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Abstract: In this study, the newly developed Marine Predators Algorithm (MPA) is formulated to
minimize the weight of truss structures. MPA is a swarm-based metaheuristic algorithm inspired by
the efficient foraging strategies of marine predators in oceanic environments. In order to assess the
robustness of the proposed method, three normal-sized structural benchmarks (10-bar, 60-bar, and
120-bar spatial dome) and three large-scale structures (272-bar, 942-bar, and 4666-bar truss tower) were
selected from the literature. Results point to the inherent strength of MPA against all state-of-the-art
metaheuristic optimizers implemented so far. Moreover, for the first time in the field, a quantitative
evaluation and an answer to the age-old question of the proper convergence behavior (exploration
vs. exploitation balance) in the context of structural optimization is conducted. Therefore, a novel
dimension-wise diversity index is adopted as a methodology to investigate each of the two schemes. It
was concluded that the balance that produced the best results was about 90% exploitation and 10%
exploration (on average for the entire computational process).

Keywords: marine predators algorithm; truss optimization; dimension-wise diversity index; large-
scale structures

1. Introduction

The weight minimization of truss structures, as an all-encompassing optimization task
which indirectly incorporates manufacturing, transportation, and lifecycle costs, has been
an active field of research in the last two decades. Owing to the economic implications
that this category of engineering optimization has on society, several so-called gradient-
based optimization methodologies, which function by using the derivative information
of the search space, were employed early on in the field. With the recent introduction
of metaheuristic search methodologies, however, which function as global stochastic op-
timization methods, engineers can now more fully explore the truss design space more
efficiently and propose a dichotomy of optimized designs to be scrutinized for feasibility
later. Metaheuristics generally divide the optimization process into two phases: explo-
ration and exploitation. This typically involves the population of solution candidates to
heuristically navigate themselves, either searching in their local vicinity or with larger
strides, efficiently. Research trend in the field is currently focused on developing these
heuristic paradigms to produce lighter-weight trusses with fewer structural evaluations
(computational effort). The objective, therefore, is to propose algorithms which respond to
these very pressing needs.

1.1. Related Work

There exists a rich body of literature involving the use of metaheuristic algorithms for
truss optimization problems. The No Free Lunch (NFL) Theorem proposed by Wolpert et al. [1]
explicitly states that no single metaheuristic is capable of solving all optimization problems
with an equal level of effectiveness. This implies that every optimization problem needs
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to be recognized as belonging to a distinct problem category with a set of well-suited
optimization methodologies associated with it [2].

A number of MH algorithms have been used for truss optimization problems by
various authors over the years. For instance, Lee and Geem implemented the Harmony
Search (HS) algorithm for the weight minimization of truss structures with continuous
variables [3]. Sonmez adopted the Artificial Bee Colony (ABC) optimizer for structural
optimization with continuous and discrete variables [4,5]. Degertekin and Hayalioglu
investigated the applicability of the Teaching Learning Based Optimizer (TLBO) [6]. Bekdas
et al. recognized the feasibility of the Flower Pollination Algorithm (FPA) for its robust
global and local search aspects in structural design [7]. Kaveh and Bakshoopri presented
the Cuckoo Search (CS) algorithm in the context of truss sizing optimization [8]. Kaveh
and Khayatazad employed the so-called Ray Optimizer (RO) algorithm for the weight
minimization of truss structures [9]. A Cultural Algorithm (CA) was successfully imple-
mented for the optimal design of truss structures with stress and deflection constraints
by Jalili and Hosseinzadeh [10]. Similarly, Kaveh and Mahdavi showcased the robust-
ness of the Colliding Bodies Optimizer (CBO) for truss design problems [11]. Recently
published studies in the field include Kaveh and Bakshoopri [12] and Kooshkbaghi and
Kaveh [13] with their implementation of the Water Evaporation Optimizer (WEO) and
the Artificial Coronary Circulation Systems (ACCS) algorithms, respectively, for sizing
optimization of truss structures. Ozbasaran and Yildirim evaluated the performance of
the Crow Search Algorithm (CSA) for the weight minimization of truss structures [14].
Degertekin et al. [15] adopted the recently proposed Heat Transfer Search (HTS) algorithm
for the sizing optimization of truss structures. Azizi et al. considered the utilization of
the Material Generation Algorithm (MGA) for the optimum design of truss structures [16].
Furthermore, Bodalal (present author) [17] presented a critical analysis of the recently
developed Political Optimizer (PO) algorithm for the weight minimization of both medium-
and large-sized structural systems.

Hybridized/modified algorithms that attempted to compensate for the shortcomings
of direct MH implementations naturally followed over the years. Recognizing this fact,
a hybridized PSO, ACO, and HS algorithm (HPSACO) was presented by Kaveh et al. in
the hopes of improving structural design results further [18]. Khatibinia and Yazdani
proposed the Accelerated Multi-Gravitational Search Algorithm (AMGSA) to overcome the
performance issues of the conventional Gravitational Search Algorithm (GSA) [19]. Kaveh
et al. developed an Improved Ray Optimizer (IRO) algorithm to further enhance designs
yielded from the previous direct RO implementation study [20]. A hybrid Imperialist
Competitive Algorithm (ICA) and Harris Hawk Optimizer (HHO) was developed by
Kaveh et al. (ICHHO) to improve the structural results reported in an earlier ICA truss
optimization paper [21]. Jafari et al. hybridized the standard PSO with CA to propose
the Particle Swarm Optimizer Cultural (PSOC) algorithm in the hopes of yielding a more
harmonized balance between exploration and exploitation [22].

It is therefore apparent from the aforementioned studies that the implementation of newer
metaheuristics is directly associated with improved optimization methodologies developed afterwards
since the strengths and weaknesses become clear as a consequence.

1.2. Motivation and Contribution

Recently, a newly developed swarm-based metaheuristic optimizer, called the Ma-
rine Predators Algorithm (MPA), was proposed by Faramarzi et al. in 2020 [23]. MPA is
inspired by the efficient foraging strategies of marine predators in oceanic environments.
Search agents are modeled as marine prey (food), while the best-performing solution in
the population acts as the marine predator (hunter). Faramarzi et al. [23] evaluated the
efficiency of MPA with 29 function benchmarks, three classical engineering problems, and
two real-world problems. Results revealed the superiority of MPA over all contemporary
algorithms in comparison. As a result, MPA was seen by many researchers as a promis-
ing solution technique. This led to MPA’s utilization for many challenging engineering
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optimization problems. Notable examples from literature include the parameter extrac-
tion of single/double diode PV modules [24], image feature selection [25], fan control
scheduling for ventilation purposes [23], CNC lathe machine optimization [26], COVID-19
detection/image classification [27], and antenna design [28].

The primary purpose of this study (therefore) is to extend the application of the
recently developed Marine Predators Algorithm to the weight minimization of truss struc-
tures. Six challenging truss benchmarks (three normal-sized and three large-scale) are
consequently optimized to test the efficiency of MPA. The proposed algorithm was se-
lected because it efficiently incorporates both Lévy and Brownian motion models into its
solution updating methodology. Several studies related to structural optimization (and
other similarly challenging problems) have repeatedly underscored the effectiveness of
the Lévy flight/walk motion model to escape local optima (this is especially the case for
constrained, multi-model optimization problems). Notable articles in the field include the
implementation of the Cuckoo Search (CS) algorithm by Kaveh and Bakshoopri [8] for
truss optimization. Inherent to the algorithm was the Lévy motion model, and conclusions
were made favoring the motion pattern for truss optimization. A similar conclusion was
reached with implementing the Dragonfly Algorithm (DA) by Jawad et al. for truss weight
minimization [29]. Lévy flight techniques (intrinsic to DA operations) proved crucial to
the algorithm’s excellent performance, allowing it to reach global truss solutions with
the least computational effort. The results were furthermore corroborated with a similar
metaheuristic truss optimization study conducted by Etaati et al. [30]. Along those lines,
other studies related to the field have also reported the advantage that Lévy-based MH al-
gorithms possess over other techniques for truss optimization problems (see Refs. [31–35]).
Based on the conclusions made by a sample of studies related to the field, MPA (with its
basic Lévy motion position updating scheme) is expected to perform exceptionally well
when applied to the challenging truss optimization problem. The testing of MPA in this
study is therefore justified from a literature review perspective.

Furthermore, in recognition of the need for researchers to have better A.I. optimization
methodologies at their disposal, the author noticed a research gap where no study, as of
the time of this writing, has ever attempted to quantitatively determine the correct value
of algorithmic “exploration” and “exploitation” for truss optimization problems. Given
the ever-increasing involvement of AI-based methods in structural engineering and the
weaknesses of conventional analytical techniques currently at our disposal, the importance
of having a basic numerical estimation for the combination of these two schemes will
immensely aid future researchers in the field whenever they develop new algorithms.
Truss optimization problems are well-known for being highly non-linear, non-convex, and
multimodal design problems with respect to their design variables [36]. Problem com-
plexity is further compounded by the hundreds, if not thousands, of design constraints
imposed by dint of the various construction/building codes typically required by govern-
ment organizations. The sizing optimization of truss structures (by definition) involves
selecting the appropriate cross-sectional areas of truss members to minimize structural
weight, all the while conforming to the predefined design constraints in the form of stress
and deflection limitations. Optimized cross-sectional areas are consequently required to
be selected from a practical range usually preordained by commercial section availability.
Fabrication constraints, as they are commonly called, are thus an added computational
challenge to the algorithm and take the form of decision variable limitations. Furthermore,
the truss optimization problem is notorious for its high computational cost. Objective
function evaluations necessarily involve the simultaneous solution of thousands of force-
displacement equations using matrix operations. This differentiates structural optimization
problems from other simpler engineering design tasks where the objective function estima-
tion process does not require lengthy computation (see Refs. [37–39]). In order to reduce
the amount of time required to obtain optimized solutions, MH algorithms that efficiently
navigate the challenging design search space with the least amount of structural analysis
are therefore highly sought after. The truss sizing problem, as a result, continues to be an
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active research problem solved by many researchers in the field [40–42]. From the above
discussion, it becomes clear that the sizing optimization of truss structures provides a
particularly challenging optimization problem in which the MH exploration–exploitation
tradeoff trend can be thoroughly investigated. That is in addition to the fact that most
studies in the field usually only consider final results such as optimized weights, standard
deviations, and convergence speeds. However, no discussions or calculations are made to
justify the reported results in light of the two fundamental metaheuristic search concepts
mentioned earlier: exploration and exploitation. To fill this gap, the computational behavior
of MPA, used as a base algorithm in this work (and justified in the previous paragraph), is
analyzed using a novel dimension-wise diversity index (previously developed by Morales-
Castañeda et al. [43]). Metaheuristic search aspects can subsequently be easily adjusted to
these newly found values and theoretically achieve comparable optimization performance.

