene propagation). The solutions that pass to the next generation will experience the
effect of genetic mechanisms, in particular (c) mutations and genetic crossover, which are
simulated in the GAs. The goal of these genetic mechanisms is to introduce variability in
the population or set of solutions by promoting the search for new solutions. The search
process is repeated over and over again until (d) an optimal solution is found.
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Figure 3. Genetic algorithm (see text for explanation).

The search for new solutions, i.e., the exploration of the problem space, is the result of
the simulation of mutation and crossover or recombination. In a GA, these mechanisms
are simulated by means of the so-called genetic operators. In the present work, we have
used the recombination operator at one point and the mutation operator for chromosomes
defined as a binary string (flip-by-bit method).

According to Figure 4a, the one-point recombination was implemented as follows.
Once the two parental chromosomes are chosen, a cutoff point is randomly selected, i.e.,
in the present example, at the second position, and the chromosome segments are then
exchanged. The result of this mechanism is an offspring consisting of two recombinant
chromosomes as they share the information of the parental chromosomes. A value of the pr
recombination rate is set at the beginning of the simulation experiment.
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mutation.

Mutation was simulated (Figure 4b) by randomly choosing one of the offspring chro-
mosomes, e.g., the right one. Next, we randomly selected two positions, for example, the
first and the fifth, flipping the value of the binary number (0→ 1, 1→ 0). In a manner
similar to recombination, the population mutation rate pm is set at the beginning of the
simulation experiment.

Simulation experiments were conducted using a simple genetic algorithm, SGA,
customizing the algorithm to the goals of the present model. The code in Python language
is available in [15].

2.2. Vectorization: Binary Representation of Metabolites

The first step in GA is to initiate the population or set of solutions, in our case, the
enzymes that will transform one metabolite into another in a metabolic pathway. In
the present paper, the formal representation of enzymes and metabolites is referred to
as vectorization. Metabolites are molecules, and vectorization was performed as binary
matrices according to the method developed in [16].

In the present model, the nodes represent the metabolic intermediates, i.e., sugars and
other glycolytic molecules. It is important to note that the representation of a molecule of
metabolism as a binary matrix is actually not a new approach, but the criterion adopted in
this work is a novelty differing from the usual approach.

In 1974, ref. [17] translated the molecular topology into a matrix, taking an element
aij with the value of 1 when the edges are adjacent or 0 otherwise. However, unlike
this procedure, the method we have followed in this work assigns a 5-bit word to the
functional groups of the molecule. To this end, we defined a table or “Rosetta stone” of
cellular metabolism. According to Figure 5, we assigned a 5-bit word to each functional
group (group of atoms in a molecule with distinctive chemical properties), ordering the
most frequent functional groups in the metabolic intermediates depending on their redox
potential (the tendency of a functional group to acquire electrons). Note how the vectors
were classified by their redox potential from the most reduced form corresponding to the
alkyl group to the most oxidized form represented by CO2.
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In accordance with the above, the substrate S and the product P of a biochemical
reaction catalyzed by an enzyme E were encoded in a matrix whose elements are zeros
or ones [16]. It is interesting to note that all metabolites Mix5 in glycolysis and the Krebs
cycle are molecules with i equal to 3, 4, 5, or 6 carbons. Thus, depending on the number of
carbons in the molecule, we will represent a metabolite as follows:
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MC3 =

a11 a12 a13 a14 a15
a21 a22 a23 a24 a25
a31 a32 a33 a34 a35

 MC4 =


a11 a12 a13 a14 a15
a21 a22 a23 a24 a25
a31 a32 a33 a34 a35
a41 a42 a43 a44 a45



MC5 =


a11 a12 a13 a14 a15
a21 a22 a23 a24 a25
a31 a32 a33 a34 a35
a41 a42 a43 a44 a45
a51 a52 a53 a54 a55

 MC6 =



a11 a12 a13 a14 a15
a21 a22 a23 a24 a25
a31 a32 a33 a34 a35
a41 a42 a43 a44 a45
a51 a52 a53 a54 a55
a61 a62 a63 a64 a65


(2)

It is important to indicate that given a value i, the row vector ai1, ai2, . . . , ai5 represents
a functional group, either of the substrate si5 or product pi5. That is, each row of any of
the above matrices represents a carbon atom of the molecule, providing that, according
to Figure 5, a total of thirty-two possible binary vectors (from 00000 to 11111). However,
since Krebs cycle metabolites are the result of the arrangement of twenty-two functional
groups, then the ten binary vectors in Figure 5 are chemically meaningless for Krebs cycle
metabolites. In the present work, in order to conduct simulation experiments including
CO2 and acetyl-CoA molecules, both molecules were modeled as a row vector v and an
M2×5 matrix:

vCO2 =
(
1 1 1 1 1

)
Macetyl−CoA =

(
1 1 1 0 1
0 1 0 0 0

)
(3)

2.3. Modeling an Enzyme as Automaton

Once the metabolite molecules were represented as binary matrices, the enzymes that
catalyze the transformation of one metabolite into another were modeled as automata.

Enzymes are proteins with catalytic properties that can increase and regulate the
reaction rate. In this work, and as already mentioned above, we simulated the evolution of
the enzymes and, subsequently, of the appearance or emergence of each of the arcs of the
graph representing the metabolic network.

