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Abstract: In response to socioeconomic development, the number of machine learning applications
has increased, along with the calls for algorithmic transparency and further sustainability in terms
of energy efficient technologies. Modern computer algorithms that process large amounts of infor-
mation, particularly artificial intelligence methods and their workhorse machine learning, can be
used to promote and support sustainability; however, they consume a lot of energy themselves. This
work focuses and interconnects two key aspects of artificial intelligence regarding the transparency
and sustainability of model development. We identify frameworks for measuring carbon emissions
from Python algorithms and evaluate energy consumption during model development. Additionally,
we test the impact of explainability on algorithmic energy consumption during model optimiza-
tion, particularly for applications in health and, to expand the scope and achieve a widespread
use, civil engineering and computer vision. Specifically, we present three different models of clas-
sification, regression and object-based detection for the scenarios of cancer classification, building
energy, and image detection, each integrated with explainable artificial intelligence (XAI) or feature
reduction. This work can serve as a guide for selecting a tool to measure and scrutinize algorithmic
energy consumption and raise awareness of emission-based model optimization by highlighting the
sustainability of XAI.

Keywords: sustainability; explainability; AI; ML; algorithmic energy consumption; modeling;
emission tracking

1. Introduction

Reducing carbon emissions via energy efficiency is key to combating climate change
and is part of the sustainability development goals adopted by all United Nations Member
States set in the 2030 Agenda for Sustainable Development [1,2].

The sector of computing is growing rapidly and so is its corresponding energy con-
sumption [3,4]. In recent years, carbon emissions originating from energy consumption
and manufacturing from the computing sector have been estimated to account for up to 4%
of global emissions, which is higher than the relative number for fossil fuel emissions of
the aviation sector, for example [5,6]. One third of these emissions can be accounted for
by data centers alone, while additionally data processing, experimentation and training,
depending on the model, are also high contributors [7,8]. There is an enormous global
trend towards digital transformation, which includes all areas of life (e.g., agriculture,
forestry, health, etc.) [9–11]. The main driver of this current digital transformation is the
enormous progress in the domain of artificial intelligence (AI), driven by the tremendous
successes of statistical data-driven and thus highly memory- and computational-intensive
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machine learning (ML) [12]. The potential of AI to bring benefits to humanity and our
environment is undeniably enormous, and AI can definitely contribute to finding new
solutions to the most pressing challenges facing our human society in virtually every sphere
of life, from classification of agriculture and forest ecosystems [9], which affect our entire
planet, and prediction of network traffic [13,14] to the health of every individual [15].

Digitalization can have negative and positive impacts on energy consumption, includ-
ing direct and indirect effects on sustainability [16]. Computational algorithms consume
energy on the one hand and can be used to optimize processes on the other hand [17,18].
Sustainability in the field of machine learning has been introduced in two ways: On the one
hand, it can be represented by using AI directly to improve sustainability such as by using
algorithms to predict and optimize the energy demand of systems [19–21]. On the other
hand, it can be also represented as sustainability for AI, which refers to optimizing and
reducing the required environmental resources required for AI development, i.e., training
and tuning [22]. There is a possible backlash from the energy requirements generated by the
application of computational algorithms. Due to climate change and the ecological footprint
of digitalization strategies, software sustainability is becoming an increasingly important
topic, involving the software life cycle, i.e., its design, quality, and requirements [23].

This is in line with expanding the focus of green information technology (IT) beyond
the hardware (HW) to the software (SW) by evaluating the environmental impact and
ultimately providing recommendations to software engineers [24]. Adaptive software com-
ponents have been suggested to improve the energy efficiency of computing systems [25].
Reversible computing for the analysis of time/space/energy trade-offs has been introduced
for determining energy-efficient algorithms [26]. The research community is encouraged
to reduce the computational costs of their algorithms [27]. Still, the majority of research
on machine learning models is concerned with accuracy, without much thought to energy
optimization due to the lack of guidelines and unawareness of approaches to evaluate en-
ergy consumption [28]. In general, reviews of open-source emission trackers exist, but lack
guiding aspects to make informed decisions on which tool to use in regard to different
kinds of algorithms as well as systems [3,27]. Moreover, practical examples are needed to
foster the concept of sustainable algorithm usage [29].

