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Abstract: In the field of cryptography, many algorithms rely on the computation of modular multi-
plicative inverses to ensure the security of their systems. In this study, we build upon our previous
research by introducing a novel sequence, (zj)j≥0, that can calculate the modular inverse of a given
pair of integers (a, n), i.e., a−1; mod, n. The computational complexity of this approach is O(a), which
is more efficient than the traditional Euler’s phi function method, O(n, ln, n). Furthermore, we inves-
tigate the properties of the sequence (zj)j≥0 and demonstrate that all solutions of the problem belong
to a specific set, I , that only contains the minimum values of (zj)j≥0. This results in a reduction of the
computational complexity of our method, especially when a ∼ n and it also opens new opportunities
for discovering closed-form solutions for the modular inverse.

Keywords: extended-Euclid algorithm; RSA algorithm; modular multiplicative inverse; public-key
cryptography

MSC: 11T71; 11Y16; 11Y05

1. Introduction

The modulo operation is a mathematical function that calculates the remainder of
the division between two numbers, the dividend and the modulus. It is expressed as a
mod n, where a and n are two positive numbers. This operation uses the Euclidean division
method to find the remainder of dividing the dividend a by the divisor n.

The modular multiplicative inverse of an integer a is a number x such that ax is
congruent to 1 modulo n, or in mathematical terms, ax ≡ 1 (mod n). This means that the
product of a and x gives a result that is equivalent to 1 when taken modulo n.

Modulo n forms an equivalence relation. The set of all integers equivalent to a modulo
n, denoted by an, is the set {. . . , a− 2n, a− n, a, a + n, a + 2n, . . .}. This set is known as the
congruence class or residue class of the integer a modulo n.

If an integer a has a modular multiplicative inverse modulo n, there are an infinite
number of solutions that are equivalent to a with respect to the modulus n. Additionally, for
any integer that is congruent to a modulo n, any element from the congruence class of x can
serve as a modular multiplicative inverse. This can be represented as the multiplication of
congruence classes modulo n, denoted by the symbol ·n, where the modular multiplicative
inverse of the congruence class a is the congruence class x such that a ·n x = 1.

The multiplication of congruence classes modulo n, represented by the symbol ·n, is
analogous to the concept of a multiplicative inverse in the set of real numbers. However,
in this case, the numbers are replaced by congruence classes. This operation is used to
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solve linear congruences, such as Equation (1), where the goal is to find a solution for x
that satisfies the equation and is equivalent to b modulo n:

ax ≡ b (mod n), . (1)

In the field of public-key cryptography, solving Equation (1) is crucial in the RSA algo-
rithm [1], which employs two large prime numbers that are modular multiplicative inverses
with respect to a specific modulus to perform secure encryption and decryption operations.
Many cryptographic algorithms, such as RSA, ElGamal, and NTRU, heavily rely on the use
of modular multiplicative inverses in their calculations. Examples of this can be found in
references such as Crandall [2], Rivest [3], Verkhovsky [4,5], ElGamal [6], Rabin [7], and
Hoffstein [8]. Additionally, in recent times, Boolean functions have gained attention due to
their useful properties in cryptography, specifically regarding “nonlinearity, propagation
criterion, resiliency, and balance” [9].

In our previous study [10,11], we examined a particular sequence (zj)j≥0 and its ability
to determine the modular inverse for a given pair of integers (a, n), or a−1; mod, n. We
found that the complexity of this search was O(a), which is less than the classic Euler’s phi
function method at O(n, ln, n). Additionally, we delved deeper into the properties of this
sequence and discovered that all possible solutions of the problem belong to a set called I ,
which only contains the minima of (zj)j≥0. This realization reduces the complexity of the
algorithm, particularly when a ∼ n, and opens the possibility of finding a closed formula
for the modular inverse.