The contributions of this study can be summarized as follows:

(1) A novel application of MPA for structural optimization problems is presented.
(2) Six challenging truss benchmarks (including three real-sized structures) are optimized

using the proposed technique.
(3) For the first time in the field, a numerical quantification of the proper balance be-

tween metaheuristic exploration vs. exploitation for truss optimization problems is
presented.

(4) Finally, a critical assessment of MPA is conducted in light of the detailed findings
reported in the study (exploration-exploitation balance, optimization trend, and
statistical results).

The rest of this paper is organized as follows: Section 2 formulates the truss sizing
problem. Section 3 explains the working principle of the MPA algorithm. Section 4 describes
the software implementation of MPA for truss sizing optimization. Section 5 presents the
methodology for quantifying the exploration vs. exploitation balance. Section 6 compares MPA
results with those of other optimizers in literature. Section 7 summarizes MPA performance in
relation to the truss optimization results. Finally, some concluding remarks/recommendations
are made in Section 8.

2. Problem Formulation

The sizing optimization of truss structures can be regarded as the problem of selecting
the appropriate cross-sectional areas of structural members (with the goal of minimizing
structural weight) while conforming to the pre-imposed design constraints in the form of
stress and deflection limitations. Mathematically, this can be expressed as:

Find optimal values:
−→
A = {A1, A2, A3, . . . , Ad} (1)

To minimize:

W
(−→

A
)
=

NE

∑
i=1

ρi AiLi, i = 1, . . . , NE (2)

Subject to constraints: 
σL ≤ σi ≤ σU
δL ≤ δj ≤ δU
0 ≤ σb

k ≤ σb
U

(3)

where W
(−→

A
)

denotes the overall truss weight, NE denotes the number of structural

elements, d is the number of truss sizing variables, ρi represents the mass density of the
structural material, Li denotes the truss member length, Ai is the cross-sectional area of
the ith member, and σi, σb

k , and δj represent the normal stress, buckling stress, and nodal
displacement for the ith member, kth compressive element, and jth node, respectively.
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Multiple constraint-handling methodologies have recently been proposed to convert
constrained problems into unconstrained ones. Readers are encouraged to read Coello
Coello [44] for a more in-depth discussion on this matter. Nevertheless, in structural
design, the objective function formulation for the truss optimization problem saw few
changes over the years. Studying the research trend shows the adoption of three main types
of objective function formulations: (1) Fitness functions with static penalty factors [45].
(2) Fitness function with dynamic penalty factors [46]. (3) Fitness function with relaxed
penalty factors [47]. Of the three, formulations 2 and 3 are the most adopted, and their
effects have been shown to differ only slightly (among themselves) on overall algorith-
mic performance [48]. Consequently, a quantitative comparison between different MH
algorithms using the aforementioned formulations is justified. In this work, in order to
efficiently handle the design constraints outlined in Equation (3), formulation 3 is adopted,
and the total number of evaluated constraint violations m for a given truss design are first
normalized and then subsequently merged into a single variable V, which represents the
total penalized value of the structure. This is mathematically shown as follows [17]:

V =
m

∑
i=1

vi =
NE

∑
i=1

(∣∣∣∣σi(x)
σL,U

∣∣∣∣− 1
)
+

NN

∑
j=1

(∣∣∣∣ δj(x)
δL,U

∣∣∣∣− 1
)
+

NC

∑
k=1

(∣∣∣∣∣ σb
k

σb
U

∣∣∣∣∣− 1

)
(4)

where NN and NC are the number of nodes and the number of compressive members, respectively.
Constraints violations with values greater than zero are accounted for, while those less than
that are neglected.

It therefore follows that the ultimate form of the penalized fitness function Fp mini-
mized in this study is as follows [17]:

Fp

(−→
A
)
= W

(−→
A
)
∗ α ∗ (1 + V)β (5)

where the variables α and β in Equation (5) are the penalty scaling factor and penalty
exponent, respectively, the value of which is kept as one (part of the relaxed objective
function scheme) [17]. This allows the algorithm to freely search the computational domain,
unimpeded. Global optimum truss weights, when obtained, would either have zero
constraint violations or be so small that they could be regarded as negligible.

3. Marine Predators Algorithm (MPA)
3.1. Inspiration

The Marine Predators Algorithm (MPA) is a recently developed swarm-based meta-
heuristic optimizer that mathematically models the efficient foraging strategies of Marine
Predators (MP) in oceanic environments. The term “marine predator” typically describes
aquatic creatures, such as sharks, whales, dolphins, and swordfish, i.e., fish that eat other
fish. While searching for prey (food), MPs generally adopt one of two motion models:
(1) Lévy motion or (2) Brownian motion. MPs constantly switch between the two motion
patterns based on “encounter policies.” Simply put, if an MP finds itself in an area of
sea with a low/patchy concentration of prey, it starts moving around in a Lévy fashion.
Conversely, if abundant prey is present (high concentration), Brownian motion is preferred.
Therefore, MPs successfully forage by constantly alternating between Lévy and Brownian
motion based on prey concentration in their local area.

Numerous mathematical models have been developed to predict the exact moment at
which MPs change motion patterns. The best technique developed so far is by relating it

to something called the “velocity ratio” (represented as γ =
−−→vprey /−−−−→vpredator ). It is reasoned

that depending on the speed of the prey versus that of an MP, a switch in motion type will
occur to minimize both the time and effort involved in encountering it. From the above
discussion, three different MP hunting tactics (in relation to the “velocity ratio”) can be
summarized as follows:
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• High Velocity Ratio Scenario (γ ≥ 10):

This scenario occurs when the intended prey is much faster than the predator

(−−→vprey �
−−−−→vpredator ). In this case, MPs hunt by not moving at all. This is logical since

the probability that the prey will pass your field of view is high.

• Unit Velocity Ratio Scenario (γ = 1):

This scenario occurs when the velocities of prey and predator are equal

(−−→vprey =
−−−−→vpredator ). In this case, marine predators adopt the opposite foraging tactic of

their prey, i.e., if the intended prey is moving in a Brownian fashion (randomly), the
predators move with Levy motion.

• Low Velocity Ratio Scenario (γ ≤ 0.1):

This scenario occurs when prey move slower than predators (−−→vprey �
−−−−→vpredator ). In

this scenario, marine predators must actively search for their food, and the much slower
prey are often concentrated in swarms. This dictates the MP adopt the Levy flight/walk
foraging mechanism, i.e., deeply search nearby areas with small steps and explore other
areas with “relocations” until the prey swarm is found. Figure 1 graphically summarizes
the three foraging scenarios described earlier for greater clarity.

One last observation related to MP behavior is their sudden switch of motion patterns
(Lévy flight/walk or Brownian motion) when in the immediate proximity of “natural envi-
ronmental barriers” such as eddy currents or Fish Aggregating Devices (FADs). Predators
were found to change tactics depending on the type of obstruction.
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3.2. Mathematical Formulation

As mentioned earlier, one of the primary purposes of this study is to extend the
application of the recently developed Marine Predators Algorithm (MPA) to the weight
minimization of truss structures. As such, MPA operation in relation to the inspiration
section described earlier is presented here. Similar to other MH algorithms, MPA divides
the optimization process into exploration and exploitation. However, unlike other algo-
rithms, it transitions from pure exploration to pure exploitation with an intermediate stage
comprised of 50% exploration and 50% exploitation. The following is an overview of how
MPA operates:

The algorithm’s optimization sequence begins by randomly generating the initial
population of search agents. Fitness functions are subsequently estimated, and the best-
performing solution serves as the marine predator, while the remaining solutions act as
prey. Now that the search space has multiple prey and one MP (the best solution), the
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hunt for the global optimum begins. The three encounter policies (based on velocity ratios)
described earlier are modelled in MPA by dividing the optimization process into three equal
phases. In the first third, solution candidates (prey) update their positions with respect to
the MP (best solution) in a Brownian fashion. In the second phase, solution candidates are
divided in half, and each half has its position vectors updated either in a Lévy or Brownian
manner in relation to the top solution. Finally, in the last third of iterations, the MP has
its position vector multiplied by the Levy operator, and the prey update their solutions
based on it. While this all happens, the best-performing solution is constantly updated for
every iterative cycle. Overall, MPA is a relatively simple metaheuristic, with only a few
performance parameters to be considered.

The following subsections represent a clear and concise mathematical derivation of all
MPA mathematical procedures discussed earlier.

3.2.1. Initialization

The MPA optimization cycle begins by uniformly distributing the population of search
agents over the computational domain using Equation (6).

−→
X i =

−→
XL +

−−→
rand⊗

(−→
XU −

−→
XL

)
, i = 1, . . . , PopSize (6)

where
−→
XL and

−→
XU are vectors representing the lower and upper design variable bounds,

respectively,
−−→
rand is a vector of random numbers uniformly generated between [0, 1], and

⊗ is an operator indicative of entry-wise multiplication. The best-performing solution in

the population is denoted by
−−→
Elite, and all solution candidates update their positions with

respect to it.

3.2.2. Optimization Scenarios

The MPA algorithm models the three “encounter policies” discussed earlier by divid-
ing the entire optimization process into three equal parts. In all phases, candidate solutions

update their position vectors with reference to the “best solution.” Therefore, the
−−→
Elite

vector is key to MPA. The three phases, along with their details, are discussed below:

• Phase I (iter < 1
3 MaxIt)

The first third of iterations models the high velocity ratio scenario (γ ≥ 10) where prey
move faster than predators. In the algorithm, this is mathematically modelled as follows:

−−−−→
stepsize =

−→
RB ⊗

(
−−−−→
Elite(t)−

−→
RB ⊗

−→
X i(t)

)
, i = 1, . . . , PopSize

−→
X i(t + 1) =

−→
X i(t) + P.

−−→
rand⊗

(−−−−→
stepsize

) (7)

where
−→
X i(t + 1) is the updated solution vector, P is a constant scaling factor, which is

considered here an algorithmic parameter, and
−→
RB is a vector of random numbers generated

according to Brownian motion. The vector
−→
RB is multiplied by

−→
X i(t) (marine prey), since

fast prey usually display random motion. Readers interested in the probabilistic governing

equation for
−→
RB are referred to reference [23] for more information.

• Phase II ( 1
3 MaxIt < it < 2

3 MaxIt)

Serving as an intermediate stage from mere exploration to mere exploitation, phase II
of MPA maps the behavior of marine predators according to the unit velocity ratio scenario
(γ = 1). Observations have shown that both predators and prey are searching for their food,



Computation 2023, 11, 91 8 of 39

and therefore, they adopt the opposite strategies of each other. This is modelled with half
the prey population updating their positions according to Lévy strategy and the other half
according to Brownian motion, i.e., 50% exploration and 50% exploitation. Mathematically,
this is written as follows:

For the First Half of the Population (Exploitation):

−−−−→
stepsize =

−→
RL ⊗

(
−−−−→
Elite(t) −

−→
RL ⊗

−→
X i(t)

)
, i = 1, . . . , PopSize/2

−→
X i(t + 1) =

−→
X i(t) + P.

−−→
rand ⊗

(−−−−→
stepsize

) (8)

where
−→
RL is a vector of random numbers based on the Lévy distribution [23].