We present an overview to track emissions of algorithms based on a comparison of
currently available python frameworks. We therefore highlight three use cases of different
models: one for classification of glioma from the biomedical domain, one regression
for predicting the energy performance of residential buildings, and one object detection
algorithm used in multiple disciplines. Thereby, we concentrate on the question of whether
XAI can help to foster sustainable algorithm usage.

The paper is structured as follows: The next section briefly describes the related
work, in particular, on tracking the computational costs of python-based ML models. In
Section 3, the comparison method is detailed by describing the tested models and the testing
infrastructure. Section 4 presents two main contributions: a summary table of inspected
libraries and software packages suitable for the evaluation of power consumption as well as
the evaluation results of the selected models. The findings are then discussed in Section 5.
Finally, Section 6 concludes with limitations and the future outlook.

2. Related Work

Raising awareness for the environmental footprint of computing, in particular data
centers, is an ongoing effort [3]. Recent works also discuss the idea of tracking the carbon
emissions of ML models in particular [27,30].

Several libraries have been developed for tracking carbon emissions, such as that for
tracking and predicting the energy consumption of python-based specific ML models [30]
or a more specialized newer one focusing only on specific system processes that are directly
concerned with ML model training [27]. Various tools to track emissions of models have
been developed so far. Intel provides a tool called Intel Power Gadget [31] for a more
precise estimation of the power consumption on the software level by reading the Machine
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State Registers (MSRs). This tool is available for Intel processors on MacOS and Windows
and provides a graphical user interface (GUI) and a command (CMD) tool.

The experiment-impact-tracker framework [32] is a Python library that runs on Linux
or MacOS with an Intel processor. It is intended for user-friendly power determination
based on location and power drawn from the CPU and GPU and calculation of the power
usage effectiveness (PUE).

Comparably, CodeCarbon [33] tracks emissions based on power consumption and
location using the Intel Power Gadget. The tool is intended to provide developers with the
carbon footprint of their computationally intensive programs.

PyJoules [34] is a python library that measures the energy footprint of a Linux host
system with a Python code.

Another evaluation approach for Linux is presented in PyPapi [35], a Python library
that uses the performance application programming interface (PAPI) to count floating
point operations (FLOPs). Alternatively, measuring the runtime of a system with a built-in
python function such as timeit can give a rough estimation as well. This form of operation
is primitive but easy to implement and compare.

Powerstat [36], Perf [37] and Likwid [38] are tools based on the running average power
limit (RAPL). The RAPL is not an analog power measurement, but rather uses a software
power model. The motivation for these tools is mainly improving the performance of the
systems [39].

In terms of interpretability, there are approaches that are concerned with the carbon
footprint of model training and related strategies to make them more efficient [30,40].
This work takes another perspective on interpretability into account; we ask the question,
can XAI support ML energy consumption efficiency? XAI can be used to evaluate the
individual impact of features by referring to input variables, and thereby can be used to
better understand or design and develop a model [41]. With the evolving research field of
artificial intelligence, explainability has been argued as a requirement for decisions [42].
The research field of XAI has provided various methods and there are continuously new
developments in the field [43–46]. Still, the most prominent approach of SHapley Additive
exPlanations (SHAP) published in 2017 [47] led to several studies on the shortcomings
of using one XAI method for feature impact assessments [48,49], testing the reliability of
current approaches [50], as well as further extensions [51]. From an energy perspective,
XAI integration into a model extends the script and adds to its power consumption. Still,
explainability has been suggested to be applicable to model pruning [52].

On the other hand, feature reduction, referring to the reduction in input variables
(dimensionality), is a common approach to optimize models to avoid overfitting and
therefore improve model prediction [53]. However, this method of model development
consumes additional computing power, which can grow significantly depending on the
number of features.