In this paper, we present a particular sequence (zj)j≥0 able to determine the modular
inverse for a given pair of integers (a, n), i.e., a−1 mod n. The complexity required for this
search is O(a), which is less than O(n ln n) of the classic Euler’s phi function method.
Moreover, we investigate more properties of such a sequence (zj)j≥0, concluding that all
the possible solutions of the problem belong to a proper set, named I , which contains only
the minima of (zj)j≥0. This result reduces the complexity of our algorithm, especially when
a ∼ n, and opens the way to the calculation of a possible closed formula for the modular
inverse. Last but not least, we compare the complexity of our method with that of the
post-quantum encryption (PQC) algorithm.

This research is structured as follows. Section 2 briefly reports the literature with a
particular mention of post-quantum cryptography. In Section 3, the different methods for
computing the modulus are discussed. Section 4 explores different expressions of β j that
can help in comprehending the behavior of the sequence (zj)j≥0 and in identifying the
optimal approach for determining the critical index i. Section 5 discusses the results with
particular attention to the sequence (zj)j≥0 and its properties. It then provides a comparison
between the complexity of our algorithm and that of the PQC method. Finally, Section 6
summarizes the research and hints at future developments.

2. Literature

When it was first introduced, RSA was considered to be a highly effective algorithm
due to the lack of key exchange in the encryption and decryption process. However, the
security of RSA relies heavily on the difficulty of factoring large numbers, a problem that is
known to be NP-complete [12]. As technology progressed and computer speed increased,
RSA keys began to be broken more frequently. To counteract this, developers have increased
the length of the encryption key to ensure the continued security and privacy of systems
protected by RSA. There have been other alternative solutions suggested to improve secu-
rity in RSA cryptography. Some of these include the use of multiple public and private keys
(Mezher et al. [13]), an enhanced version of RSA (ESRPKC) that incorporates the Chinese
remainder theorem (Kumar et al. [14]), the use of random numbers and their modular
multiplicative inverse (Islam et al. [15]), and an optimization algorithm (Cuckoo Search
Optimization or CSA) to maintain data integrity in the cloud (Raja et al. [16]). A compre-
hensive overview of these methods can be found in the study by Mumtaz et al. [17]. In
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addition, the literature has proposed many solutions for specific needs such as lightweight
algorithms suitable for use on resource-constrained nodes in sensitive applications (Bayat-
Sarmadi et al. [18]).

Fault attacks are a type of attack on cryptographic algorithms that take advantage of
malicious or unintentional errors introduced during their computation. The concept of
Differential Cryptanalysis [19], combined with the pioneering work of Boneh, DeMillo,
and Lipton [20,21], has given rise to the field of Differential Fault Attacks (DFA). DFA
has revealed that many ciphers can be compromised if the errors can be manipulated in a
specific manner. The DFA attack has shown that several ciphers can be compromised if the
faults can be suitably controlled, and it is not limited to old ciphers but can be a powerful
attack vector even for modern ciphers such as the Advanced Encryption Standard (AES).
For a review, see Ali et al. [22]. Finally, on fault-detection methods capable of detecting
random faults in the cipher implementation and, at the same time, against intelligent fault
attacks, see Dofe et al. [23].

With the advent of post-quantum cryptography, post-quantum cryptography (PQC)
will replace ECC/RSA so that every security application from smartphones to blockchains
will be affected. However, there are still some issues to solve. For example, the SIKE
protocol is a post-quantum candidate for cryptography that is considered to be the best
alternative to curve-based cryptography. Nevertheless, its long latency is a drawback, since
the serial large-degree isogeny computation, which is dominated by modular multiplica-
tions, can make it less competitive compared to other popular post-quantum candidates.
A possible solution has been recently suggested by Tian et al. [24] who described an opti-
mized SIKE algorithm, with a focus on achieving high speed and low latency. Furthermore,
the rise of quantum computing has driven researchers to develop new security systems
that can withstand future attacks. These post-quantum cryptographic approaches include
hash-based, code-based, lattice-based, multivariate-quadratic-equations, and secret-key
cryptography. They are all potential candidates because they are thought to be resistant to
both classical and quantum computers, and applying Shor’s algorithm [25], the quantum-
computer discrete-logarithm algorithm that can break classical schemes, is believed to be
infeasible. Mozaffari-Kermani [26] proposed a method for constructing reliable and error-
detection hash trees for stateless hash-based signatures. Such signatures are considered
one of the leading post-quantum cryptographic schemes, as they offer security proofs that
are based on plausible properties of the underlying hash function.