For the Second Half of the Population (Exploration):

−−−−→
stepsize =

−→
RB ⊗

(
−→
RB ⊗

−−−−→
Elite(t) −

−→
X i(t)

)
, i = PopSize/2, . . . , PopSize

−→
X i(t + 1) =

−→
X i(t) + P.CF⊗

(−−−−→
stepsize

) (9)

CF =

(
1− t

MaxIt

)( 2t
MaxIt )

(10)

where CF is a control parameter that dictates the step size length of predator motion.

• Phase III (iter > 2
3 MaxIt)

The final third of MPA iterations simulates the low velocity ratio scenario (γ ≤ 0.1)
and serves as a pure exploitation phase. This can be mathematically formulated as follows:

−−−−→
stepsize =

−→
RL ⊗

(
−→
RL ⊗

−−−−→
Elite(t) −

−→
X i(t)

)
, i = 1, . . . , PopSize

−→
X i(t + 1) =

−−−−→
Elite(t) + P.CF⊗

(−−−−→
stepsize

) (11)

Search agents update their positions around “top predators” in this phase, and there-
fore, the refinement of solutions is conducted after exploring the search space for 2/3 of the
iterations.

Finally, to account for the unusual activity of MPs when confronted with FADs, the
population of solution candidates is allowed to update their position vectors according to a
predefined probability factor assigned by the user. One of two equations is executed, and
they are mathematically presented as follows:

−→
X i(t + 1) =


−→
X i(t) + CF

[
−→
XL +

−−→
rand⊗

−→
(X U −

−→
XL)

]
⊗
−→
U , r ≤ FADs

−→
X i(t) + CF[FADs(1− r) + r]

(
−−−−−→
Xrand1(t)−

−−−−−→
Xrand2(t)

)
, r > FADs

(12)

where FADs is the user-defined probability factor,
−→
U is a binary vector, r is a random

number between [0, 1], and rand1 and rand2 are subscripts indicating random prey 1
and randomly selected prey 2. This additional step occurs for every computational cycle
and can be regarded as a measure to prevent the population from being snarled into local
optima. The pseudocode of the proposed MPA algorithm is depicted in Figure 2.
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4. Software Implementation for the MPA Truss Optimization Problem

This section presents the step-by-step software implementation sequence for solving the
truss sizing optimization problem. The steps carried out by the algorithm are outlined below:

Step (1) Initialize MPA control parameters: Set values for Population Size (PopSize),
Scaling Factor (P), Fish Aggregating Devices (FADs), and Maximum Number of
Iterations (MaxIt). Iteration counter value initialized to zero (it = 0).

Step (2) Load truss benchmark data: Information such as nodal coordinates, member
connectivity, material properties, loading conditions, and design variable group-
ings for a particular structural problem are initialized in this step.

Step (3) Generate randomized truss designs: Using Equation (6), a pool of random truss
solutions is generated. Solution vectors represent truss cross-sectional area
values. Each design variable value corresponds to the area of a particular set of
truss members.

Step (4) Evaluate the objective function values: The objective function values W(
−→
A ) for

all truss designs are evaluated in this step. Initialized designs are analyzed
using well-known Finite Element Method process (namely, direct stiffness method).
Member stresses and nodal deflections are subsequently estimated and compared
to their pre-defined limits (see Equation (4)).

Step (5) Determine “Top Predator”: The truss with the lowest weight (best solution) is
assigned as the “Elite Predator.” All other solutions update their position values
based on it.

Step (6) Main MPA Optimization Sequence Begins: Based on the three MP hunting sce-
narios discussed earlier, new truss designs are generated from Equation (7) to (9)
or (11). This step is applied to all members of the population.

Step (7) Exploration through FADs: Newer truss designs are generated through
Equation (12)
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Step (8) Objective Function Evaluation: Newly generated truss designs have their objec-
tive functions evaluated in this step. A greedy selection is performed, whereby
old and new solutions are compared. Those solutions exhibiting lower truss
weights are adopted, and heavier ones are discarded.

Step (9) Check Stopping Criteria: If the number of iterations exceeds the maximum pre-
defined limit (MaxIt), stop the program and display the best truss design. Other-
wise, return to step 5.

5. Quantification of the Exploration–Exploitation Balance

In the field of metaheuristic optimization, there is a general consensus that for an
algorithm to achieve satisfactory computational performance for a given optimization
task, knowledge of the correct balance between exploration and exploitation is a neces-
sary pre-requisite. The question that naturally arises when tackling the problem of truss
optimization is:

“What is the correct balance between an algorithm’s global and local search aspects that
will yield appropriate results for truss optimization problems?”

For many years, this has been an open question in the field, and no attempt has yet
been made to provide a quantitative answer to this straightforward yet crucial question. As
mentioned earlier, one of the main contributions of this study, in addition to implementing
MPA for truss sizing optimization, is to give a percentile quantity for the proper amount of
exploration and exploitation required for structural sizing problems.

To that end, a very recent study conducted by Morales-Castañeda et al. [43] has
extended the concept of a dimension-wise diversity index in an attempt to numerically
quantify algorithmic “exploration” and “exploitation.” In their methodology, the distance
between search agents from their median (on a dimension-wise basis) is utilized to estimate
the diversity among solution candidates for any single iteration. As the population of
search agents come together, the diversity decreases, and vice versa. Population diversity,
therefore, is defined as follows:

Divj =
1

PopSize

PopSize

∑
i=1

∣∣∣median
(

xj
)
− xj

i

∣∣∣ (13)

Div =
1
d

d

∑
j=1

Divj (14)

where median
(

xj) denotes the median of jth dimension for the entire population and xj
i is

the jth design variable of search agent “i.”
To simplify matters for readers, Equation (13) estimates the average diversity for all

members of the population in a single dimension, while Equation (14) provides the average
diversity for the entire population across all dimensions. It is worth mentioning here that
the values of both equations are computed for every iteration.

After completing the entire optimization process, the percentage of exploration and
exploitation for every iteration is computed as follows,

%EXPLORE =

(
Divt

Divmax

)
× 100 (15)

%EXPLOIT =

(
|Divt − Divmax|

Divmax

)
× 100 (16)

where Divmax represents the maximum diversity obtained in the optimization process
and Divt is the dimension-wise population diversity at iteration t. Averaging the entire
results of exploration and exploitation for every iteration gives us the required balance of
intensification and diversification for the problem.
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The provided quantities of both “exploration” and “exploitation,” estimated earlier,
are expected to serve as a preliminary rule-of-thumb for any future algorithms specifically
developed to tackle structural optimization problems. By adopting the diversity methodol-
ogy presented in this study, researchers can easily adjust their algorithms to these average
exploration/exploitation values and (in theory) achieve comparable structural optimization
performance. The findings in that regard are expected to dramatically reduce both the time
and effort involved in producing better structural optimization techniques.

For more information, readers are referred to reference [43] for an in-depth expla-
nation of the diversity index and its application to estimate metaheuristic exploration
vs. exploitation.

6. Numerical Examples

Six classical truss benchmarks (three medium-sized and three large-scale) were selected
from literature to test MPA efficiency. The adopted benchmarks along with their loading
conditions are listed below:

• A 10-bar planar truss subjected to two independent loading scenarios,
• A 60-bar planar truss ring subjected to three loading conditions,
• A 120-bar spatial truss dome with a single loading condition,
• A 272-bar electric transmission tower with twelve loading conditions,
• A 26-storey, 942-bar truss tower subjected to a single loading condition,
• A 62-storey, 4666-bar truss tower with three loading conditions.

The example problems listed above were selected for testing MPA performance based
on three criteria: (1) truss type (small or large), (2) solution instances in the literature, and
(3) number of design constraints. For criterion 1, both medium- and large-scale trusses
were chosen from the literature to account for the various sizes of structures in daily
practice. The underlying logic is the crucial necessity of testing MPA robustness for all
structural problem types. Criterion 2 was considered in order to ensure the existence of
sufficient comparative studies to validate MPA results (i.e., an ample amount of studies in
previous works dealing with the benchmarks provides MPA with the necessary number of
comparative solutions to draw clear conclusions regarding its performance). Finally, for
Criterion 3, the benchmarks containing the greatest number of design constraints were
selected to fully challenge MPA’s operation principle. The number of design constraints
automatically translates to the number of nodes and structural members a truss possesses.
Basically, the greater the number of design constraints a problem has, the more difficult it is
to optimize. The benchmarks employed and chosen in this study, therefore, represent a
compromise between all three aforementioned selection criteria.

MPA has three control parameters that require tuning before optimization. The
parameters are PopSize (Population Size), P (scaling factor), and FADs (Fish Aggregating
Devices). Following a detailed sensitivity analysis in which the “one-parameter-at-a-time”
methodology was employed (further details are available in ref. [17]), a combination
of 15 for PopSize, 0.1 for FADs, and 0.3 for P was found appropriate for optimal MPA
performance. Unless stated otherwise, this combination of parameter values will be used for
all benchmarks investigated. The Maximum Number of Iterations (MaxIt), which governs
the upper limit of objective function evaluations, was kept as a user-defined variable best
adjusted according to the optimization problem. This has been done in full conformity with
literary practice in the field. The methodology of arriving at suitable stopping criteria for
the different truss benchmarks solved in this study involves testing various MaxIt values
(typically adopted from a range) and seeing what value provides the best algorithmic
performance with the least amount of computational effort (further details are available
in Refs. [4,5,7,17]). This way, algorithms having different computational budgets (fitness
calls vs. iterations) are accounted for, and MHs requiring more iterations to achieve good
results naturally perform poorly in terms of convergence speeds. The maximum number of
MPA function evaluations (MaxFE) and computational budget, therefore, can be estimated
from MaxIt using the following relation: MaxIt ∗ (2 ∗ PopSize). It should be noted that in
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some instances, MPA converges well before reaching the MaxFE limit. Accurate function
evaluation values are therefore reported with the help of incremental counters added to the
original MATLAB code (accurate computational convergence speeds are thus reported).
Using the above-described methodology, a fair algorithmic comparison is achieved in terms
of computational speed.

Finally, in implementing MPA, 20 independent runs (as justified by ref. [49]) were
conducted for each benchmark. The best design, the average, the worst, the standard
deviation (SD), and the number of function evaluations (NFE) are reported and compared
with other optimizers published in literature. To avoid additional computational complexity,
the baseline reference results used for comparative purposes were not produced in a system
with the same computational configuration (i.e., comparative results were quoted from
the literature). Every effort was made, nonetheless, to simulate (as much as possible) the
computing conditions and practices followed by those in the field. The Friedman ranking
test was also conducted for every truss benchmark solved. Winners and losers are drawn
based on three important algorithmic categories: (1) Best Weight, (2) Average Weight, and
(3) Number of Function Evaluations. This way, the proposed method was tested against
other algorithms based on solution quality, robustness, and speed. MPA was executed
using MATLAB, and all runs were carried out on a personal laptop with a 1.8 GHz Intel
Corei5 processor and 4 GB of RAM.