High dimensional data bring both opportunities and challenges, such as low qual-
ity and the redundancy of data. The goal is to reduce the redundancy or poor quality
information within a dataset to increase model performance [54,55]. There are various
approaches to dimensionality reduction, of which the most widely used are empirical mode
decomposition, principal component analysis, and feature selection techniques such as
correlation, linear discriminant analysis, and forward selection [56]. These techniques are
utilized to improve the model accuracy of deep neural networks, in particular for medical
imaging models, and also as multi or grouped feature extraction strategies [57].

This article outlines an energy-based comparison of ML model development while
emphasizing two different model extensions, one using explainability and one using feature
reduction. Thereby, this work explores the impact of AI explanations of algorithmic power
consumption. Since minimizing the energy consumption represents a major challenge in
many industries across different disciplines [58,59], this work aims at expanding the scope
and reach to a wide-ranging audience. Therefore, the model extensions are integrated
into three different kinds of algorithms, demonstrating the impact of such approaches
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on the energy uptake during model development. Examples of common supervised ML
algorithms such as random forest (Ensembl method) for classification, a classification and
regression tree (decision tree) for prediction, and a convolutional neural network (deep
learning) are compared, taking various continuous and discrete data sources as well as
images into account. The models are presented in given application scenarios in health
care, civil engineering, and computer vision.

3. Methods

In this section, we describe the experimental setup summarized in Figure 1. We
highlight the emissions tracked from three different models run on three different sys-
tems. Each model integrates an XAI approach based on SHAP or model optimization
by exemplary simple systematic feature reduction by an iterative reduction of dimen-
sions. Prerequisites, implementation details, source code, and data are available via
https://github.com/radiance/XAIemissionCompForSustainableML/ (accessed on 2 April
2023).

MEASURING 
ENERGY

CONSUMPTION

Decision Tree model
for energy regression 

CNN (YOLO) model
for image detection 

  Win

 Unix

Random Forest model
for cancer classification

class 1

class 2 MacOS

Code  
Carbon

ru
nn

er
.p

y

do_shap 

vs.

do_feature_reduction

Kernel- 
/ Tree- 
SHAP

RFE

m
ai

n.
py

m
ai

n.
py

m
ai

n.
py

Figure 1. Methodology overview highlighting three models, run on three different systems, each
using XAI (SHAP) or recursive feautre reduction (RFE) approach, assessed for energy consumption.

3.1. Models

To evaluate, better compare, and showcase the usage of XAI, three diverse models
based on distinct application scenarios are compared and evaluated in the fields of biomed-
ical science, civil engineering, and computer vision. These are (1) a classification model
for categorizing glioma cancer types, (2) a model of classification and regression tree for
predicting the energy demand by the heating and cooling loads, and (3) a compound-scaled
object detection model returning the position of specified objects in images.

All models were compared in two scenarios using (I) an XAI approach on the one hand
and (II) a simplistic dimensionality reduction on the other hand, which were integrated
into the three types of models. There were two scripted experimental runs for each model,
one with do_ f eature_reduction and another one with do_shap in each model’s main.py
of https://github.com/radiance/XAIemissionCompForSustainableML/ (accessed on 2
April 2023). For the first scenario, do_shap, the state-of-the-art approach of XAI in python
libraries, SHAP [47] (0.41.0), has been implemented in the models, using either Kernel SHAP
or Tree SHAP from SHAP (version 0.41.0). The second scenario, do_ f eature_reduction
simulates systematic feature reduction by simplistic repetitive runs with reduced input
variables. For feature reduction, we used the Python Scikit-learn [60,61] (1.1.1) library
with the recursive feature elimination (RFE) method for feature selection [55]. Features are
ranked iteratively, least important ones are removed, and the respective model is refitted.
For dependencies and additional information on versions of the libraries used for all the
following models, see conda_environment.yml in the corresponding https://github.com/
radiance/XAIemissionCompForSustainableML/ (accessed on 2 April 2023) repository.