CRYSTALS-Kyber is a significant public-key encryption and key encapsulation mecha-
nism, as it has been chosen by NIST for standardization and recommended for national
security systems by the NSA. Therefore its implementations need to be evaluated for their
resistance to side-channel attacks. Dubrova et al. [27] introduced a neural network recursive
learning for training to attack ω-order masked implementations of CRYSTALS-Kyber in
ARM Cortex-M4 CPU for message recovery. Last but not least, CRYSTALS-Dilithium has
been selected by NIST as the new primary standard for quantum-safe digital signatures,
and it has a constant-time implementation with consideration for side-channel resilience.
For a profiling side-channel attack on the signature scheme CRYSTALS-Dilithium see
Berzati et al. [28].

3. Preliminary Results

As is well known, there exists a unique (closed) formula in the literature for the
computation of the modular inverse, which is related to Euler’s phi function

Φ(n) = n ∏
pj

∣∣n
(

1− 1
pj

)
,

i.e.,
a−1 = aΦ(n)−1. (2)
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Equation (2) derives directly from Fermat’s little theorem, and its computation has com-
plexity O(n ln n). This is because Euler’s phi function is related to the prime factorization
with complexity O(n ln n). For a further comparison with other classic methods (and their
complexities) about the modular inverse see ([10], Section 2) and Table 1.

Table 1. Complexity comparison between the naive method (i.e., recursive multiplications), Euler’s
phi function, extended Euclidean algorithm, and the suggested approach described by the pseudocode
Algorithm 1.

Method Naive Euler’s phi Func. Ext. Euclidean Algo. Sugg. Algo.

Complexity O(n) O(n ln n) O(ln n) O(a)

Algorithm 1 Pseudocode of the algorithm for solving (10).
1. Initialize j = 0, z0 = 0;
2. while zj 6= 1
3. set zj = a

(
jm− a−1

a + 1
)
− jn and j = j + 1;

4. end
5. set i = j− 1 and a−1 = a

(
im− a−1

a + 1
)
.

We will begin by reviewing the important findings from a previous study by Bufalo
et al. [10,11], as well as other relevant information that will be useful for our analysis. For
the sake of notation, given x ∈ Q, we denote by bxc the floor integer part of x, and by {x}
the fractional one, i.e., {x} = x− bxc. We will also be using a sequence called (zj)j≥0 in
our calculations for finding the modular inverse.

Definition 1. Let a, n be two integers with 0 < a < n and GCD(a, n) = 1. Define the sequence
(zj)j≥0 recursively by the equation{

zj = zj−1 + aβ j − n (j ≥ 1),
z0 = 0

(3)

with β1 = M
β j =

⌊ n−zj−1
a
⌋
+ 1 j ≥ 2, (4)

where M is the ceiling part of m := n/a.

The explicit representation of (zj)j≥0 can be found in the next proposition.

Proposition 1. The solution of the difference Equation (3) is given by

zj = a
j

∑
h=1

βh − jn. (5)

Proof. For the proof, see ([10], Proposition 1).

Special care is deserved to the meaning and the mathematical form assumed by β j’s,
which allow giving other equivalent expressions of (zj)j≥0.

Proposition 2. The sequence (β j)j≥1 introduced in (4) may be written as

β j = bjmc − b(j− 1)mc. (6)

As a consequence, for any j ≥ 1, we obtain
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(i)
j

∑
h=1

βh = bjmc+ 1; (7)

(ii)
zj = a

(
bjmc+ 1

)
− jn. (8)

Proof. For the proof, see ([10], Proposition 2 and Corollary 1).

The above results imply the next fundamental theorem.