6.1. A 10-Bar Planar Truss Structure

The first benchmark considered in this study is the 10-bar planar truss structure (shown
in Figure 3). Two independent loading scenarios were investigated: Case I uses values of
P1 = 100 kips (445 kN) and P2 = 0, whereas Case II uses values of P1 = 150 kips (667 kN) and
P2 = 50 kips (222.5 kN). Further details regarding the material properties, design constraints,
and cross-sectional area bounds for the truss are conveniently summarized in Table 1. In
total, the problem has 32 non-linear design constraints (10 tension, 10 compression, and
12 displacement constraints).
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Table 1. Structural parameters for the 10-bar planar truss [4,17].

Property Value

Material Density 0.1 Ib/in3

Young’s Modulus 10,000 ksi
Number of Area Groups 10
Maximum Normal Stresses ±25 ksi
Maximum Nodal Displacements (x, y) ±2 in.
Range of Cross-sectional Areas 0.1~35.0 in2

Tables 2 and 4 compare the results found by MPA against other studies for Cases
I and II of the benchmark, respectively. Following a thorough test with various MaxIt
values, a stopping criterion of 350 iterations (10,500 function evaluations) was set for
MPA to solve both cases of the benchmark. Tabulated results reveal MPA produces the
lightest structural designs (5060.859 Ib and 4677.00 Ib) with the least computational effort
(9570 and 9720 function evaluations) for both scenarios investigated. Moreover, the two
corresponding optimization runs recorded a CPU time of 3.45 s. In total, MPA results were
compared with eight other metaheuristic algorithms for Case I and nine other algorithms
for Case II. On average, MPA showed a 50.64% reduction in computational effort over all
other algorithms for Case I and a 51.41% reduction for Case II of the benchmark (about half).
In terms of solution robustness, MPA was superior to all previously published algorithms,
with the exception of the ACCS optimizer implemented by Kooshkbaghi and Kaveh [13]
for Case II of the benchmark, where a slightly lower standard deviation was reported over
MPA. Nonetheless, the difference is so insignificant as to make the algorithms similar in
that respect. Tables 3 and 5 show the Friedman rank test results for Cases I and II of the
10-bar truss benchmark. Results show MPA ranking first in all three algorithmic categories
tested in this study.

Studying MPA exploration vs. exploitation tradeoff trends for both Cases I and II
of the benchmark, an approximate value of 10% exploration and 90% exploitation was
reported. Figure 4 visually depicts the symmetric tradeoff between the two aforemen-
tioned search schemes. A closer look at the figure shows that as exploration decreases
throughout the optimization process, there is an equal and corresponding increase in
exploitation (perfectly symmetrical). Moreover, the rough tradeoff spikes in the figure
indicate MPA’s constant reliance on Lévy operators and FADs to produce good results
beyond its current neighborhood.

Finally, the estimated values of exploration vs. exploitation show that MPA is, in
essence, an “exploitation-dominated” metaheuristic. This completely contradicts the widely
held belief that a robust exploration-dominated algorithm is preferred for truss optimization
problems. The significance of having an initial estimate of exploration and exploitation for
truss optimization problems is that future researchers can use the values to adjust their
algorithms to produce similar results.
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Table 2. Optimized result comparison for the 10-bar planar truss (Case I).

Design Variable (in2) (ABC-AP) [4] (TLBO) [6] (mTLBO) [50] (HPSSO) [51] (WEO) [12] (CPA) [52] (CSA) [53] (ECSA) [53]
This Study

(MPA)Best (MPA)Worst

A1 30.548 30.4286 30.6684 30.53838 30.5755 30.5022 33.6116 30.5096 30.5066 30.629
A2 0.100 0.1000 0.1000 0.1 0.1000 0.1000 0.1478 0.1000 0.1 0.10997
A3 23.180 23.2436 23.1584 23.15103 23.3368 23.2170 22.9345 23.2253 23.1736 23.023
A4 15.218 15.3677 15.2226 15.20566 15.1497 15.2204 13.9637 15.2315 15.2499 15.3
A5 0.100 0.1000 0.1000 0.1 0.1000 0.1001 0.1050 0.1000 0.1 0.1
A6 0.551 0.5751 0.5421 0.548897 0.5276 0.5587 0.3611 0.5517 0.5558 0.54452
A7 7.463 7.4404 7.4654 7.465322 7.4458 7.4548 7.9202 7.4561 7.4566 7.4722
A8 21.058 20.9665 21.0255 21.06437 20.9892 21.0371 22.0883 21.0276 21.0229 21.018
A9 21.501 21.5330 21.4660 21.52935 21.5236 21.5295 19.6785 21.5239 21.5494 21.544
A10 0.100 0.1000 0.1000 0.1 0.1000 0.1002 0.1041 0.1000 0.1 0.10001

Weight (Ib) 5060.88 5060.96 5060.97 5060.86 5060.99 5060.92 5095.40 5060.91 5060.859 5061.86
Avg. Weight (Ib) N/A 5062.08 5064.808 5062.28 5062.09 5062.45 5290.79 5063.41 5061.12 -
St. Deviation (Ib) N/A 0.79 6.3707 4.325 2.05 3.77 125.89 5.43 0.304 -

Con. Violation None None None None None None None None None None
No. of Evaluations 500,000 16,872 13,767 14,118 19,540 23,700 18,706 16,401 9570 9810
Avg. Exploration – – – – – – – – 9.93% –
Avg. Exploitation – – – – – – – – 90.06% –

Note: 1 in2 = 6.452 cm2; 1 lb. = 0.4536 kg.

Table 3. Friedman rank test results for the 10-bar planar truss (Case I).

Category (ABC-AP) [4] (TLBO) [6] (mTLBO) [50] (HPSSO) [51] (WEO) [12] (CPA) [52] (CSA) [53] (ECSA) [53]
This Study

(MPA)Best (MPA)Worst

Friedman Rank (Weight) 3 6 7 2 8 5 9 4 1 –
Friedman Rank (Avg.) 9 2 7 4 3 5 8 6 1 –
Friedman Rank (NFE) 9 5 2 3 7 8 6 4 1 –

Averaged Rank 7 4.333 5.333 3 6 6 7.6667 4.6667 1 –
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Table 4. Optimized result comparison for the 10-bar planar truss (Case II).

Design Variable (in2) (ABC-AP) [4] (MSPSO) [54] (TLBO) [6] (WEO) [12] (PGO) [49] (ACCS) [13] (ICA) [21] (HHO) [21] (ICHHO) [21]
This Study

(MPA)Best (MPA)Worst

A1 23.4692 23.4432 23.524 23.5804 23.5326 23.522 23.9224 24.335 23.4119 23.4469 23.580
A2 0.1005 0.1000 0.1000 0.1003 0.1000 0.1 0.1 0.1 0.1 0.10002 0.1243
A3 25.2393 25.3718 25.441 25.1582 25.0068 25.364 25.6412 22.188 25.0207 25.3183 25.199
A4 14.354 14.1360 14.479 14.1801 14.4241 14.503 15.0520 17.095 14.4040 14.3490 14.295
A5 0.1001 0.1000 0.1000 0.1002 0.1000 0.1 0.1 0.1 0.1 0.10003 0.1001
A6 1.9701 1.9699 1.995 1.9708 1.9721 1.97 1.9690 2.0380 1.9727 1.96979 1.9679
A7 12.4128 12.4335 12.334 12.4511 12.4286 12.417 12.2295 13.095 12.4683 12.40842 12.429
A8 12.8925 13.0173 12.689 12.9349 12.8215 12.938 12.4021 13.06 12.9778 12.92012 12.919
A9 20.3343 20.2717 20.354 20.3595 20.4603 20.058 19.9683 19.778 20.3544 20.27331 20.309
A10 0.1000 0.1000 0.1000 0.1001 0.1000 0.1 0.1029 0.1018 0.1 0.10001 0.1015

Weight (Ib) 4677.077 4677.26 4678.31 4677.31 4677.17 4677.267 4680.14 4714.56 4677.50 4677.00 4679.22
Avg. Weight (Ib) N/A 4681.45 4680.12 4679.06 4677.88 4677.909 4756.29 5024.08 4682.84 4677.81 -
St. Deviation (Ib) N/A 2.19 1.016 2.07 0.72 0.455 97.273 649.89 3.816 0.58 -

Con. Violation None None None None None None None None None None None
No. of Evaluations 500,000 25,000 14,857 19,890 17,580 12,000 20,000 20,000 20,000 9720 9840
Avg. Exploration – – – – – – – – – 6.87% –
Avg. Exploitation – – – – – – – – – 93.12% –

Note: 1 in2 = 6.452 cm2; 1 lb. = 0.4536 kg.

Table 5. Friedman rank test results for the 10-bar planar truss (Case II).

Category (ABC-AP) [4] (MSPSO) [54] (TLBO) [6] (WEO) [12] (PGO) [49] (ACCS) [13] (ICA) [21] (HHO) [21] (ICHHO) [21]
This Study

(MPA)Best (MPA)Worst

Friedman Rank (Weight) 2 4 8 6 3 5 9 10 7 1 –
Friedman Rank (Avg.) 10 6 5 4 2 3 8 9 7 1 –
Friedman Rank (NFE) 10 9 3 5 4 2 7 7 7 1 –

Averaged Rank 7.333 6.333 5.333 5 3 3.333 8 8.6667 7 1 –
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6.2. A 60-Bar Planar Truss Structure

The 60-bar planar truss structure is schematically shown in Figure 5. The inner and
outer radii of the ring are Ri = 90 in (2.28 m) and Ro = 100 in (2.54 m), respectively.
Three loading conditions are considered to act simultaneously on the structure (further
details are available in ref. [13]), and Table 6 conveniently lists the adopted design pa-
rameters for the truss. A total of 168 non-linear design constraints are imposed on the
structure (120 tension/compression and 48 node displacements) for every independent
loading condition.

Table 6. Structural parameters for the 60-bar planar truss ring [13].

Property Value

Material Density 0.1 Ib/in3

Young’s Modulus 10,000 ksi
Number of Area Groups 25
Maximum Normal Stresses ±10 ksi
Maximum Nodal Displacements (x, y) ±1.75 in. (Node 4), ±2.75 in. (Node 19), ±2.25 in. (Node 13)
Range of Cross-sectional Areas 0.5 ~ 4 in2
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Table 7 lists and compares the results obtained by MPA with other methods quoted
from literature. A stopping criterion of 800 iterations (24,000 function evaluations) was
deemed suitable for the benchmark. Among feasible solutions, MPA achieves the lightest
structural design (309.00 Ib) with the least computational effort (23,970 function evalua-
tions). Other algorithms showcasing more lightweight designs, such as the Method of
Centers and Force Formulation (MC-FF) algorithm proposed by Farshi and Alinia-Ziazi [55],
were found to have constraint violations and are therefore infeasible. Moreover, the final
weight reported by MFUD [56], although lighter than MPA, lacked all important statis-
tical data to make a fair comparison. Figure 6 shows the comparison between existing
and allowable stresses estimated for the optimal 60-bar truss design produced by MPA.
All stress values are clearly shown to be within their predefined limits. Table 8 presents
the Friedman rank test results for the 60-bar planar truss structure. Results show that
MPA ranks first in the “average weight” and “convergence speed” categories. Overall, a
rank of 1.6667 was achieved by the proposed method for all three categories (therefore
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outperforming all the rest). MPA is thus the clear winner for this normal-sized benchmark.
Finally, it is worth noting that in all statistical aspects, MPA’s worst run outperformed
the best results achieved by both CPM-GA [57] and APM-GA [57]. Meanwhile, the best
combination of average exploration and exploitation for MPA’s best run was found to be
10.56% and 89.43%, respectively, as shown in Figure 7.