The cancer classification model features a glioma classifier based on gene information
and clinical data of glioma patients from cbioportal [62,63] described in [64]. The python-
based classifier makes use of a Random Forest algorithm from Scikit-learn [60,61] and Tree
SHAP to create a multi-output decision plot.

https://github.com/radiance/XAIemissionCompForSustainableML/
https://github.com/radiance/XAIemissionCompForSustainableML/
https://github.com/radiance/XAIemissionCompForSustainableML/
https://github.com/radiance/XAIemissionCompForSustainableML/
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The energy regression model was built on the Energy_Efficiency_Dataset for the
analysis of simulated buildings [65]. It uses a decision tree approach with the classification
and regression tree methods implemented in python, and also uses the Scikit-learn library.
A Tree SHAP algorithm is further used to output an exemplary additive force plot.

The image detection model is based on YOLOv5 (You Only Look Once) (29 September
2021), which is trained for object detection on provided small network weights [66]. For the
run, a retraining is performed with an image. The image is than partitioned into superpixels
of size 16 × 16 to evaluate the shap values for the image utilizing the Kernel SHAP method.
For feature reduction, the superpixels were successively disabled by setting the color to
the mean of the image. The model was implemented in PyTorch [67] (1.9.1).

All model performances were evaluated using the metrics from the given libraries.
The cancer classifier (Random Forest) performance evaluation uses Scikit-learn metrics
of accuracy_score and mean_squared_error. Energy regressor scores were based on Scikit-
learn [60,61] metrics r2_score and mean_squared_error functions. Image detection evalua-
tion uses its own OD2Score class based on PyTorch for object detection performance.

3.2. Test Systems

Three different systems were used to test the models: Test system 1 uses MacOS 10.16
with an Intel Core i7-4770HQ CPU (2.20 GHz). System 2 is running Ubuntu version 20.04
LTS on i5-11300H (3.10 GHz). System 3 runs Windows 10 on an Intel Core i7-8700K CPU
(3.70 GHz).

To automate and unify the testing process, a script (runner.py in git sources) was executed.

3.3. Emission Assessment

For tracking carbon emissions produced by the various models, the CodeCarbon
module was integrated into the python-based models. In a comparison of emission trackers
presented in Section 4.1, CodeCarbon was the library that could be directly integrated in
the given python-based models while having the highest usage score of the compared
frameworks. This python package takes the computing infrastructure, usage, and running
time into account while offering an online mode to allow the integration of additional
information on energy sources based on geographical location. It provides an estimate of
produced carbon dioxide. Since the different models were compared relative to each other,
the absolute value of produced carbon dioxide based on the energy source in gCO2.eq/KWh
were not considered in more detail and the models were assessed in terms of consumed
energy in Wh. The function OfflineEmissionsTracker was used from CodeCarbon (2.1.3).
Again, additional information and dependencies can be found in conda_environment.yml
in the corresponding https://github.com/radiance/XAIemissionCompForSustainableML/
(accessed on 2 April 2023) repository.

For statistics, each test system was examined separately. Model extensions of the
XAI and feature reduction approaches were tested for significant differences using t-tests
(student and Welch) after testing for equal variances using scipy.stats (1.6.0).

4. Results
4.1. Software Packages Evaluating Algorithmic Power Consumption

There are multiple methods integrated in selected tools to evaluate the emissions of
a system. These methods vary in their approach and platform compatibility. A selection
is summarized in Table A1. Each method is compared by underlying technological basis,
application scenario, hardware setting requirements and supported operating systems,
contribution activity, topicality and maintenance, and usage, as well as documentation.
The experiment tracker, PyPapi, pyJoules, timeit, and CodeCarbon can be integrated into
the python-based models to directly evaluate the algorithm. CodeCarbon thereby could
be run on all test systems using Linux, MacOS, or Windows as the operating system. It
also has the highest usage from those tools that run on all systems in comparison to the
other python libraries. This is rated from the number of stars a repository has received,

https://github.com/radiance/XAIemissionCompForSustainableML/
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the number of times a repository has been forked, and the number of users watching the
repository. These can be used on Github as an influence analysis.

Therefore, we integrated CodeCarbon as the method of choice into the various models
to evaluate the models specific energy consumption.