Since enzymes are proteins, unlike metabolites, which are sugars, their vectorization
does not represent their chemical composition. An enzyme has the organization depicted in
Figure 6. The region of the enzyme where the substrate binds is called the active site, is the
place where the chemical reaction occurs. The conformational state of the active center is
the molecular shape of the enzyme in the active center. Therefore, the conformational state
determines the affinity between the enzyme and the substrate. Assuming an analogy to the
key-lock concept, the active center of the enzyme would be the lock and the substrate the
key. Once the substrate S binds to the active center of the enzyme E, and then the substrate
is transformed into a product P by breaking and forming chemical bonds:

S + E→ P (4)

In (4), the amino acids, i.e., the basic building subunits of proteins, are responsible for
the transformation of the substrate S into the product P of the reaction. From a biochemical
point of view, these amino acids create an environment in the active center with different
chemical characteristics (hydrophobic or hydrophilic, acidic or basic). Furthermore, tem-
perature and pH can affect the enzymatic reaction, although this fact has not been included
in the present model.

The role of enzymes is of such importance in biochemistry that they have frequently
been the subject of study and computer simulation using a wide repertoire of modeling
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and simulation techniques. Whether using the Michaelis–Menten differential equation, the
Monte Carlo method, a molecular dynamics method, or the cellular automata approach,
all of these techniques have attempted to capture the primary function and features of the
enzymes. In the present work, we have modeled enzymes as automata [18].
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Figure 6. Organization of the active center of an enzyme. The conformational state of the substrate
binding site (blue) is modeled with the sequence c1j, c2j, . . . , cnm while the catalytic site (red) is
represented by o1j, o2j, . . . , onm. The substrate s1j, s2j, . . . , snm is the black colored molecule that
will be transformed into a product p1j, p2j, . . . , pnm by the sij oij cij rule (The figure corresponds to
lysozyme and the substrate is peptidoglycan. Modified from Thomas Shafee, 2015. https://commons.
wikimedia.org/wiki/File:Enzyme_structure.svg).

Cellular automata are discrete space and time models that have been used to model
biological systems [11]. A cellular automaton in two dimensions (D = 2) is a checkerboard
where each cell is called a “finite automaton” because the cell is in any of a finite number of
states. The state of a given automaton St(x) located at cell x at time t changes depending on
the states of neighboring automata St(x+x0), St(x+x1), . . . , St(x+xn−1) by applying a state
transition rule (5) to update its state [11,19]:

St+1(x) = F(St(x + x0), St(x + x1), . . . , St(x + xn−1)) (5)

Applying this approach, enzyme kinetics have been modeled on several
occasions [18,20–22], including the simulation of metabolic networks, for instance, the
mitogen-activated protein kinase signaling cascade [23], the hypothetical unidirectional
network of enzymatic reactions studied by [24], etc.

In the field of molecular biology, the technique of cellular automata has been success-
fully used to simulate the dynamic activities inside cells. For example, this technique was
useful in the 1990s, enabling the construction of simulation models in structural biology
in which the dynamic behavior of the system being simulated was mediated by enzymes
and/or polymerization and self-assembly phenomena [25]. This technique enables the
construction of models, solving many of the limitations of classical differential equation
models, such as the 3D graphical representation of a system composed of different classes
of molecules. An example is the model [26] in which, using molecular automata, it was
possible to simulate Escherichia coli membrane assembly, the operation of ATP synthase as
well as the assembly of the bacterial flagellar motor.

https://commons.wikimedia.org/wiki/File:Enzyme_structure.svg
https://commons.wikimedia.org/wiki/File:Enzyme_structure.svg
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Electronic Enzyme Model

Enzymes were modeled as automata according to a class of automata introduced
by [27], referred to as electronic enzymes. The electronic circuit modeling of an electronic
enzyme is a hardware-level model of the active center of an enzyme, which is configurable
via a genetic algorithm (see Section 2.1). The possible applications of this class of hardware
were patented [28].

We define this kind of automata as follows. An electronic enzyme Em is a vector
resulting from concatenating two strings of n bits length, respectively:

Em: (c1j, c2j, . . . , cnm, o1j, o2j, . . . , onm) (6)

where c1j, c2j, . . . , cnm is an n-bit string (i = 1, 2, . . . , n) representing the ‘conformational
state’ of the enzyme Em (j = 1, 2, . . . , m). Thus, in the active center then n-bit string would
be defining the binding sites and substrate orientation (Figure 6). In addition, o1j, o2j, . . . ,
onm are the Boolean operators AND (oij = 1) or XOR (oij = 0) modelling the amino acids
of the active center that are involved in the reaction which converts the substrate S into a
product P. As a consequence, the n-bit string o1j, o2j, . . . , onm would define the ‘catalytic
site’ of the active center of the enzyme (Figure 6).

According to the Em definition, an enzymatic reaction, i.e., Sm + Em → Pm, is a
transformation rule defined by the following logical operations:

p1j = s1j o1j c1j, p2j = s2j o2j c2j, . . . , pij = sij oij cij (7)

where sij and pij are the substrate and product resulting from the reaction (4).
For example, let 1110 be the substrate S (i = 4) and E be the enzyme (of reaction j)

defined by 10101000. In this example: p1j = 1 AND 1 = 1, p2j = 1 XOR 0 = 1, p3j = 1 XOR 1 = 0,
p4j = 0 XOR 0 = 0, being the product P obtained from the reaction is 1100.