Table 7. Optimized result comparison for the 60-bar planar truss.

Design Variable (in2) (MFUD) [56] (SECr) [58] (CPM-GA) [57] (APM-GA) [57] (MC-FF) [55] (ACCS) [13]
This Study

(MPA)Best (MPA)Worst

A1 (M1, M13) N/A 2.027 1.1906 1.1202 2.0273 2.1405 2.02824 1.98861

A2 (M2, M14) N/A 0.5 2.2771 2.0219 0.5000 0.5068 1.77589 0.54147

A3 (M3, M15) N/A 1.907 0.6055 0.5088 1.7781 1.6508 1.77589 1.90366

A4 (M4, M16) N/A 1.826 1.5733 1.7273 1.7775 1.7615 1.66753 1.78047

A5 (M5, M17) 0.59 0.633 1.3753 1.5205 0.5793 0.5949 0.57721 0.52531

A6 (M6, M18) N/A 1.846 0.5087 0.5264 1.8305 1.8235 1.96150 2.09292

A7 (M7, M19) N/A 1.841 1.9340 1.9032 1.7947 1.7580 1.87626 2.18541

A8 (M8, M20) N/A 1.005 2.0528 2.1275 0.9830 0.9732 1.00689 1.07834

A9 (M9, M21) N/A 1.847 1.2390 0.9882 1.9031 2.0860 1.78673 1.56056

A10 (M10, M22) 1.84 1.885 1.8196 2.0528 1.9497 1.9542 1.85856 1.61833

A11 (M11, M23) N/A 0.5 1.6393 2.0528 0.5000 0.5154 0.50000 0.50001

A12 (M12, M24) N/A 2.025 0.5264 0.7243 2.0135 2.0438 2.02047 2.01238

A13 (M25, M37) N/A 1.25 2.1979 1.9604 1.2441 1.2434 1.24579 1.26097

A14 (M26, M38) N/A 1.022 1.2346 1.2302 1.0156 1.0397 1.01628 1.08643

A15 (M27, M39) 0.77 0.752 1.0498 0.9970 0.6896 0.7461 0.70831 0.59603

A16 (M28, M40) N/A 0.771 0.7595 0.6056 0.7233 0.6563 0.81626 0.82665

A17 (M29, M41) N/A 0.928 0.6143 0.7287 1.0578 0.9692 1.08483 1.15086

A18 (M30, M42) N/A 1.128 1.1202 1.0938 1.1226 1.1296 1.12470 1.14790

A19 (M31, M43) N/A 1.144 1.1158 1.1158 1.1512 1.1599 1.14808 1.13739

A20 (M32, M44) N/A 0.922 1.1554 1.1686 1.0664 0.9638 0.98191 1.03903

A21 (M33, M45) N/A 1.046 1.1862 1.0674 1.0467 1.0646 1.04983 1.06522

A22 (M34, M46) N/A 0.75 1.0718 1.0630 0.7039 0.7414 0.75463 0.62340

A23 (M35, M47) N/A 1.024 0.7903 0.5879 1.0280 1.0623 1.03862 1.00742

A24 (M36, M48) N/A 1.252 1.2654 1.0674 1.2588 1.2694 1.25500 1.23458

A25 (M49~M60) 1.16 1.151 1.2698 1.2698 1.1475 1.1673 1.14838 1.13372

Weight (Ib) 308.07 309.58 315.480 311.876 308.59 309.894 309.00 310.587

Avg. Weight (Ib) N/A N/A 337.339 333.0190 N/A 310.714 309.74 -

St. Deviation (Ib) N/A N/A N/A N/A N/A 0.772 0.411 -

Con. Violation Unknown 2.6 × 10−3 None None 0.10 × 10−3 None None None

No. of Evaluations N/A N/A 800,000 800,000 N/A 72,900 23,970 24,390

Avg. Exploration – – – – – – 10.56% –

Avg. Exploitation – – – – – – 89.43% –

Note: 1 in2 = 6.452 cm2; 1 lb. = 0.4536 kg.

Table 8. Friedman rank test results for the 60-bar planar truss.

Category (MFUD) [56] (SECr) [58] (CPM-GA) [57] (APM-GA) [57] (MC-FF) [55] (ACCS) [13]
This Study

(MPA)Best (MPA)Worst

Friedman Rank (Weight) 1 4 7 6 2 5 3 –

Friedman Rank (Avg.) 6 6 4 3 6 2 1 –

Friedman Rank (NFE) 6 6 3.5 3.5 6 2 1 –

Averaged Rank 4.333 5.333 4.8333 4.16667 4.6667 3 1.6667 –
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6.3. A 120-Bar Spatial Dome Structure

The third benchmark considered in this study is the 120-bar truss dome (shown
in Figure 8). A single loading scenario comprised of asymmetrical vertical forces is as-
sumed to act on the structure as follows: −13.49 kips for node 1, −6.744 kips for nodes 2
through 14, and −2.248 kips for the rest of the nodes. Table 9 conveniently summarizes
the structural parameters related to the truss, and the allowable stresses for every member
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(σ allow)i are estimated according to the provisions laid down by AISC-ASD [22], briefly
described below: {

(σ allow)
+
i = 0.6Fy, f or σi ≥ 0

(σ allow)
−
i , f or σi < 0

(17)

Here, (σ allow)
−
i is calculated according to the slenderness ratio λi and is estimated as

follows [22]:

(σ allow)
−
i =



(
1− λi

2

2Cc2

)
Fy(

5
3+

3λi
8Cc −

λi
3

8Cc3

) , f or λi < Cc

12π2E
23λi

2 , f or λi ≥ Cc

(18)

where E represents Young’s Modulus, Fy the material Yield Stress, Cc is the slenderness

ratio dividing the elastic and inelastic regions
(

Cc =
√

2π2E/Fy

)
, and λi is the truss

member slenderness ratio (λi = kLi/ri). The effective length factor (k) is assumed to
be 1.0 for the truss member pin-pin scenario, while ri denotes the radius of gyration.
The benchmark has 387 non-linear design constraints (240 tension/compression and
147 displacement constraints).

Table 9. Structural parameters for the 120-bar spatial truss [22,53].

Property Value

Material Density 0.288 Ib/in3

Young’s Modulus 30,450 ksi
Yield Stress 58.0 ksi
Number of Area Groups 7
Maximum Nodal Displacements (x, y, z) ±0.1969 in.
Range of Cross-sectional Areas 0.775~20.0 in2

The results obtained by MPA and several other optimization techniques are shown
in Table 10. A Maximum Iteration value of 425 (12,750 function evaluations) was used as
a stopping criterion. The proposed method obtained a final weight of 33,249.46 lbs. in
exactly 12,630 function evaluations. No constraint violations were reported, as depicted in
Figure 11. A look at the tabulated results shows MPA outperforming all ten algorithms used
to solve the benchmark. The only method yielding similar truss weight was the Hybrid
Imperialist-Competitive Harris Hawk Optimizer (ICHHO) developed by Kaveh et al. [21].
However, upon closer inspection, the algorithm proved insufficient in other essential
aspects such as computational effort and solution robustness. Quantitatively, MPA was
observed to require 2370 fewer function evaluations (15.80% reduction) over ICHHO.
Moreover, inspecting the weight yielded by MPA’s worst run, it was found to be lighter
than the best designs proposed by CBO [59], CSA [53], ICA [21], and HHO [21] with,
once again, fewer computational efforts. The convergence history for the 120-bar truss
benchmark is shown in Figure 9. The algorithm shows a sharp reduction in optimized
weight prior reaching the 100 iteration mark. Beyond that, refinements to optimized
solutions occur at a slower pace. No significant difference is apparent between MPA’s best
and worst runs. Overall, a nearly similar convergence profile is apparent for the two. This
indicates excellent solution robustness by MPA. The Friedman rank test results for the
120-bar truss structure are shown in Table 11. The results indicate that MPA achieved first
place in all important algorithmic metrics.



Computation 2023, 11, 91 21 of 39

The tradeoff convergence trend for the 120-bar truss dome shows no new aspects to
it. A symmetrical tradeoff between exploitation and exploration occurs throughout the
optimization process, with a sharp reduction in exploration ability after 100 iterations as
shown in Figure 10. Consequently, the average exploration drops from its usual value of
9% to 7.74%. This may be attributable to MPA concentrating on one region of the search
space after initial exploration. The rough trend, with occasional spikes in diversity, seems
to be a common feature innate to the proposed algorithm. It is clear that this can only be
found during the second and third divisions (Phase II and III) of MPA. The Lévy strategy,
in addition to the added explorative search achieved through FADs, is absolutely crucial to
MPA’s excellent performance as a structural optimizer.
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Figure 11. Comparison of permissible and existing restrictions for the 120-bar dome truss.
(a) Displacement in the X-direction. (b) Displacement in the Y-direction. (c) Displacement in the
Z-direction. (d) Element Stresses.
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Table 10. Optimized result comparison for the 120-bar spatial dome truss.

Design Variable (in2.4) (CBO) [59] (HPSSO) [51] (WEO) [12] (CPA) [52] (PGO) [49] (CSA) [53] (ECSA) [53] (ICA) [21] (HHO) [21] (ICHHO) [21]
This Study

(MPA)Best (MPA)Worst

A1 3.0273 3.024139 3.0243 3.0250 3.0245 3.0232 3.0241 3.0278 3.1121 3.0241 3.0242452 3.0252388

A2 15.1724 14.78086 14.7943 14.6168 14.8288 14.6467 14.7998 14.8336 12.9862 14.8763 14.789522 14.521904

A3 5.2342 5.052164 5.0618 5.0201 5.0714 4.9639 5.0779 5.3251 4.9064 5.0091 5.0775395 5.0819089

A4 3.119 3.136943 3.1358 3.1404 3.1351 3.1426 3.1358 3.1231 3.2861 3.1324 3.1364955 3.1411414

A5 8.1038 8.500353 8.4870 8.5653 8.4556 8.6401 8.4737 8.1941 9.0996 8.4874 8.4769851 8.5270232

A6 3.4166 3.288777 3.2886 3.3648 3.2959 3.3005 3.2819 3.4141 3.8406 3.2991 3.2836077 3.4203555

A7 2.4918 2.49688 2.4967 2.4975 2.4965 2.4991 2.4964 2.4914 2.7655 2.4972 2.4964922 2.4946859

Weight (Ib) 33,286.3 33,250.05 33,250.24 33,256.39 33,250.15 33,257.16 33,249.50 33,271.03 33,899.53 33,249.46 33,249.46 33,256.99

Avg. Weight (Ib) 33,398.5 33,260.700 33255.55 33,281.73 33,252.72 33,512.27 33,251.02 33,345.10 35,222.81 33,259.49 33,250.97 -

St. Deviation (Ib) 67.09 10.49 8.07 16.45 2.76 255.23 3.22 66.30 1039.02 8.29 1.62 -

Con. Violation None None None None None None None None None None None None

No. of Evaluations 14,960 13,422 19,510 22,980 17,790 25,019 13,582 15,000 15,000 15,000 12,630 12,630

Avg. Exploration – – – – – – – – – – 7.74% –

Avg. Exploitation – – – – – – – – – – 92.25% –

Note: 1 in2 = 6.452 cm2; 1 lb. = 0.4536 kg.