4.2. Consumed Energy of Models Using Explainability or Feature Dimensionality Reduction
for Optimization

Model modifications for the two scenarios of XAI and RFE, respectively, did not result
in significant differences in model performance and served the task of comparing energy
consumption. Table A2 summarizes the model evaluation metrics. The XAI extension
of models is equal to the original models in terms of performance measured as accuracy
(with the highest and best value 1) and mean squared error. Feature reduction for the
cancer classifier revealed nondeterministic accuracy gains depending on which feature was
reduced. The corresponding scores in the table present model runs with 87 and 74 features,
respectively. Feature reduction had no impact on performance metrics in the case of the
regression model. Since the model had already been optimized regarding the number
of features, reducing the number further down from seven features will result in lower
performance metrics for both heating and cooling predictions. Performance of the image
detection model was determined using the propagated method for evaluating the yolov5
while avoiding any overall changes to the original code. Feature reduction again had no
positive effect on the model performance. All presented models have been published before
and had already been optimized, which can be observed via the non-existent or negligible
differences in performance metrics after RFE.

Examples of individual computational costs of model optimization using explainability
approaches on the one hand or systematical feature reduction on the other hand are
presented for cancer classification in Figure 2 in terms of the models’ consumed energy and
in Figure 3 in terms of the overall computation time from all test runs. The density curves
show the distribution of the different runs on different test systems, while blue denotes the
computation of SHAP and orange denotes feature reduction. The distribution frequency
is shown on the y-axis. The figures demonstrate that SHAP computations are faster and
consume less energy more frequently compared to computations from the feature reduction
approach. Figure 2 shows that multiple SHAP runs consume less than 25 Wh, while feature
reduction shows more runs with about 30 Wh. Figure 3 shows that SHAP runs are highly
distributed between 100 and 400 s, while feature reduction computation ranges from 100
to 600 s. Based on the different hardware specifications of the three test systems, there
are deviating results for all runs of the same model. Still, distinct shapes of the density
plots can be observed when comparing the two scenarios, highlighting the lower energy
consumption and computation time of SHAP additive explanations compared to systematic
feature reduction.

Box plots showing the average consumed energy of the two scenarios of SHAP ex-
planations compared to feature reduction for all three models are presented in Figure 4.
In the case of the model for image detection, the overall mean of all test runs on the various
systems is significantly higher for the XAI scenario. In the cases of the other two models
for classification of genetic and clinical cancer data and the regression model of energy
efficiency data, the explainability approach resulted in a lower energy consumption. These
differences can be evaluated for each test system separately with the statistical results
presented in Table 1. The statistical differences between the two scenarios are listed as
p-values for the various models and test systems. All models show significant differences
(p < 0.05) in the consumed energy between the two scenarios on at least two of the three
test systems.
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Figure 2. Consumed Energy Distribution as a Kernel Density Estimate (KDE) Plot showing cancer
classification of various runs using three different hardware settings. Comparison of computations
using SHAP explanations (blue) and feature reduction (orange).

Figure 3. Duration Distribution as Kernel Density Estimate (KDE) Plot showing cancer classification
of various runs using three different hardware settings.Comparison of computations using SHAP
explanations (blue) and feature reduction (orange).

Figure 4. Comparison of consumed energy measurements of SHAP (blue) vs. feature reduction
(orange) in the models for cancer classification (left), energy regression (middle), and image detec-
tion (right).

Table 1. Results of consumed energy differences between XAI versus feature reduction extensions
of the various models run on the different test systems expressed as p-values from t-statistics,
highlighting significant differences (bold) between shap and feature reduction.

Model System 1 System 2 System 3

Cancer classification 0.0051 0.695 0.0011

Energy regression 0.152 0.0234 0.0016

Image detection <0.0001 <0.0001 <0.0001



Computation 2023, 11, 92 8 of 14

5. Discussion

This work is one of the first to explore aspects of energy consumption during model
development, in particular investigating the impact of XAI on sustainability. XAI can
help in understanding ML models and highlights important factors influencing the model
outcome. Conventional feature dimensionality reduction methods will primarily optimize
a model in terms of accuracy from a technical or mathematical perspective, neglecting
potentially important features from a discipline-specific point of view if not affecting
accuracy in a positive way.