2.4. Binary Model of Glycolysis and Krebs Cycle

Applying the concepts and definitions described above, the glycolysis pathway was
modeled, as shown in Figure 7. Likewise, using the same methodology, the Krebs cycle
was modeled as has been depicted in Figure 8.
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Figure 7. Binary encoding of the glycolysis pathway. E1: Glucose → Glucose-6-phosphate,
E2: Glucose-6-phosphate → Fructose-6-phosphate, E3: Fructose-6-phosphate → Fructose-1,6-
biphosphate, E4: Fructose-1,6-biphosphate→ Glyceraldehyde-3-phosphate, E5: Glyceraldehyde-
3-phosphate→ 1,3-biphosphateglycerate, E6: 1,3-biphosphateglycerate→ 3-phosphoglycerate, E7:
3-phosphoglycerate→ 2-phosphoglycerate, E8: 2-phosphoglycerate→ phosphoenolpyruvate, E9:
phosphoenolpyruvate→ pyruvate.
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2.5. Simulating the Evolution of the Metabolic Pathway of Alcoholic Fermentation

After the simulation of glycolysis and Krebs or TCA cycle evolution, an additional ex-
periment was conducted to simulate the evolution of the enzymes involved in the metabolic
pathway known as alcoholic fermentation. Alcoholic fermentation is the metabolic pathway
carried out in yeasts and some bacteria that is applied as a biotechnological process to
convert sugars into ethyl alcohol and carbon dioxide.

We simulated the metabolic pathway illustrated in Figure 9, where each reaction is
catalyzed by E17, E18, and E19 enzymes, respectively.
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Figure 9. Biochemical model of alcohol fermentation in yeast. In the metabolic pathway of glycolysis,
glucose is transformed by the action of successive enzymes (E1 . . . E9) into pyruvic acid. Fermen-
tation begins with a first biochemical reaction catalyzed by the enzyme E17, in which pyruvate
is transformed into acetaldehyde. The acetaldehyde is then transformed into ethanol through the
reaction catalyzed by the E18 enzyme, or alternatively, the acetaldehyde is converted into acetic acid
by the E19 enzyme. In the present simulation, we have not considered for simplicity that the reaction
between acetaldehyde and ethanol is reversible.
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2.6. Simulation Experiments

The enzymes Em were defined as 10-bit vectors, the first 5 bits being the conformational
state and the remaining 5 being the Boolean operators. The optimal binary string of the
vectors modeling the substrates is searched evolutionarily via a genetic algorithm. An
enzyme will be optimal if it is satisfied that the transformation of one or more of the rows of
the matrix representing the substrate results in the reaction product matrix corresponding
to a step within a metabolic pathway.

In the present article, we have omitted for simplicity the name, properties, and de-
tailed explanation of the mechanism of action of the enzymes E involved in the biochemical
reactions because the interested reader will find this information in any general biochem-
istry textbook.

From the set of matrices modeling the intermediates of glycolysis and Krebs cycle, the
initial population (t = 0) was obtained according to the following method.

An initial population P(0) consisting of 100 enzymes (binary chromosomes of 10-bit
length) was obtained with a random number generator U [0, 1] with uniform distribution.
The population P(t) will evolve during 200 generations such that once the 200th generation
is reached, the genetic algorithm ends, obtaining the optimal solutions or chromosomes
and, therefore, the optimal enzyme configurations. In each simulation experiment, 100
replicates were conducted, and since it is a stochastic optimization method, more than
2,000,000 solutions or enzymes were obtained from the initial population P(0).

Based on the P(0) population of randomly generated chromosomes, reproduction,
recombination and mutation were simulated by means of a genetic algorithm. In each
generation, the configuration of the enzymes was evaluated, and its fitness value fE was
obtained according to the following evaluation function:

fE = α−
(

β
l

∑
i,j=1

H
(

p∗kj, skj

))
(8)

In the above function (8), indexes i, k represent the rows and j the column in the matrix
S, α is a coefficient whose value was 100 in the simulation experiments, β is equal to the
2 α

l term, and l is the chromosome length. Thus, the enzyme fitness value is calculated by
simulating the enzyme–substrate reaction (4), i.e., the operation between substrate and
enzyme (7), and then comparing the p∗kj product obtained from the reaction with the target
product skj, i.e., the substrate of the next step or reaction of the metabolic pathway. The
similarity between the obtained product and the target product or next substrate was
calculated using the Hamming distance H

(
p∗kj, skj

)
. The Hamming distance is the number

of positions in which two binary vectors or matrices with identical length or number of
rows and columns differ, respectively. For this purpose, the chromosomes were decoded,
resulting in the configuration of each enzyme, i.e., the conformational state (c1j, c2j, . . . , cnj)
and the catalytic site (o1j, o2j, . . . , onj) involved in the reaction.