Theorem 1. Let a, n be two integers with 0 < a < n and GCD(a, n) = 1. If (zj)j≥0 is the
sequence of Equation (3), define the "critical" index i ≥ 1 such that zi = 1. Then the inverse of a
modulo n is given by

a−1 = bimc+ 1. (9)

Proof. See ([10], Theorem 1).

To illustrate the significance of Theorem 1, we will mention a related result.

Proposition 3. The sequence (zj)j≥1 is periodic of period a.

Proof. See ([10], Proposition 3).

It is immediately clear that the unique limitation of Theorem 1 is the determination of
such critical index i, which can be found by solving the following equation

a
(
bimc+ 1

)
− in = 1. (10)

Although Equation (10) is nonlinear, one observes that bimc = im− {im}, where {im} =
a−1

a (see [10], Proposition 4). The knowledge of {im} jointly with the periodicity information
provided by Proposition 3 suggests solving the modular problem (10) by the code detailed
in Algorithm 1.

Observe that the complexity of the above algorithm is O(a). Hence, this procedure is
more convenient when a << n (e.g., a < ln n). Notice that, even in the worst case a ∼ n
(i.e., complexity O(n)), the algorithm of Table 1 and the resolving formula (9) is still better
compared to the Euler’s phi formula (2), which has complexity O(n ln n). Additionally,
Section 5 delves further into the advantages of the algorithm when a ∼ n.

At this point, we present some new properties of (zj)j≥0 which will be helpful in the
next sections. In particular, we denote be A the set [0, a] ∩N.

Proposition 4. Let (zj)j≥0 be the sequence defined in Equation (3), then

(i) for any j ∈ A, it holds zj ∈ [0, n] ∩N.
(ii) for any two different integers j1, j2 in A, one has

zj1 6= zj2 .

Proof. First of all, observe that Equation (8) may be rewritten as

zj = a(1− {jm}). (11)

(i) By Definition 1 it is clear that (zj)j≥0 ∈ N and its (absolute) minimum is given by 0.
Moreover, Equation (11) implies that (zj)j≥0 is positive since (1− {jm}) > 0.

(ii) Without loss of generality, set j2 = j1 + k (k < a). Observe that zj1 = zj2 if and
only if {j1m} = {j2m}, which is equivalent to say that j2m = j1m + 1 (if j1 < j2), or,
equivalently (j2 − j1)n = a, and this is true only if (j2 − j1) = 1

m ∈ Q, which is absurd.



Computation 2023, 11, 70 6 of 12

4. New Results about βj

In this section, we will study various equivalent formulations of β j to gain insight into
the properties of the sequence (zj)j≥0 and to determine the best way to calculate the critical
index i.

Proposition 5. The coefficient β2 defined in Equation (4) is given by

β2 =

{
M− 1 if {m} < 0.5
M if {m} > 0.5.

(12)

Proof. It is clear that

2{m}
{
< 1 if {m} < 0.5
> 1 if {m} > 0.5;

so, one has

b2mc = 2bmc+ b2{m}c =
{

2bmc if {m} < 0.5
2bmc+ 1 if {m} > 0.5,

which gives the assertion, being M = bmc+ 1.

Now, let us introduce the new quantity (Mj)j≥1, as follows.

Definition 2. Let a, n be two positive integers a, n. For any j ∈ N∗ define

Dj,k := {α ∈ N∗| q| (jn− k), k ∈ N∗},

and

Mj :=
n−1

∑
k=1

1Dj,k (a) (13)

which denotes the amount of multipliers of a in [(j− 1)n + 1, jn].

Lemma 1. Given two positive integers p, q, it holds⌊
p
q

⌋
−
⌊

p− 1
q

⌋
=

{
1 if q|p
0 otherwise.

Proposition 6. For any j ∈ N∗, j ≥ 2, the coefficients β j defined in Equation (4), may be
rewritten as

β j =Mj,

whereMj is defined by Equation (13).

Proof. By virtue of Proposition 2, we have

β j = bjmc − b(j− 1)mc (j ≥ 2).