The results of consumed energy by the various models and scenarios demonstrate that
explainability can support model development from a sustainable perspective of reduced
energy consumption. Still, other methods such as current feature dimensionality reduction
techniques could be more suitable depending on the type of model, since explainability
approaches for models based on imaging data require substantially more computational
power than models based on numerical data.

We focused on the use of the python package CodeCarbon together with python-based
ML models, since this language has become the moat common in scientific computing and
machine learning [68].

Upon analyzing the individual results of the various test systems, significant differ-
ences were observed during the test runs. The only two statistically insignificant differences
between the two scenarios for the cancer classification model on the Ubuntu with an i5
system and the energy regression model on MacOS with an i7 system do not point to any
pattern based on hardware or operating system, since all other runs on the two other test
systems resulted in significant differences following a equally observed trend. Some test
runs could have resulted in non-conformant energy uptake due to sudden incidents and
unrecognized background tasks. The most probable reason for this observation is the low
number of test runs and the short duration of model calculations.

More interestingly, we observed a reversed consumed energy by the image-based
classifier model. SHAP integration led to a significantly higher consumption of energy
in comparison to the simplistic model of repetitive runs for feature reduction. In this
case, it is possible that other methods to explain in terms of energy consumption image-
based models could be more efficient and would be more suitable to support sustainable
model development. The SHAP approach to explain image-based models requires a high
computational load itself, causing the reverse result for the comparison of the two scenarios
in the case of the image detection model.

During the setup and implementation of the various scripts, a few difficulties occurred
regarding the diverse systems and operating systems, as some tools could not run on all
three of our different operating systems. Experiment-impact-tracker and PyPapi could
not be installed or alternatively would run on some of our systems but not produce any
output. Additionally, we experienced errors using the CodeCarbon library because of
its use of the Intel Power Gadget. We did not find an answer to the issue published on
Github; thus, we had to change the system. Possible immaturities of tracking methods,
as well as models, regarding system requirements have to be considered in reflection on
the individual findings.

In a nutshell, the main limitations are the low number of samples and the exemplary
explainability libraries investigated. Since notable variances in duration, consumed energy,
and thus the related emissions tracked among test systems have been observed, the impact
of the hardware and the software, including the operating system and version, have not
been investigated in detail. Moreover, despite highlighting an overview of the methods and
tools used to track algorithmic emissions, the focus of this study was using one exemplary
method for assessing energy consumption, as it was the only method that could be run on
all test systems. In addition, a comparison of three exemplary models is presented, which
is unable to grasp the plethora of available AI nor comprehensively investigate all model
types or rather every particularity of ML algorithms.
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6. Conclusions

This work is intended to raise awareness for scrutinizing and potentially reducing
carbon emissions, particularly in the field of AI and algorithmic modeling. Several methods
for tracking the emissions of computational models based on python code are introduced
and applied to evaluate the energy costs of model development based on explainability and
systematic feature dimensionality reduction. We demonstrate the possible application of
XAI for sustainable model optimization, which is suitable for selected types of classification
and regression models calculated from numerical data. Future investigations could extend
the comparison of emission tracking tools to different and future explainability methods
and a comprehensive set of distinct ML algorithms. The current demand for energy
efficiency will be supported by model optimization using various techniques, including
XAI approaches, from the perspective of sustainable computational energy consumption.
In addition to model development, there are other stages or components of AI development
and application that consume energy, including data acquisition, storage, model validation,
and finally operation, which could be investigated in future studies.
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Abbreviations
The following abbreviations are used in this manuscript:

CMD Command prompt
CPU Central processing unit
CNN Convolutional neural network
FLOPS Floating Point Operations Per Second
GPU Graphical processing unit
GUI Graphical User Interface
HW Hardware
KDE Kernel Density Estimate
MSR Machine State Register
ML Machine learning
NA Not available
OS Operating System
PUE Power Usage Effectiveness
SHAP SHapley Additive exPlanations
XAI Explainable artificial intelligence

Appendix A

The following Table A1 presents additional information about the emission track-
ing tools.

https://github.com/radiance/XAIemissionCompForSustainableML/
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Table A1. Comparison of various emission tracking methods/tools, information collected in August 2022 and updated in April 2023. Abbreviations: command
prompt (CMD), central processing unit (CPU), floating point operations per second (FLOPs), graphical processing unit (GPU), processing graphical user interface
(GUI), hardware (HW), machine state register (MSR), not available (NA), operating system (OS), power usage effectiveness (PUE).