Note that the genetic algorithm that simulates Darwinian evolution finds the appro-
priate configuration of the active center of an enzyme when the sum of the fitness function
is zero. Then, once the chromosomes were evaluated, the new generation of chromosomes
was obtained by applying the wheel parents selection algorithm [11]. In the chromosomes
of the new generation, genetic variability is simulated through the genetic mechanisms of
recombination and mutation. As explained above, recombination was performed with the
one-point recombination operator, and mutation was simulated by applying the mutation
operator based on the flip-by-bit method.

Based on the described methodology and using the fitness function (8), we conducted
simulation experiments to find the optimal configurations of the enzymes involved in the
metabolic pathways of glycolysis, Krebs cycle and alcoholic fermentation. The experiments
were performed by assigning the following parameters in the SGA: population size N equal
to 100 enzymes, maximum number of generations Gmax equal to 200, number of replicates
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r per experiment equal to 100, recombination rate pr = 0.20, mutation rate pm = 0.01 (rate of
change of the bit value pb = 0.05).

Once the results of the simulation experiments were collected, the average fitness of
each generation was calculated, obtaining the performance graph of the genetic algorithm.
In addition, an MB molecular biodiversity value (in bits) was also obtained for the optimal
enzymes (see Appendix B, Table A1) by applying the following expression:

MB = log2
n!

n1! n2! . . . nk!
(9)

where n is the total number of optimal enzymes, and n1, n2, . . . , nk is the number of
different molecular forms of the enzyme. Thus, n is the number of enzymes with the
same conformational state and catalytic site found by the genetic algorithm, and nk is
the number of enzymes of class k. In expression (9) the factorials were approximated by
Stirling’s formula.

Since the different molecular forms (1, 2, . . . k) of the enzymes share a common
catalytic activity they are called isoenzymes. Therefore, the above formula is a measure of
molecular biodiversity, i.e., the richness and number of different enzymes catalyzing the
same biochemical reaction.

3. Results

The obtained results suggest that the simulations conducted capture essential elements
in the evolution of metabolic pathways, and in particular, those related to intermediary
carbon metabolism.

Figure 10 represents in a graph and using binary notation the flow of information
in bits that would take place in a ‘digital electronic circuit’ that would be the hardware
implementation of the central carbon metabolism, i.e., glycolysis and Krebs cycle. In
Figure 11, we illustrate the classical performance graph of a genetic algorithm, thereby
proving at the simulation level the Darwinian evolutionary convergence of enzymes in a
hypothetical organism. Tables A2 and A3 (Appendix B) show the results obtained in the
simulation of glycolysis and Krebs cycle, respectively.

Similar results were obtained for the evolution of the metabolic pathway of alcoholic
fermentation. Table A4 (Appendix B) shows the results of the metabolic pathway of the
simulated fermentation in yeast.

In addition, it is interesting to note that the Boolean operations modeling the catalytic
site of the enzymes have an associated cost. The cost was expressed as energy consumption,
penalizing the presence of XOR gates in the active center in the fitness value of the enzyme.
Hence, in the simulations, whereas for the AND gate, the cost was equal to 1, the cost
for the XOR gate was 1.5. In these simulation experiments, the result was a decrease
in the biodiversity of optimal enzymes, emerging along the evolutionary pathway only
those enzymes with the lowest cost and, therefore, with the lowest energy cost. We found
only eight enzymes that included the XOR operator in their active center. However, in
the general experiments where this restriction is not present in the fitness calculation, we
obtained 54 optimal enzymes capable of catalyzing the biochemical reaction, despite the
fact that their active center includes a greater number of XOR operators.
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Figure 10. Simulation of the evolution of enzymes involved in the reaction steps of glycolysis and
Krebs cycle. The 5-bit black vectors denote the functional groups of the metabolites (3, 4, 5 and
6 carbons) represented by matrices. In the graph, the 10-bit orange vectors stand for the optimal
enzymes according to the notation (6). When an enzyme is represented by a 2 × 10 matrix it is
because this enzyme transforms two functional groups in the corresponding biochemical reaction.
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responsible for the reaction α-ketoglutarate→ SuccinilCoA.
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4. Discussion

From the simulation experiments conducted with the evolution of glycolysis, Krebs
cycle and alcoholic fermentation networks, we can conclude that Darwinian evolution is
able to optimize a biological network, such is the case of a metabolic network. However, in
our study, the evolution of the enzymes involved in a metabolic network is not simulated
by taking into account the stoichiometry of the reactions and the kinetic parameters of the
enzymes. Although the latter is the usual protocol, it has not been the case in the present
work. In our model, the evolution of the enzymes, and therefore of the edges of the graph
representing the metabolic network under study, is simulated with the assumption that the
active center of an enzyme can be modeled as an automaton. This approach is one of the
main novelties of the present paper.

Now, what does graph theory contribute to our understanding of the evolution of
metabolic networks in living beings? According to [3,29] and in a similar manner to many
complex non-biological systems, metabolic networks exhibit characteristics that are typical
of small-world networks. For example, they exhibit a power-law degree distribution,
high cluster coefficients (a feature of robust networks being metabolic networks resilient
to damage) and small network diameter (close distance between metabolites). These
characteristics would be a consequence of the way in which biochemical reactions have been
assembled with each other under the Darwinian mechanism of natural selection. Obviously,
this assembly between reactions, i.e., the connection between the nodes (metabolites) of
the graph (metabolic networks), is embodied by the evolution of enzymes. Thus, the
evolution of the enzymes involved in the catalysis of the biochemical reactions (edges of
the graph) transforms one metabolite (node) into the next. This point of view would be
in agreement with the model [30] that describes the evolution of a metabolic network as
a Markov process in which the insertion and deletion of reactions take place. The above
approach is plausible since the survival of an organism depends on the characteristics
exhibited by its metabolic networks. In this sense, the production of energy is crucial for
a living organism. For example, the transformation of the most important sugar, glucose,
into energy in the form of the ATP molecule was a critical step in the evolution of life on
Earth. Thus, evolution allowed the optimization of the glycolytic pathway [31] by adopting
the maximum production of ATP as the principle of optimization.