In particular, it is easy to see that

bjmc − b(j− 1)mc =
n−1

∑
k=0

⌊
jn− k

a

⌋
−
⌊

jn− k− 1
a

⌋
where ⌊

jn− k
a

⌋
−
⌊

jn− k− 1
a

⌋
=

{
1 if a

∣∣(jn− k)
0 otherwise,
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due to Lemma 1, for any k. Therefore, with refer to Definition 2, we may write

bjmc − b(j− 1)mc =
n−1

∑
k=1

1Dj,k (a),

that is β j =Mj.

Proposition 7. Consider two positive integers a, n, with GCD(a, n) = 1 and let m = n/a. Fixed
j ∈ [2, a] ∩N, letMj be the quantity defined by Definition 2.

(i) If {m} < 0.5 and h
{m} 6= a (h ∈ N∗), then

Mj =

{
bmc if j ∈

(⌊ h−1
{m}
⌋
+ 1,

⌊ h
{m}
⌋
+ 1
)
∩N

bmc+ 1 if j =
⌊ h
{m}
⌋
+ 1

(h ∈ N∗). (14)

In particular, if there exists h̄ ∈ N∗ such that h̄
{m} = a, then

Mj =

{
bmc if j ∈

(⌊ h̄−1
{m}
⌋
+ 1, a

)
∩N

bmc+ 1 if j = a.

(ii) If {m} > 0.5 and h
1−{m} 6= a (h ∈ N∗), then

Mj =

{
bmc+ 1 if j ∈

(⌊ h−1
1−{m}

⌋
+ 1,

⌊ h
1−{m}

⌋
+ 1
)
∩N

bmc if j =
⌊ h

1−{m}
⌋
+ 1

(h ∈ N∗). (15)

In particular, if there exists h̄ ∈ N∗ such that h̄
1−{m} = a, then

Mj =

{
bmc+ 1 if j ∈

(⌊ h̄−1
1−{m}

⌋
+ 1, a

)
∩N

bmc if j = a.

Proof. It is clear thatMj ∈ {bmc, bmc+ 1}, for any j ∈ N∗. We prove Formulas (14) and (15)
by induction on h.

(i) If {m} < 0.5, Propositions 5 and 6 yield that M2 = bmc. Let us compute the
smallest integer j (j > 2) such that Mj = bmc + 1. This is equivalent to solving
the following equation:

bjmc = jbmc+ 1, (16)

which may be rewritten as
bj{m}c = 1,

being bjmc = jbmc+ bj{m}c. The latter equation holds if

1 ≤ j{m} < 2,

therefore, the smallest integer j solving Equation (16) is given by
⌊ 1
{m}
⌋
+ 1. This

prove Formula (14) for h = 1.
Now, assume that Formula (14) holds for h− 1. SinceM⌊

h−1
{m}

⌋
+2

= bmc, we want to

compute the smallest integer j
(

j >
⌊ h−1
{m}
⌋)

such thatMj = bmc+ 1, that is equivalent
to solve

bjmc = jbmc+ h, (17)

or, equivalently,
bj{m}c = h.
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Hence, the smallest integer j solving Equation (17) is given by
⌊ h
{m}
⌋
+ 1.

In particular, if there exists h̄ ∈ N∗ such that h̄
{m} = a, then the smallest integer j(

j >
⌊ h̄−1
{m}
⌋)

solving

bj{m}c = h̄,

or, equivalently,
h̄ ≤ j{m} < h̄ + 1,

is given by a (being h̄/{m} ∈ N∗).
(ii) The assertion comes arguing similarly to the case (i). More specifically, here, Equation (17)

is replaced by
bjmc = jbm + 1c − h, (18)

which is equivalent to
bj(1− {m})c = h,

and the smallest integer j solving Equation (18) is given by
⌊ h

1−{m}
⌋
+ 1.