Evaluation Tool Method Motivation Application Required HW
and OS

Active
Community Maintenance Usage Documentation

Experiment
tracker Calculating PUE

User-friendly power
metering including
location-based
emissions estimations

Python library Linux/ MacOS with
Intel/ Nvidia Inactive

Published: 1
November 2019 Last
Updated: 4 June 2021

213 stars,
9 watching,
22 forks

Available
in [32]

PyPapi Counts FLOPs Providing Python
binding for PAPI Python library Linux NA

Published: 4 July
2017 Last Updated:
20 March 2021

29 stars,
3 watching,
8 forks

Available
in [35]

Timeit Measures execution
time

Simple way to time
bits of code

Python built
in (timeit) NA NA 1st commit: 2003 Last:

22 September 2020 Unknown Available
in [69]

Intel Po-wer
Gadget Reading from MSRs

Estimating power
consumption from a
software level
without any HW
instrumentation

GUI or CMD Windows and MacOS
with Intel Yes

Published: 1 July
2014 Last Updated: 5
February 2019

Multiple blog
posts on how to
install

Available
in [31]

Powerstat
Measuring battery
power and RAPL
interface

NA CMD Linux with Intel No

1st Commit: 15
November 2011 Last
Update: 24 March
2023

59 stars,
7 watching,
13 forks

Available
in [36]

PowerTOP

Diagnoses issues
with power
consumption or
power management

NA CMD Linux Yes
1st Commit: 31 July
2010 Last Update: 10
March 2023

793 stars,
47 watching,
116 forks

Available
in [70]

Perf Offers a wrapper to
Intels RAPL

Began as a tool for
using the
performance counters
subsystem in Linux

CMD Intel Chip Linux only
1st Update: 5 January
2012 Last Update: 10
March 2023

Integrated in
systems like
red hat

Available
in [37]
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Table A1. Cont.

Evaluation Tool Method Motivation Application Required HW
and OS

Active
Community Maintenance Usage Documentation

Likwid Uses the RAPL
interface

Building
performance oriented
tools that need no
additional libraries,
kernel patching

CMD
Intel, AMD, ARMv8,
POWER9 on Linux,
and/or Nvidia GPU

Possibility for
a chat with
developers
via Matrix.
Mailing List

1st commit: 20 May
2014 Last: 30 March
2023

1.4k stars,
67 watching,
199 forks,

Available
in [38]

Nvidia-smi

Measuring the power
consumption of
GPU-intensive
applications

Aiding management
and monitoring of
NVIDIA GPUs

CMD Nvidia GPU
Official
Nvidia
Forums

NA (NVML which
this is based on was
last updated 24
January 2023)

na Available
in [71]

Code-Carbon

Tracking power
consumption and
location-dependent
carbon intensity

Tracking emissions to
estimate the carbon
footprint of
AI models.

Python library Any system Issue tracking
via Github

1st commit: 12 May
2020 Last: 28 March
2023

644 stars,
15 watching,
100 forks

Available
in [33]

pyJoules

Measuring energy
footprints of systems
computing
Python code

NA Python library
Intel CPU, integrated
GPU and/or
Nvidia GPU

Issue tracking
via Github

1st commit: 19
November 2019 Last:
07 October 2022

35 stars,
5 watching,
6 forks

Available
in [34]
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Table A2. Performance metrics with mean squared errors (MSE) from selected models, rounded.

Model Normal/XAI RFE

Cancer classification [64] Score 78.41% Score 79.27% *
MSE 0.257 MSE 0.249 *

Heating 99.77% 99.77% **
Energy regression [65] MSE: 0.244 MSE: 0.244 **

Cooling 97.75% 97.75% **
MSE 2.074 MSE 2.074 **

Image detection [72] Score Score
59.3% 59.3% **

* For RFE showing best reduced version. ** Run with highest number of features, reduction in features
scored lower.
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