However, the above view about the evolution of metabolic networks contradicts
the view of [6], observing that most important metabolic networks in an organism, i.e.,
glycolysis, Krebs cycle, and the pentose phosphate cycle, are distributed or split into
different subsets or modules. These modules would represent the functional units of
metabolism. In the case of the TCA or Krebs cycle, this modularity may be a consequence of
the fact that TCA is the largest metabolic cycle found in organisms [4]. Consequently, and
according to [32], the large network that forms the metabolism could be broken down into
modules: the metabolism is organized around several core modules that interact strongly
with each other, being responsible for the basic functions of metabolism. These central
modules would interact in turn with other peripheral modules responsible for relatively
independent metabolic functions. In other words, and according to [32], there would be a
correlation between function, evolution, and topological modularity. which would suggest
that the architecture of metabolic networks is a result of their evolutionary history.

Nevertheless, and with respect to the two previous approaches, small-world versus
modularity, there are opinions [33] on the extent to which the properties of metabolism
deduced by applying graph theory really reflect the biological organization present in living
beings or, on the contrary, are merely an artifact resulting from the graph representation.
Of course, methodologies other than graph theory can be applied. For example, glycolysis
can be modeled and simulated with differential equations [34] or graph theory using Petri
nets [35]. Alternatively, as we have undertaken in this work, we can use automata theory,
e.g., electronic enzymes or, inspired by artificial neural networks, we could also use for this
purpose the so-called ‘biochemical neurons’ [36]. However, no matter the method used,
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the simulation of the evolution of a metabolic network is a complex problem that, in many
cases, will lead to queries similar to [33].

In the field of biology, answering the question of how the evolution of enzymes
involved in glycolysis and the Krebs cycle could have taken place is still a matter of
debate. At present, there is still a debate between the retrograde model and the patchwork
model [9,10], although there are classical papers that support the results of our work.
In particular, ref. [36] argues that the glycolytic pathway appears to be the result of the
chance assembly of independent evolved enzymes. Indeed all glycolytic enzymes are
variations with a common motif: they all have a core of β-sheet protein chains surrounded
by α-helices chains. However, although the experimental data are important, perhaps the
most satisfactory explanation comes from theoretical biology. During the 1990s, studies
were carried out in which the evolution of a metabolic pathway was considered to be an
optimization problem, as has been addressed in the present paper. For example, refs. [37,38]
found in a model known as the ‘pentose game’, whose results apply to the evolution of the
Krebs cycle, that the evolution of a metabolic pathway must satisfy certain requirements.
These requirements were included under the common term of simplicity. The simplicity
principle was summarized in a simple idea: the metabolite production occurs by the
shortest route and, therefore, with the smallest possible number of reaction steps. Therefore,
although the molecular biodiversity of the number of optimal enzymes we have calculated
with (9) is so high; ultimately, living beings operate with only a few enzymes. This is
because principles such as the simplicity principle we have just enunciated, which are a
consequence of Darwinian natural selection, impose a strong constraint on the selection of
a few enzymes.

The study of biological evolution is a problem that requires powerful mathematical
and computational tools. In the particular case of the evolution of metabolic pathways,
graph theory is useful for both studying the structures [39] present in organisms as well as
for the analysis of the dynamic processes exhibited by living organisms [40]. Moreover, the
application of graph theory together with heuristic methods such as genetic algorithms [41]
is a promising approach to the study not only of metabolic networks but also complex
networks. Complex networks are not easy to study because they behave as dynamic
systems that evolve and change over time, e.g., social networks, the brain, the Internet, the
immune system, electric power distribution networks, insect colonies, etc.

This paper is an example that illustrates a common problem in biology. In many biolog-
ical studies, it is not enough to have powerful computers and sophisticated mathematical
modeling tools, as is the case of graph theory. In many cases, the problem is the lack of solid
working hypotheses, assumptions, and, therefore, of a proper experimental framework that
would make it possible to search for satisfactory answers. Consequently, and to date, we
still do not have a satisfactory ‘picture’ or global model to explain how the evolution of
metabolism took place. However, despite these limitations, the study of the principles of the
evolution of metabolic networks can be approached through simulation experiments, i.e.,
under a computational paradigm or framework [42]. Thus, experiments could be conducted
in silico with a representation in a simplified form of the main components of biochemical
reactions such as enzymes, fitness function, metabolites and even genes. The results of the
simulation experiments [42] or those obtained by us in this paper would be congruent with
the patchwork hypothesis (Figure 2), i.e., modern and highly specific enzymes would come
from ancestral enzymes less specific in recognizing a substrate or metabolite.