Table 11. Friedman rank test results for the 120-bar spatial dome truss.

Category (CBO) [59] (HPSSO) [51] (WEO) [12] (CPA) [52] (PGO) [49] (CSA) [53] (ECSA) [53] (ICA) [21] (HHO) [21] (ICHHO) [21]
This Study

(MPA)Best (MPA)Worst

Friedman Rank (Weight) 10 4 6 7 5 8 3 9 11 1.5 1.5 –

Friedman Rank (Avg.) 9 6 4 7 3 10 2 8 11 5 1 –

Friedman Rank (NFE) 4 2 9 10 8 11 3 6 6 6 1 –

Averaged Rank 7.6667 4 6.333 8 5.333 9.6667 2.6667 7.6667 9.333 4.16667 1.16667 –
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6.4. A 272-Bar Transmission Tower

The 272-bar electric transmission tower, schematically depicted in Figure 12, is pre-
sented as the fourth optimization benchmark and the first large-scale structure investi-
gated in this study. The truss was initially introduced by Kaveh and Massoudi [60] as a
multi-objective optimization benchmark, but was later adopted for single-objective truss
optimization problems by Kaveh and Zaerreza [61] and Sarjamei et al. [62] to minimize
structural volume. Twelve loading conditions are considered to act simultaneously on the
tower and are summarized in reference [49]. Moreover, the 272 bars comprising the struc-
ture were split into 28 distinct design variables by dint of structural symmetry (member
groupings can be found in ref. [49]). Finally, Table 12 conveniently lists the structural pa-
rameters related to the benchmark, and 559 non-linear design constraints (559 × 12 = 6708
design constraints for all 12 loading conditions) are considered.
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Table 12. Structural parameters for the 272-bar transmission tower [49].

Property Value

Material Density N/A (assumed as 7850 kg/m3)
Young’s Modulus 2 × 108 kPa
Number of Area Groups 28
Maximum Normal Stresses ±275,000 kPa
Maximum Nodal Displacements (x, y) ±100 mm in x and y; ±20 mm (Node 1, 2, 11, 20, and 29)
Range of Cross-sectional Areas 1000~16,000 mm2
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Table 13 compares the results obtained by MPA with those obtained by three other
metaheuristic optimizers (found after an extensive search through literature). A stopping
criterion of 1000 iterations (30,000 function evaluations) was found suitable as a com-
promise between solution quality and computational speed (i.e., anything greater than
1000 iterations yielded no improvement to the MPA solution and only unnecessarily added
further computational effort). Looking at the tabulated results, the proposed algorithm
achieves the lightest structure with a final volume of 1,168,039.233 cm3 with no stress or
displacement constraint violations. In terms of computational effort, MPA has fallen short
in comparison to other algorithms. However, upon closer examination, it is clear that the
lower computational effort reported by these algorithms is due to their premature conver-
gence. MPA’s excellent Lévy motion strategy prevented this outcome for itself. Figure 13a
shows the convergence trend for the MPA optimizer. It can be seen that the improvement of
solutions slows down in the second-third of iterations (i.e., Phase II). Possible explanations
include the redundancy of having an “exploration” activity after Phase I of the algorithm
(which is already entirely dedicated to exploring the search space). Table 14 provides the re-
sults of the Friedman rank test for the 272-bar truss, with values showing MPA ranking first
in all metrics except for the “number of function evaluations” category. Overall, however,
MPA ranked first on an average rank basis. This statistically showcases MPA’s superiority
over other algorithms that have attempted to solve the benchmark in the literature.

Finally, the exploration vs. exploitation values reported by MPA’s best run revealed
a drop in exploration activity from 7.74% for the 120-bar benchmark to just 5.68% for
the 272-bar truss. This shows that as the size and complexity of the structure increase,
MPA’s reliance on exploitation increases. Furthermore, the Lévy flight/walk motion model,
represented by the sharp spikes in the tradeoff curves shown in Figure 13b, served as an
added diversification measure later in the optimization run. In that regard, promising areas
of the search space were first identified through Brownian motion, and improved values
were yielded after that through intense exploitation.
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Table 13. Optimized result comparison for the 272-bar truss tower.

Design Variable (mm2) (SSOA) [61] (PGO) [49] (GRO) [62]
This Study

(MPA)Best (MPA)Worst

A1 1000.5510 1000.6591 1000.0002 1000.0188 1000.0517
A2 1240.0130 1216.9322 1239.9505 1207.5918 1165.5132
A3 2491.8710 2445.0689 2491.8674 2467.4672 2454.4865
A4 1017.8290 1000.0000 1017.6729 1004.5014 1014.3719
A5 9618.8090 9580.2369 9618.8241 9561.3973 9563.4297
A6 1000.0000 1000.0184 1000.0000 1000.0000 1000.0386
A7 12,063.8160 12,259.5226 12,063.8293 12,269.641 11,820.495
A8 1001.7770 1001.5883 1001.1048 1000.0097 1001.0916
A9 1000.1880 1000.2804 1000.0001 1000.5054 1002.8344
A10 1000.4570 1000.0297 1000.0007 1000.0401 1000.0000
A11 10,217.0220 10,615.8809 10,217.0688 10,272.846 10,634.671
A12 1000.0640 1000.1339 1000.0000 1000.0000 1000.0000
A13 1000.0150 1000.0249 1000.0001 1000.0000 1000.0223
A14 1000.0050 1000.1262 1000.0001 1001.0886 1000.0908
A15 9320.5490 9118.9367 9321.0719 9313.4094 9567.7133
A16 1000.0280 1000.0014 1000.0000 1000.0044 1000.0000
A17 1000.3070 1000.0000 1000.0042 1000.0006 1000.0630
A18 1002.5180 1000.0000 1000.0004 1000.0032 1000.0152
A19 8389.8090 8541.0887 8389.6996 8602.1100 8808.2140
A20 1000.8140 1000.1291 1000.0000 1000.0000 1000.0001
A21 1000.0040 1000.0000 1000.0000 1000.0023 1000.0626
A22 1003.2880 1000.0000 1000.0000 1000.0035 1000.0688
A23 7982.2590 7988.3355 7982.2199 8009.0987 7773.3430
A24 1000.4450 1000.0001 1000.0000 1000.0000 1000.0023
A25 1000.5910 1000.0000 1000.0000 1000.0308 1000.0000
A26 1000.0530 1000.0307 1000.0009 1000.0006 1000.0410
A27 7504.2980 7656.6655 7504.2977 7559.0113 7585.2953
A28 1000.0760 1000.0000 1000.0007 1000.0000 1000.0000

Volume (cm3) 1,168,200.62 1,168,113.56 1,168,069.326 1,168,039.233 1,168,459.394
Avg. Volume (cm3) 1,168,668.720 1,168,793.420 1,168,701.004 1,168,209.147 -
St. Deviation (cm3) 310.76 771.54 339.2781 117.1291 -

Con. Violation None None None None None
No. of Evaluations 14,020 23,920 23,000 29,670 29,670
Avg. Exploration – – – 5.68% –
Avg. Exploitation – – – 93.15% –

SSOA = Shuffled Shepherd Optimization Algorithm, PGO = Plasma Generation Optimizer, GRO = Gold
Rush Optimizer.

Table 14. Friedman rank test results for the 272-bar truss tower.

Category (SSOA) [61] (PGO) [49] (GRO) [62]
This Study

(MPA)Best (MPA)Worst

Friedman Rank (Volume) 4 3 2 1 –
Friedman Rank (Avg.) 2 4 3 1 –
Friedman Rank (NFE) 1 3 2 4 –

Averaged Rank 2.333 3.333 2.333 2 –
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6.5. A 26-Story, 942-Bar Truss Tower

The 942-bar spatial truss tower is schematically shown in Figure 14. This benchmark is
widely regarded as a challenging high-dimensional optimization problem commonly used
in studies investigating metaheuristic robustness. Table 15 conveniently summarizes the
structural design parameters used for the truss, and references [17,63] detail the member
groupings, loading conditions, and design constraints inherent to the structure. Finally,
the benchmark has 1896 non-linear design constraints (1884 tension/compression and
12 displacement).

Table 15. Structural parameters for the 942-bar spatial truss tower [17,63].

Property Value

Material Density 0.1 Ib/in3

Young’s Modulus 10,000 ksi
Number of Area Groups 59
Maximum Normal Stresses ±25 ksi
Maximum Nodal Displacements (x, y, z) ±15.0 in. (4 top nodes)
Range of Cross-sectional Areas 0.1~200 in2
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Table 16 lists the results obtained by MPA along with the results of a sample of other
previously published studies. For optimal MPA performance, 1600 iterations (48,000 FEs)
were deemed suitable. Among the displayed weights, MPA yielded the lightest structural
design (135,364.167 Ib) with the least computational effort (38,880 function evaluations).
Figure 15a shows the convergence history of the 942-bar truss. Numerically, MPA demon-
strated a 30.2% reduction in computational effort over the Jaya Algorithm (JA) [64], a 27.21%
reduction over IS-JA [64], a 22.24% reduction over FA [65], and a 74.08% decrease over
ES [66]. A closer inspection of tabulated results, however, shows that the Improved Grey
Wolf Optimizer (IGWO) proposed by Kaveh and Zakian [63] required only 28,000 function
evaluations to converge (much less than the 38,880 required by MPA). Nonetheless, the
final weight yielded by IGWO is heavier in comparison and therefore does not represent
optimality. The Freidman rank test results statistically confirm the observations made ear-
lier, where MPA ranks first in the “best weight” and “average weight” categories (Table 17).
IGWO, however, ranks first in the “number of evaluations” category, and MPA obtains
third place. Averaging the obtained ranks over all three categories, it becomes clear that
MPA is the winner for this large-scale truss benchmark.