5. Empirical Findings and Discussion

Fixed h ∈ A, an interesting development inspired by Proposition 7 concerns the
rule of the indices

⌊ h
{m}
⌋

when {m} < 0.5, or
⌊ h

1−{m}
⌋

when {m} > 0.5. In particular, as
highlighted from Theorem 2, one has that

• The sequence (zj)j≥0 admits local minimum at
⌊ h
{m}
⌋

if {m} < 0.5, or
⌊ h

1−{m}
⌋

if
{m} > 0.5.

• The critical index i coincides with one of such indices.

This result is confirmed by computational experiments, as one can see from Figure 1. For a
better understanding of the figure, as explained in ([10], Example 4), the blue line represents
the series zj for a = 91, n = 131, starting from j = 1 and with a fixed (large) integer j = 200.
The red line represents the periodic part of zj, which arises from the critical index i = 25 and
(i + a) = 116 (highlighted by the red circles). In this example, m = 0.4396 < 0.5, so all the
minima are of type

⌊ h
m
⌋
, which are 2, 4, 6, 9, 11, 13, 15, 18, 20, 22, 25, and obviously, 25 is

one of them. We will refer to the previous set as I . It is worth noting that the 11th index of
I corresponds to the critical index i = 25, such that z25 = 1. Figure 2 shows the set I for
h ≤ 30.

0 20 40 60 80 100 120 140 160 180 200

0

10

20

30

40

50

60

70

80

90

100

Figure 1. The sequence (zj)1≤j≤200 for the case where a = 91 and n = 131. The red line highlights
the entire sequence between two consecutive unitary values of zi (represented by red circles).
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Figure 2. Set I representing the minima of (zj)j≥0 when a = 91 and n = 131.

Theorem 2. The critical index i belongs to the set

I =

{{⌊ h
{m}
⌋∣∣ h ∈ A

}
if {m} < 0.5,{⌊ h

1−{m}
⌋∣∣ h ∈ A

}
if {m} > 0.5,

(19)

Proof. It is clear that the critical index i has to be a local minimum of the sequence (zj)j≥0
that assumes only integer values and has 0 as an absolute minimum (see Proposition 4).
Hence, it remains to prove that I is the set of the local minimum of (zj)j≥0. Let us consider
just the case {m} < 0.5 for simplicity (the other one is analogous). It is easy to see, from
Proposition 7, that

z⌊ h
{m}

⌋
+1
− z⌊ h

{m}

⌋ = aβ⌊ h
{m}

⌋
+1
− n = a(bmc+ 1)− n > 0,

and
z⌊ h
{m}

⌋ − z⌊ h
{m}

⌋
−1

= aβ⌊ h
{m}

⌋ − n = a(bmc)− n < 0,

for any h ∈ A, and this concludes the proof.

In light of the above results, Algorithm 2 can be rewritten as follows.

Algorithm 2 Pseudocode of the optimized algorithm solving (10).
1. Initialize h, j = 0; z0 = 0; m = n/a;
2. while zj 6= 1
3. if {m} < 0.5
4. set j =

⌊ h
{m}

⌋
;

5. else
6. set j =

⌊ h
1−{m}

⌋
;

7. end
8. set zj = a

(
jm− a−1

a + 1
)
− jn and h = h + 1;

9. end
10. set i = j− 1 and a−1 = a

(
im− a−1

a + 1
)
.

Moreover, what is observed from an empirical point of view is that:

• The sequences of the minimum of (zj)j≥0 oscillates till j = i (see Figure 2);
• The relative minimum defined in (19) belongs to the bundle of parallel straight lines

(see Figure 3)

F =

{
y =

z⌊ h+1
{m}

⌋ − z⌊ h
{m}

⌋⌊ h+1
{m}
⌋
−
⌊ h
{m}
⌋ x +

⌊
h
{m}

⌋
+ k
∣∣∣∣ k ∈ [0, n] ∩N

}
(h ∈ A)
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In particular, each line contains
⌊

1
1
{m}−

⌊
1
{m}

⌋⌋ or
⌊

1
1
{m}−

⌊
1
{m}

⌋⌋+ 1 minima.