Although our results may shed light on the evolution of metabolism, it is the method-
ology we introduce here that represents a novel contribution within the so-called com-
putational paradigm. Nevertheless, this paradigm is not new, its theoretical foundation
being based on the so-called ‘Artificial Chemistry’ [43] of the 1990s and on the earlier
contributions of Kauffman [44]. Under an Artificial Life theoretical approach, the molecules
are modeled as binary structures or strings, defining chemical reactions as ‘reaction rules’.
These rules of reaction are deployed in different approaches, either by Boolean opera-
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tions [44], lambda calculus [45], finite state machines, Turing machines, or even electronic
hardware, as the one implemented for our enzyme [27,28].

A striking feature of the methodology introduced by artificial chemistry is that the
results obtained from the simulations are similar although applying a different paradigm
and methodology to those obtained with ordinary differential equations [25].

In conclusion, we suggest that the methodology introduced in the present work may
encourage the search for new tools with which it will be possible to study and contrast
through simulation experiments the hypotheses currently in vogue on the origin and
evolution of metabolic networks.

5. Conclusions

In this paper, we study how the evolution of two of the most emblematic metabolic
networks of living organisms, glycolysis and the Krebs cycle, could have taken place by
Darwin’s mechanism of natural selection. One of the novelties of the work has been to
model enzymes as automata and metabolites as binary matrices, simulating the evolution
of an enzyme with a simple genetic algorithm. The results obtained may contribute to
shedding light on and, therefore, providing a plausible explanation to the origin of life and
the evolution of metabolic networks. The general approach of the work can perhaps be
generalized with appropriate changes to the study of the evolution of complex networks
other than metabolic networks.
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Appendix A

In this section, we will illustrate with an example how to obtain the optimal configu-
ration of the E1 enzyme responsible for catalyzing the biochemical reaction transforming
Glucose into Glucose-6-phosphate (Figure A1). First, we obtain the two metabolites rep-
resented with their respective binary matrices. For this purpose, we apply Figure 5 by
translating the functional groups of the molecules into their equivalent binary representa-
tion as a five-bit string. In accordance with Figure A1 we observe that the transformation of
Glucose to Glucose-6-phosphate involves the chemical conversion of the CH2OH functional
group of glucose to another CH2-O-PO2−

3 group of glucose-6-phosphate. Secondly, when
using the five-bit binary string representation of a functional group, we found that the goal
is to perform the conversion 10000→ 10100. Thus, in the present example, the central bit of
the binary string representing the glucose functional group must be inverted.

Once the Python code of the SGA [15] adapted to the experiments described in this
article was downloaded, we encoded (Figure A2) the substrate S (Glucose) and the product
P (Glucose-6-phosphate) of the reaction S + E→ P. Note that we only encode the functional
groups that are part of the transformation of S to P. Additionally, note that the genome length
is 10 bits, as in the experiment of example E1: (c11, c21, c31, c41, c51, o11, o21, o31, o41, o51).

Following, and as shown in Figure A1, we set the values of the recombination rate
(pr = 0.20) as well as the mutation rate (pm = 0.01) and the rate of change of the bit value
per chromosome (pb = 0.05).
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Figure A1. What is the proper configuration of the E1 enzyme that converts Glucose (Left) to
Glucose-6-phosphate (Right)? (see text for explanation).

Finally, and after running the program, we will choose those solutions (enzymes) with
maximum fitness, i.e., with Hamming distance equal to zero. For example, in the current
experiment, two optimal enzymes E are 1011011010 and 1010011010, since both convert
the substrate, i.e., the functional group 10000 of S, into the functional group 10100 of the
product P. Thus, in the case of enzyme 1011011010: 1 AND 1 = 1, 0 AND 0 = 0, 1 XOR 0 = 1,
1 AND 0 = 0 and 0 XOR 0 = 0 being 10100 the functional group of the product P. Note that
by performing the appropriate operations, the second enzyme leads to the same result.
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Figure A2. Python code for the simulation of the evolution of the metabolic pathway shown in Figure A1.
(1) Experiment conditions, setting the population size, i.e., the number of enzymes to evolve, the length
of the genome and the number of generations or iterations. (2) Setting the functional groups of the
substrate S and product P. (3) Parameter values for recombination and mutation genetic operators.
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Appendix B

In this appendix we present the tables with the results of the experiments conducted
in this work.

Table A1. Example of molecular biodiversity calculation. In the present experiment, we obtained
n = 1,491,009 enzymes and 54 isoenzymes, resulting in a MB = 18,897,212 bits (18.89 Mbits).