Studying the intensification vs. diversification tradeoff trend for this large-scale
benchmark in Figure 15b clearly shows a metaheuristic that is exploitation-dominated. A
decrease in exploration activity by 1% was noted over the previous 120-bar benchmark. It
appears that as the size and complexity of the optimized structure increase, MPA’s reliance
on Lévy operators (instead of pure exploration) to escape local optima increases.
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Table 16. Optimized result comparison for the 26-story, 942-bar truss tower.

Design
Variable (in2)

(SA)
[67]

(ES)
[66]

(GNMS)
[68] (FA) [65] (GWO) [63] (IGWO) [63] (JA) [64] (IS-JA) [64]

This Study

(MPA)Best (MPA)Worst

A1 1 1.02 2.786 N/A 1.4245 4.2489 1 1 1.57037 2.1571
A2 1 1.037 1.357 N/A 2.1232 1.7702 1 1 1.12206 1.78726
A3 3 2.943 5.036 N/A 2.1749 1.5892 3 4 3.54765 1.61278
A4 1 1.92 2.24 N/A 2.3746 1.5235 2 2 2.60205 2.11236
A5 1 1.025 1.223 N/A 1.0000 1.0265 1 1 1.21885 1.43314
A6 17 14.961 14.958 N/A 17.5705 15.3979 16 15 13.6201 14.6095
A7 3 3.074 2.957 N/A 3.3655 2.8825 3 3 4.02917 2.75545
A8 7 6.78 10.904 N/A 19.1722 6.9912 8 6 1.21197 3.16720
A9 20 18.58 14.418 N/A 12.8837 11.2039 7 6 4.05446 8.59093
A10 1 2.415 3.709 N/A 2.6161 2.7262 17 28 10.5447 10.5975
A11 8 6.584 5.708 N/A 3.9268 8.1921 1 5 1.20188 1.44824
A12 7 6.291 4.926 N/A 4.7984 6.2178 6 7 5.56403 5.87840
A13 19 15.383 14.175 N/A 12.4939 16.5585 16 16 12.8569 13.1467
A14 2 2.1 1.904 N/A 1.0000 2.3668 2 2 2.68949 2.96611
A15 5 6.021 2.81 N/A 1.6022 4.1519 5 5 4.30342 4.43618
A16 1 1.022 1 N/A 1.0000 1.2370 1 1 2.60398 1.99889
A17 22 23.099 18.807 N/A 16.8974 22.3006 22 22 22.0078 20.4121
A18 3 2.889 2.615 N/A 2.5670 2.9996 3 3 3.03439 3.11877
A19 9 7.96 12.533 N/A 6.3981 7.7559 9 9 6.91035 11.5399
A20 1 1.008 1.131 N/A 1.1522 1.1283 1 1 1.01338 1.82290
A21 34 28.548 30.512 N/A 29.0131 28.2646 28 29 28.9839 28.5157
A22 3 3.349 3.346 N/A 3.5656 3.1924 4 5 3.22886 3.11393
A23 19 16.144 17.045 N/A 17.4563 16.3965 15 18 15.3133 17.4940
A24 27 24.822 18.079 N/A 21.3364 22.6095 29 26 21.6239 20.8702
A25 42 38.401 39.272 N/A 19.0983 40.0759 40 40 32.6892 27.2972
A26 1 3.787 2.606 N/A 11.6687 5.3549 3 3 8.29315 8.81768
A27 12 12.32 9.83 N/A 7.2854 9.2695 11 13 8.17984 8.60813
A28 16 17.036 13.113 N/A 13.2728 15.0911 16 15 13.0383 11.4355
A29 19 14.733 13.69 N/A 10.9616 14.0704 15 16 14.1649 16.3599
A30 14 15.031 16.978 N/A 16.9994 15.1962 18 17 16.6373 17.8619
A31 42 38.597 37.601 N/A 51.2551 37.1490 36 38 35.1591 33.5007
A32 4 3.511 3.06 N/A 3.5553 3.1643 4 3 3.68495 3.28520
A33 4 2.997 5.511 N/A 10.7749 3.4414 2 4 4.13725 2.32115
A34 4 3.06 1.801 N/A 2.2552 2.2813 3 3 3.37235 2.83088
A35 1 1.086 1.157 N/A 2.8847 1.0166 1 1 1.11879 1.67923
A36 1 1.462 1.242 N/A 1.4999 1.4089 1 1 1.00314 1.06030
A37 62 59.433 62.774 N/A 74.8387 59.6649 55 62 55.7636 52.5650
A38 3 3.632 3.328 N/A 4.4502 3.3173 3 3 3.29766 3.28016
A39 2 1.887 4.237 N/A 4.5565 2.0249 2 2 1.97339 1.74477
A40 4 4.072 1.72 N/A 1.6472 2.3953 3 3 3.15345 3.35289
A41 1 1.595 1.015 N/A 1.6962 1.0554 1 1 1.29984 2.45128
A42 2 3.671 5.643 N/A 1.0000 1.2294 3 8 1.15024 1.86427
A43 77 79.511 78.009 N/A 72.9916 79.5798 79 69 74.6142 72.6401
A44 3 3.394 3.221 N/A 3.3433 3.2875 3 5 3.12527 3.36496
A45 2 1.581 3.593 N/A 1.9913 1.9028 2 1 1.84162 1.52823
A46 3 4.204 4.767 N/A 2.3226 3.2460 3 5 3.51918 3.20781
A47 2 1.329 1.153 N/A 1.1452 1.0277 1 1 1.85418 2.33929
A48 3 2.242 2.17 N/A 1.0000 1.0898 1 1 2.84824 2.36750
A49 100 96.886 99.641 N/A 96.6037 93.8836 100 76 85.7870 85.9449
A50 4 3.71 4.147 N/A 4.0309 3.0634 3 3 3.27166 3.85777
A51 1 1.055 2.16 N/A 1.8735 1.7246 1 7 1.37781 3.54393
A52 4 4.566 4.15 N/A 4.7339 3.9313 4 5 3.94006 3.99825
A53 6 9.606 11.207 N/A 10.6370 8.1063 11 18 8.68285 14.3438
A54 3 2.984 11.09 N/A 3.4612 9.8391 3 16 9.78548 5.11418
A55 49 45.917 35.95 N/A 44.5447 42.7529 42 57 43.2339 44.0755
A56 1 1 2.194 N/A 1.2428 1.1219 1 1 1.34639 1.03085
A57 62 62.426 66.171 N/A 76.1124 63.0179 68 51 57.5432 53.3872
A58 1 2.977 3.34 N/A 11.4119 2.6542 5 7 5.47976 1.36417
A59 3 1 4.053 N/A 4.7082 1.6685 1 4 1.75849 9.18944

Weight (Ib) 143,436 141,241 142,296 138,878 147,841.7416 136,311.1322 139,028.798 138,688.913 135,364.167 137,370.837
Avg. Weight (Ib) N/A N/A N/A 139,682 165,168.9424 137,453.6697 182,562.693 142,903.207 136,198.032 -
St. Deviation (Ib) N/A N/A N/A 1098 5392.7272 673.8566 42,037.068 3171.403 538.65 -

Con. Violation None None None N/A None None None None None None
No. of Evaluations 39,834 150,000 N/A 50,000 28,000 28,000 55,700 53,420 38,880 38,880
Avg. Exploration – – – – – – – – 6.808% –
Avg. Exploitation – – – – – – – – 93.19% –

Note: 1 in2 = 6.452 cm2; 1 lb. = 0.4536 kg.
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Table 17. Friedman rank test results for the 26-story, 942-bar truss tower.

Category (SA) [67] (ES) [66] (GNMS) [68] (FA) [65] (GWO) [63] (IGWO) [63] (JA) [64] (IS-JA) [64]
This Study

(MPA)Best (MPA)Worst

Friedman Rank
(Volume) 8 6 7 4 9 2 5 3 1 –

Friedman Rank
(Avg.) 8 8 8 3 5 2 6 4 1 –

Friedman Rank
(NFE) 4 8 9 5 1.5 1.5 7 6 3 –

Averaged Rank 6.6667 7.333 8 4 5.16667 1.8333 6 4.333 1.6667 –

6.6. A 62-Story, 4666-Bar Spatial Truss Tower

The final benchmark considered in this study is the 4666-bar truss tower (shown in
Figure 17). 238 design variables represent the 4666 members that makeup the structure
(details available in ref. [69]). The lower and upper limits of sizing variables are set at
1 in2 and 300 in2, respectively. Allowable member stresses are limited to ±25,000 psi.
Moreover, nodal displacement values are limited to ±37.5 in (±92.25 cm) for the top four
nodes of the structure, and the elastic modulus of steel (E = 10,000 ksi) was used. Therefore,
9344 non-linear design constraints are imposed on the structure (9332 tension/compression
and 12 displacement constraints). Three loading categories are considered for this structure:

• Load_1: A vertical load of 6 kips (26.69 kN) acting on all free nodes
• Load_2: Both left and right side nodes of the tower have a 1-kip (44.48 kN) load acting

in the X-direction
• Load_3: Both front and back side nodes of the tower have a 1-kip (44.48 kN) load

acting in the Y-direction

Using Load_1, Load_2, and Load_3 described earlier, three independent loading
conditions are furthermore considered to act in the following manner:

• Load_1 acting alone
• Load_1 and Load_2 acting together
• Load_1, Load_2, and Load_3 all considered simultaneously

Table 18 compares the results provided by MPA against the few algorithms in the
literature that attempted to solve the benchmark. After a careful investigation, an upper
iteration limit of 1500 (45,000 function evaluations) was found suitable for yielding the
best MPA optimization results with the least amount of computational effort. In full
adherence to literary practice, the final volume of the optimized structure (in cubic inches)
will be reported rather than structural weight. A look at tabulated results shows MPA
yielding the best-optimized design with a total volume of 15,544,283 in3 (254.72 m3) in
exactly 42,290 function evaluations. Figure 16a shows the MPA convergence history for
the current benchmark. Although MPA required greater computational effort to arrive
at its final solution (relative to the presented algorithms), the dramatic reduction in total
truss volume more than justifies the algorithm’s lack of computational speed. Simply put,
previous algorithms that attempted to tackle the benchmark, although quicker than MPA,
all prematurely converged to a local optimum. It is also worth pointing out that the worst
run produced by MPA considerably outperformed the best runs of SAND [69], TLBO [70],
iPSO [70], ISA [70], and IFSA [70]. The Friedman rank test results for the 4666-bar truss are
shown in Table 19. Tabulated values confirm MPA’s strength in finding the minimum truss
volume with excellent solution robustness. MPA ranked first in the “optimized volume”
and “average volume” categories, while 5th place was achieved for the function evaluation
category. Overall, MPA obtained an average rank of 2.333 (second place) among all relevant
statistical metrics, while IFSA obtained the first position. Table 20 reports the optimized
238 design variables produced by MPA.
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A look at the exploration vs. exploitation tradeoff balance in Figure 16b shows a
diversity trend similar to that depicted by the previous benchmark (942-bar truss). Average
exploration and exploitation quantities are also similar, hovering around 7% for exploration
and 93% for exploitation. It seems that robust exploitation capabilities ensure excellent
results for large-scale truss structures.