5 10 15 20 25 30

0

10

20

30

40

50

60

70

Figure 3. Set F representing the bundle of parallel straight lines passing related to the minima of
(zj)j≥0 (when a = 91 and n = 131), for different values of k.

Remark 1. We end with a note about the complexity of our algorithm. In the spirit of Theorem 2,
if we restrict the searching of the critical index i to the set I , also the complexity of the algorithm

is reduced by a factor
⌊ 1
{m}
⌋
, i.e., from O(a) to O

(⌊
a⌊
1
{m}

⌋⌋). As explained in Section 3, the

complexityO(a) is very good with respect to the literature, especially when a << n. However, even

when a ∼ n, the complexity O
(⌊

a⌊
1
{m}

⌋⌋) sounds well. Indeed, in the extreme case a = n− 1,

one has m = 1 + 1
n and

⌊⌊ 1
{m}

⌋
a

⌋
approaches to 1 for large n. In other words, when a tends to n,

one has that the complexity reduction tends to 100%, so that the resulting complexity is a constant,
i.e., O(1).

In the non-trivial case where a = n − 2, a complexity reduction of approximately 50% is
observed. For example, if a = 327 and n = 329, then

⌊ 1
{m}
⌋
= 163 and 163

127 = 0.4985. In

particular, in such case, the critical index i is just
⌊ 1
{m}
⌋
.

Therefore, we can conclude that our algorithm runs very well when a << n or a ∼ n, while
the worst case is the middle one, i.e., a ∼ n

2 .

Post-Quantum Cryptography (PQC)

As is well known, the National Institute of Standards and Technology (NIST) has
launched a program and competition to standardize one or more post-quantum cryptogra-
phy (PQC) algorithms to fight against quantum attacks. In recent work, Huang [29] has
conducted an early mathematical analysis of lattice-based and polynomial-based PQC. Such
analysis can help businesses and organizations leverage NIST-selected PQC algorithms
to safeguard their digital services from quantum attacks. In particular, the brute force
failure probability for polynomial or multivariate PQC is calculated using Yitang Zhang’s
Landau-Siegel zero bound according to [30].

In Figure 4 we compare the complexity of our optimized algorithm (see Algorithm 2)
with those of coming from the post-quantum cryptography (PQC) architecture which was
estimated by Huang [29] in Matlab. More specifically, Figure 4 represents the logarithm of
complexity needed to encrypt/decrypt a message with a public/private key (modulus n).
As shown, our proposed algorithm, in the best case, is better than the PCQ up to n = 3000.
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Figure 4. Logarithm of complexity O(·) comparison between our algorithm in both a possible worst
and better case (i.e., a = 0.001n and a = 0.999n, respectively–black dotted lines), the extended
Euclidean algorithm (red line) and the post-quantum cryptography (PQC) algorithm (blue line).

6. Conclusions

This research builds upon previous work [10,11] where we introduced the concept of
the modulo operation and discussed the standard methods for determining the inverse
modulo n.

In the above-mentioned research, we determined that to find a closed-form solution
for the equation in Equation (10), it was necessary to study the properties of the sequence
(zj)j≥0. In this article, we expand on our previous aforementioned research by introducing
a new sequence, (zj)j≥0, which can efficiently calculate the modular inverse of a given
pair of integers (a, n), i.e., a−1 mod n, particularly in the non-trivial case a = n− 2. This
new method has a computational complexity of O(a), which is more efficient than the
traditional Euler’s phi function method, which has a computational complexity ofO(n ln n).
Additionally, we examine the properties of the sequence (zj)j ≥ 0 and demonstrate that
all solutions to the problem belong to a specific set, I , that only contains the minimum
values of (zj)j≥0. This leads to a reduction in the computational complexity of our method,
especially when a ∼ n, and also opens up new possibilities for finding closed-form solutions
for the modular inverse.

Future studies will focus on the characteristics of the minimum sequences to understand
the emergence of the critical index i, and to find a closed formula for the modular inverse.
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