Enzyme Total Solutions Enzyme Total Solutions

[1110011011] 48,282 [0110001011] 32,163

[1010011011] 70,791 [0111001011] 13,332

[1111011011] 25,516 [0110101011] 41,907

[1011011011] 33,188 [0010001011] 62,800

[1110111011] 39,949 [0011001011] 26,704

[1010111011] 38,660 [0011101011] 27,756

[1011111011] 30,986 [0010101011] 37,271

[1111111011] 20,669 [0111101011] 8880

[1110011010] 59,802 [0111001010] 2953

[1010011010] 50,292 [0011001010] 22,935

[1011011010] 53,968 [0010001010] 31,149

[1111011010] 51,644 [0110001010] 15,073

[1010011001] 64,083 [0110101001] 13,142

[1110111001] 20,859 [0010001001] 19,458

[1110011001] 30,405 [0010101001] 12,299

[1010111001] 41,591 [0110001001] 20,436

[1110011000] 23,481 [0110001000] 13,581

[1010011000] 32,714 [0010001000] 8765

[1011010011] 10,060 [0011100011] 12,204

[1011110011] 25,532 [0011000011] 23,857

[1010010011] 42,754 [0010000011] 52,353

[1010110011] 38,666 [0010100011] 10,710

[1010010010] 20,181 [0010000010] 44,475

[1011010010] 9416 [0011000010] 9944

[1010010001] 15,749 [0010000001] 5629

[1010110001] 10,357 [0010100001] 2981

[1010010000] 5432 [0010000000] 3225

Table A2. Glycolysis. Simulation results.

ENZYME Functional Group
Change Coding Different

Solutions
Total

Solutions
MB

(bits) Fitness

E1 CH2OH→ CH2OP 10000→ 10100 54 1,491,009 18,897,212 98.6%

E2
CHO→ CH2OH 11000→ 10000 108 1,438,457 21,049,471 91.8%

CHOH→ CO 10001→ 11011 12 1,418,899 17,243,935 99.0%

E3 CH2OH→ CH2OP 10000→ 10100 54 1,479,813 19,219,669 99.2%

E4 CHOH→ CHO 10001→ 11000 36 1,413,161 19,463,340 95.4%

E5 CHO→ COOP 11000→ 11110 12 1,432,677 17,058,760 98.8%

E6 COOP→ COOH 11110→ 11100 48 1,368,925 20,644,997 97.6%
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Table A2. Cont.

ENZYME Functional Group
Change Coding Different

Solutions
Total

Solutions
MB

(bits) Fitness

E7
CHOH→ CHOP 10001→ 10101 36 1,452,560 18,788,783 98.8%

CH2OP→ CH2OH 10100→ 10000 108 1,412,987 21,405,506 96.2%

E8
CHOP→ COP 10101→ 10110 24 1,393,199 18,936,236 99.8%

CH2OH→ CH2 10000→ 01100 18 1,462,342 17,279,598 100%

E9
COP→ CO 10110→ 11011 8 1,385,557 16,988,969 99%

CH2 → CH3 01100→ 01000 108 1,402,062 21,414,808 100%

Table A3. Krebs cycle. Simulation results.

ENZYME Functional Group
Change Coding Different

Solutions
Total

Solutions
MB

(bits) Fitness

E10
COH→ CH 10011→ 01010 24 1,392,887 19,018,497 94.0%

CH2 → CHOH 01001→ 10010 12 1,387,318 17,779,168 95.8%

E11
CH→ CH2 01010→ 01001 36 1,400,246 19,419,492 93.0%

CHOH→ CO 10010→ 11011 12 1,404,398 17,434,613 97.8%

E12 CO→ CO2S 11011→ 11101 16 1,387,545 18,278,171 97.2%

E13 CO2S→ CHOH 11101→ 11100 48 1,349,784 20,882,154 98.6%

E14
CH2 → CH 01001→ 01101 36 1,405,740 19,077,282 95.6%

CH2 → CH 01001→ 01101 36 1,395,211 19,413,333 100%

E15
CH→ CH2 01101→ 01001 72 1,335,197 21,537,852 91.8%

CH→ CHOH 01101→ 10010 8 1,366,984 17,320,683 98.85%

E16
CH2 → CO 01001→ 11011 12 1,384,225 17,831,490 97.2%

CHOH→ CH2 10010→ 01001 12 1,411,206 7,335,462 93.2%

Table A4. Alcoholic fermentation. Simulation results.

ENZYME Functional Group
Change Coding Different

Solutions
Total

Solutions
MB

(bits) Fitness

E17 CHO→ COH 11011→ 11000 48 1,342,367 20,973,898 98.8%

E18 COH→ CH2OH 11000→ 10000 108 1,430,457 21,049,471 97.6%

E19 COH→ COOH 11000→ 11100 36 1,452,560 18,788,783 98.8%

References
1. Pavlopoulos, G.A.; Secrier, M.; Moschopoulos, C.N.; Soldatos, T.G.; Kossida, S.; Aerts, J.; Schneider, R.; Bagos, P.G. Using graph

theory to analyze biological networks. BioData Min. 2011, 4, 10. [CrossRef]
2. Le Novère, N.; Hucka, M.; Mi, H.; Moodie, S.; Schreiber, F.; Sorokin, A.; Demir, E.; Wegner, K.; Aladjem, M.I.; Wimalaratne, S.M.;

et al. The systems biology graphical notation. Nat. Biotechnol. 2009, 27, 735–741. [CrossRef] [PubMed]
3. Wagner, A.; Fell, D.A. The small world inside large metabolic networks. Proc. R. Soc. Lond. B 2001, 268, 1803–1810. [CrossRef]

[PubMed]
4. Becker, M.Y.; Rojas, I. A graph layout algorithm for drawing metabolic pathways. Bioinformatics 2001, 17, 461–467. [CrossRef]

[PubMed]
5. Ravasz, E.; Somera, A.L.; Mongru, D.A.; Oltvai, Z.N.; Barabasi, A.L. Hierarchical organization of modularity in metabolic

networks. Science 2002, 297, 1551–1555. [CrossRef] [PubMed]
6. Ma, H.-W.; Zhao, X.-M.; Yuan, Y.-J.; Zeng, A.-P. Decomposition of metabolic network into functional modules based on the global

connectivity structure of reaction graph. Bioinformatics 2004, 20, 1870–1876. [CrossRef]
7. Heinrich, R.; Schuster, S. The Regulation of Cellular Systems; Chapman & Hall: New York, NY, USA, 1996.
8. Wang, L.; Dash, S.; Ng, C.Y.; Maranas, C.D. A review of computational tools for design and reconstruction of metabolic pathways.