Table 18. Optimized result comparison for the 4666-bar large-scale truss structure.

Result (SAND) [69] (TLBO) [70] (iPSO) [70] (ISA) [70] (IFSA) [70]
This Study

(MPA)Best (MPA)Worst

Volume (in3) 21,387,963 26,008,542 25,917,009 25,310,333 21,378,918 15,544,283 19,874,604
Avg. Volume (in3) N/A 26,113,952 26,439,196 25,922,724 21,496,622 17,285,800 –
St. Deviation (in3) N/A 38,279 536,852 112,587 37,001 1,128,612 –

Con. Violation None None None None None None None
No. of Evaluations N/A 26,290 24,185 20,585 16,230 43,290 43,830

Avg. Exploration – – – – – 6.73% –
Avg. Exploitation – – – – – 93.26% –

Note: 1 in3 = 16.387 cm3.

Table 19. Friedman rank test results for the 4666-bar large-scale truss structure.

Category (SAND) [69] (TLBO) [70] (iPSO) [70] (ISA) [70] (IFSA) [70]
This Study

(MPA)Best (MPA)Worst

Friedman Rank (Volume) 3 6 5 4 2 1 –

Friedman Rank (Avg.) 6 4 5 3 2 1 –

Friedman Rank (NFE) 6 4 3 2 1 5 –

Averaged Rank 5 4.6667 4.333 3 1.6667 2.333 –

Table 20. Optimal member area values for the 62-story, 4666-bar truss tower (in2).

No. Area No. Area No. Area No. Area No. Area No. Area No. Area

1 20.116 35 4.0431 69 4.6718 103 31.611 137 69.883 171 6.3133 205 10.028
2 1.1044 36 2.5941 70 37.776 104 92.135 138 3.5365 172 16.933 206 1.4531
3 38.866 37 45.979 71 164.90 105 3.5218 139 3.3469 173 4.6768 207 23.367
4 140.56 38 187.59 72 13.761 106 9.1029 140 1.9430 174 21.105 208 1.3975
5 3.9739 39 14.837 73 4.1036 107 2.5971 141 24.326 175 1.8693 209 2.9333
6 150.30 40 17.633 74 1.1231 108 37.163 142 2.2586 176 3.2983 210 7.4084
7 3.8956 41 4.3084 75 58.021 109 11.487 143 3.0357 177 4.2365 211 1.0309
8 30.660 42 53.899 76 4.9744 110 13.662 144 5.1336 178 5.8717 212 14.039
9 23.570 43 2.4716 77 7.6378 111 17.818 145 1.2681 179 7.2094 213 8.6079
10 77.925 44 4.2946 78 2.2080 112 1.3829 146 1.8152 180 12.048 214 3.9626
11 20.792 45 1.1999 79 38.300 113 2.7507 147 4.4062 181 22.809 215 9.5471
12 106.82 46 17.418 80 2.9000 114 14.723 148 48.337 182 1.5512 216 1.1346
13 16.210 47 20.569 81 52.340 115 82.270 149 3.5121 183 16.340 217 1.0745
14 1.7330 48 33.796 82 130.54 116 12.746 150 8.4996 184 5.1433 218 1.8914
15 177.18 49 194.11 83 16.638 117 1.9196 151 11.821 185 38.897 219 8.5074
16 166.84 50 4.3325 84 27.689 118 1.1833 152 7.6146 186 1.0967 220 4.7592
17 20.859 51 8.5119 85 1.3209 119 27.909 153 3.8642 187 11.433 221 1.0713
18 1.5684 52 1.0001 86 7.6958 120 1.0118 154 2.3644 188 1.1006 222 6.2481
19 14.149 53 25.585 87 10.040 121 1.1175 155 1.3693 189 2.9465 223 16.682
20 28.801 54 1.0897 88 10.579 122 3.0358 156 3.4809 190 1.0002 224 25.669
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Table 20. Cont.

No. Area No. Area No. Area No. Area No. Area No. Area No. Area

21 1.5801 55 11.126 89 34.231 123 3.3329 157 4.9570 191 11.338 225 16.837
22 42.627 56 29.010 90 3.4340 124 14.835 158 8.8991 192 23.480 226 2.9196
23 1.9921 57 7.9625 91 20.351 125 25.896 159 72.112 193 13.680 227 5.4858
24 1.0028 58 11.438 92 71.286 126 90.783 160 13.667 194 2.7432 228 1.7650
25 3.1229 59 5.7067 93 102.65 127 2.1534 161 6.6525 195 30.816 229 7.9808
26 134.74 60 178.61 94 2.6283 128 7.2467 162 1.0295 196 15.207 230 6.1468
27 183.90 61 13.874 95 18.130 129 11.357 163 16.426 197 17.854 231 3.4042
28 5.1044 62 3.0329 96 1.3578 130 65.825 164 3.4988 198 22.070 232 2.7263
29 11.801 63 19.366 97 9.9382 131 3.6184 165 25.416 199 3.0214 233 1.2352
30 4.5574 64 20.707 98 1.1636 132 6.8587 166 1.1646 200 1.1445 234 7.9640
31 44.651 65 8.8305 99 5.2479 133 2.9426 167 6.5469 201 19.085 235 7.0577
32 1.5231 66 16.572 100 1.7846 134 2.8983 168 15.840 202 37.360 236 2.5718
33 10.636 67 3.8128 101 5.0023 135 3.6839 169 4.1320 203 27.566 237 6.0137
34 1.2642 68 2.8722 102 7.6903 136 15.625 170 68.855 204 1.1956 238 34.052
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7. Overview of MPA Structural Optimization Performance

This section summarizes MPA performance in relation to the diversity analysis and
truss optimization results presented earlier. Overall, MPA showed excellent optimiza-
tion capabilities when applied to structural optimization. However, some shortcomings
were manifest, especially regarding large-scale truss optimization. The following points
summarize the core findings of this study:
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1. For normal-sized truss structures (10-bar, 60-bar, and 120-bar trusses), MPA yielded
the lightest truss designs with the least amount of computational effort. Excellent
solution robustness was also observed by dint of the lower average and standard
deviation values for the 20 independent runs conducted. The Friedman ranking results
numerically showcased this observation with the proposed algorithm achieving first
place in all categories. Furthermore, in some instances, MPA’s worst run outperformed
the best runs reported by other recently proposed algorithms.

2. For the large-scale truss structures (272-bar, 942-bar, and 4666-bar structures), MPA
still displayed excellent results. However, it was observed that more objective function
evaluations were required for convergence. Nevertheless, the dramatically reduced
weights produced by the algorithm fully compensates for it. Again, the Friedman
rank results quantify this observation. In terms of algorithmic robustness, MPA
showed either as-good-as or better performance than the other algorithms used to
solve the benchmarks.

3. The proper combination of exploration and exploitation required to achieve MPA
results varied by a number of degrees from one benchmark to another. However,
the variation was mostly confined to a range of 6~9% for exploration and 90~93%
for exploitation. Ignoring these slight discrepancies nonetheless, it can be concluded that
the correct amount of exploration and exploitation that any algorithm should possess to
produce good results is around 10% exploration and 90 % exploitation. Therefore, an
exploitation-dominated metaheuristic is expected to perform better than those that are
more exploration-oriented.

4. The incorporation of both Brownian and Lévy motion models as random number
generators allowed MPA to both explore and exploit various areas of the design space
thoroughly. The diversity spikes in the exploration vs. exploitation tradeoff figures
visually show this. The incorporation of the Lévy flight/walk model in existing or new
metaheuristic algorithms as an added exploitation tactic is, therefore, recommended.

Limitations of MPA Truss Optimization Performance

Any discussion concerning MPA performance would be lacking if the limitations
experienced during its operation were not highlighted. For the most part (and based
off the truss optimization results presented earlier), MPA was shown to experience slow
convergence for large-scale truss benchmarks (high-dimensional problems). The author
possibly attributes this to MPA’s basic partitioning of its optimization sequence into three
equal phases. The algorithm was seen to stagnate during the final iterations of Phase I.
More specifically, little improvement in results was reported in the second half of Phase I.
This can be clearly seen with the 942-bar and 4666-bar truss problems. Convergence curves
show a pronounced stagnation period during the last portions of Phase I and the beginning
of Phase II (see Figures 15a and 16a). Based on this observation, it can be surmised that
a prolonged exploration activity for Phase I unnecessarily adds to the computational
complexity experienced by the algorithm. This is in full conformity with the findings of
the study showing the greater importance of “exploitation” rather than “exploration” for
truss optimization problems. An alteration of the time-control mechanism inherent to MPA
is subsequently recommended for greater convergence speeds. Dividing the three phases
equally does not represent MPA optimality.

Furthermore, in some runs, the mathematical formulation for Phase III of MPA (pure
exploitation) proved to be insufficient at improving final results (see Equation (11)). This
was especially the case for the large-scale benchmark category. The exploitation formulation
for Phase II of the algorithm can either be altered or incorporated into Phase III.

Finally, from the structural optimization experiments conducted in this study, it was
found that MPA’s weakness lies in its convergence speeds. Future studies are recom-
mended to focus on rectifying the time-control mechanism and to try newer mathematical
formulations for the “exploitation” phase of MPA.
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8. Conclusions

In this study, the optimal design of truss structures is considered (for the first time)
using the newly developed Marine Predators Algorithm (MPA). Six challenging structural
benchmarks were selected from literature to investigate MPA performance.

Results show MPA is particularly suited for the medium-sized truss structure category,
where optimal results were achieved with the least amount of computational effort. In
contrast, for the large-scale benchmarks, MPA was shown to require a greater number
of function evaluations to converge (relative to other methods). Nevertheless, the much
lighter truss designs produced by the algorithm completely justified the slower perfor-
mance. The experimental sections repeatedly emphasized this for the 272-bar, 942-bar,
and 4666-bar truss towers. In addition, studying the diversity of MPA candidate solutions
across the search space indicated the dominance of the Lévy motion strategy. This scheme
allowed MPA to avoid being snarled into local optima. This was especially useful given
the challenging multi-modal nature of the design search space associated with structural
optimization problems. Therefore, the notion that Lévy-based MH algorithms are well
suited for truss optimization problems was verified in this study. Similarly, owing to its
robust Brownian-motion exploration mechanisms, the proposed algorithm successfully
located promising regions of the search space, which only enhanced solution quality and
stability. This observation was found to hold true for all the benchmarks considered.

Moreover, for the first time in the field, a numerical assessment of MPA’s exploration
to exploitation balance (in the context of truss optimization) was conducted. Results
show that a combination of 10% exploration and 90% exploitation is favored for truss
optimization problems. Therefore, exploitation is more important than exploration for
structural optimization tasks.

In conclusion, the excellent performance of MPA along with its relatively few perfor-
mance parameters make it a robust optimization metaheuristic when applied to truss sizing
problems. Readers are encouraged to extend the application of MPA to other structural
optimization tasks, such as frames, plates, shells, etc.
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