Synth. Syst. Biotechnol. 2017, 2, 243–252. [CrossRef]
9. Lacroix, V.; Cottret, L.; The’bault, P.; Sagot, M.-F. An introduction to metabolic networks and their structural analysis. IEEE/ACM

Trans. Comput. Biol. Bioinform. 2008, 5, 594–617. [CrossRef] [PubMed]

https://doi.org/10.1186/1756-0381-4-10
https://doi.org/10.1038/nbt.1558
https://www.ncbi.nlm.nih.gov/pubmed/19668183
https://doi.org/10.1098/rspb.2001.1711
https://www.ncbi.nlm.nih.gov/pubmed/11522199
https://doi.org/10.1093/bioinformatics/17.5.461
https://www.ncbi.nlm.nih.gov/pubmed/11331241
https://doi.org/10.1126/science.1073374
https://www.ncbi.nlm.nih.gov/pubmed/12202830
https://doi.org/10.1093/bioinformatics/bth167
https://doi.org/10.1016/j.synbio.2017.11.002
https://doi.org/10.1109/TCBB.2008.79
https://www.ncbi.nlm.nih.gov/pubmed/18989046


Computation 2023, 11, 107 20 of 21

10. Emiliani, G.; Fondi, M.; Liò, P.; Fani, R. Chapter 2. Evolution of metabolic pathways and evolution of genomes. In Geomicrobiology:
Molecular and Environmental Perspective; Barton, L., Mandl, M., Loy, A., Eds.; Springer: Dordrecht, The Netherlands, 2010; pp.
37–68.

11. Lahoz-Beltra, R. Bioinformática: Simulación, Vida Artificial e Inteligencia Artificial; Ediciones Díaz de Santos: Madrid, Spain, 2004; pp.
237–323.

12. Holland, J.H. Adaptation in Natural and Artificial Systems, 1st ed.; University of Michigan Press: Ann Arbor, MI, USA, 1975.
13. Goldberg, D.E. Genetic Algorithms in Search, Optimization, and Machine Learning; Addison-Wesley: Reading, MA, USA, 1989.
14. Davis, L. (Ed.) Handbook of Genetic Algorithms, 1st ed.; Van Nostrand Reinhold: New York, NY, USA, 1991.
15. Lahoz-Beltra, R.; De Las Morenas Mateos, C. Simulating the evolution of a metabolic network in Python. Figshare. J. Contrib. 2023.

[CrossRef]
16. Recio Rincon, C.; Cordero, P.; Castellanos, J.; Lahoz-Beltra, R. A new method for the binary encoding and hardware implementa-

tion of metabolic pathways. Int. J. Inf. Theor. Appl. 2014, 21, 21–29.
17. Randic, M. On the recognition of identical graphs representing molecular topology. J. Chem. Phys. 1974, 60, 3920–3927. [CrossRef]
18. Kier, L.B.; Cheng, C.-K.; Testa, B.; Carrupt, P.-A. A cellular automata model of enzyme kinetics. J. Mol. Graph. 1996, 14, 227–231.

[CrossRef] [PubMed]
19. Sayama, H. Definition of Cellular Automata. Available online: https://math.libretexts.org/@go/page/7829 (accessed on 1 May

2023).
20. Marashi, S.-A.; Behrouzi, R. Modeling direct ligand passage toward enzyme active site by a ‘double cellular automata’ model.

Biochem. Biophys. Res. Commun. 2005, 333, 1–4. [CrossRef]
21. Eibinger, M.; Zahel, T.; Ganner, T.; Plank, H.; Nidetzky, B. Cellular automata modeling depicts degradation of cellulosic material

by a cellulase system with single-molecule resolution. Biotechnol. Biofuels 2016, 9, 56. [CrossRef]
22. Kier, L.B.; Cheng, C.-K. A cellular automata model of an anticipatory system. J. Mol. Graph. Model. 2000, 18, 29–32. [CrossRef]
23. Kier, L.B.; Bonchev, D.; Buck, G. Modeling biochemical networks: A cellular-automata approach. Chem. Biodivers. 2005, 2, 233–243.

[CrossRef]
24. Weimar, J.R. Cellular automata approaches to enzymatic reaction networks. In Proceedings of the Cellular Automata: 5th

International Conference on Cellular Automata for Research and Industry, ACRI 2002, Geneva, Switzerland, 9–11 October 2002;
Springer: Berlin/Heidelberg, Germany, 2002; pp. 294–303.

25. Lahoz-Beltra, R. Molecular automata modeling in structural biology. In Advances in Structural Biology; Malhotra, S.K., Tuszyński,
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