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Abstract: The paper is written to demonstrate the applicability of the notion of triangulation typically
used in social sciences research to computationally enhance the mathematics education of future
K-12 teachers. The paper starts with the so-called Brain Teaser used as background for (what is
called in the paper) computational triangulation in the context of four digital tools. Computational
problem solving and problem formulating are presented as two sides of the same coin. By revealing
the hidden mathematics of Fibonacci numbers included in the Brain Teaser, the paper discusses the
role of computational thinking in the use of the well-ordering principle, the generating function
method, digital fabrication, difference equations, and continued fractions in the development of
computational algorithms. These algorithms eventually lead to a generalized Golden Ratio in the
form of a string of numbers independently generated by digital tools used in the paper.

Keywords: triangulation; teacher education; digital computations; Wolfram Alpha; Maple; Graphing
Calculator; spreadsheet; Fibonacci numbers; difference equations; generalized Golden Ratio

1. Introduction

In the mid 20th century, the concept of triangulation was introduced in social sciences
research to make the domain more rigorous [1–3]. Mathematics education, as the modern-
day field of disciplined inquiry [4], uses triangulation as an inquiry tool of social sciences
towards overcoming the limitations of the interview-based qualitative research methods [5],
debating the correctness of proof from a philosophical perspective [6], and using multiple
solution strategies in problem solving [7]. In the age of technology, with the ubiquity of
computational thinking [8] in diverse disciplines, the methodology of triangulation became
integrated with advances in digital technology, allowing for scientific experiments to be
validated by more than one computational instrument thus enhancing the credibility of
problem solving [9].

Computational triangulation is a new (two-word) term apparently not used in the
literature, either mathematical or educational. The paper is written to introduce this term in
the specific context of mathematics teacher education. Conceptually, the term grew out of
the author’s experience of using computers with future K-12 teachers of mathematics and
interest in social sciences research which had been enriched by the triangulation approach
to sociology [1–3]. Linguistically, the term was formed when the author was invited
to contribute a paper to the special issue “Computational social science and complex
systems” of Computation. The use of sophisticated software tools in education, which
nowadays is increasingly supported by various learning management systems, enables
prospective teachers to appreciate the intrinsic complexity of the systems as agency that
erases geographical boundaries of interpersonal collaboration in the rigorous study of
school mathematics. Through the lens of this agency, the computational triangulation of
solutions to certain problems used in mathematics teacher education may be seen as a
replacement of “the traditional social process of proof” [10] (p. 1402) to avoid both subtle
and unsubtle errors in problem solving in the digital era.

The paper provides mathematics education examples of using digital tools in support
of computational triangulation as the social sciences construct including the triangulation
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within and between methods [11] and the control of internal and external rival factors [12].
Triangulation within and between methods in problem solving are interpreted, respectively,
in terms of the comparison of multiple techniques within a single method and proving the
equivalence of symbolic computations provided by different digital instruments. Internal
and external rival factors and their control in problem solving and posing are interpreted,
respectively, as balancing the diversity of skills in using computational tools to support
mathematical visualization and navigating through the wealth of technology and problem-
solving methods available.

The paper’s structure is as follows. First, materials (software, publications, and
teaching standards) and methods (specific for mathematics education) used by the author
are described. Mathematical content begins with a problem about cookies on plates and
four different computational solutions are discussed. Then, the presence of Fibonacci-like
numbers in the problem is revealed, leading to the conceptual generalization needed for
more effective computations interpreted through the lens of a triangulation approach to
sociology. Finally, the paper discusses the importance of having a more knowledgeable
other in the classroom in order to recognize an accidental discovery by a student of a
new mathematical phenomenon which is then further explored under the umbrella of
a multi-instrument computational triangulation. It concludes by emphasizing the role
of concrete problems and digital tools in the teaching of the intrinsically abstract subject
matter of mathematics.

2. Materials and Methods

Three types of materials have been used by the author when working on this pa-
per. The first type is digital, the so-called “mathematical action technologies” [13] (p. xi).
These technologies include computational knowledge engine Wolfram Alpha developed by
Wolfram Research [www.woframalpha.com, accessed on 7 February 2023] and the mathe-
matical software Maple [14] used by the author for symbolic computations, an electronic
spreadsheet characterized as “an electronic blackboard and electronic chalk in a class-
room” [15] and used by the author as a tool for numeric modeling, and computer algebra
system Graphing Calculator produced by Pacific Tech [16] that supported computational
triangulation activities with mathematical visualization.

The second type of materials included literature on triangulation as a concept used by
sociologists to cement inquiry with rigor thus making it truly disciplined [1–3,5,11,12,17,18].
As was mentioned in the introduction, the need for rigor was one of the main reasons for
introducing the concept of triangulation into sociology. At the same time, rigor is necessary
for the success of ideas in the age of technology. Whereas technological innovations might
make curious minds completely dependent on digital tools, the tools are still created by
humans who, unfortunately, are susceptible to errors. Thus, the notion of computational
triangulation should not be neglected.

The third type of materials used by the author included teaching and learning mathemat-
ics standards used across six continents by countries such as Australia [19], Canada [20,21],
Chile [22], England [23], Singapore [24], South Africa [25], and the United States [26–28].
The standards uniformly call for fostering mathematical reasoning in the technological
paradigm and using computer-generated representations of concepts when solving and
posing problems. As will be shown in the paper, computational triangulation encourages
and supports these mathematics education activities.

Methods specific for mathematics education used in this paper include computer-
based mathematics education, standards-based mathematics, problem solving and problem
posing. In particular, those methods are conducive to presenting “teacher candidates
with experiences in mathematics relevant to their chosen profession” [28] (p. 137). In the
United States, many secondary mathematics teacher preparation programs offer courses
“that include topics such as . . . finite difference equations, iteration and recursion . . . and
computer programming” [27] (p. 66). These topics underpin algorithms of computational
triangulation used in this paper. The university where the author has been preparing
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teacher candidates to teach mathematics is located in upstate New York in close proximity to
Canada, and many of the author’s students are Canadians pursuing their master’s degrees
in education. As future teachers of mathematics, they learn how to think computationally by
“expressing problems in such a way that their solutions can be reached using computational
steps and algorithms” [20] (p. 513). This diversity of students suggests the importance
of aligning mathematics education courses with multiple international perspectives on
teaching and learning mathematics in the digital era.

3. Triangulation within a Method

The following problem, in a slightly different formulation, was offered to a class of
elementary teacher candidates, the author’s students, enrolled in a mathematics content
course within a graduate program in childhood instruction. The problem was a prelude to
celebrated Fibonacci numbers (not directly mentioned in the problem) that the candidates
were soon to study including the recursive and closed (Binet’s) formulas. Binet’s formula
was introduced in the course as an illustration of one of the profound ideas of mathematics—
integers can be represented through other types of numbers; in particular, Fibonacci
numbers can be represented through an exponential arrangement of the Golden Ratio
and its reciprocal. In the true spirit of computational triangulation, Binet’s formula as a
generator of Fibonacci numbers was verified by the candidates using a spreadsheet and
Wolfram Alpha (free version). In this paper, the presence of Fibonacci numbers in the
problem offered to the candidates will be revealed as means of developing computational
environments necessary for applying triangulation to mathematical problem solving. To
begin, consider:

• Brain Teaser: Five identical plates are lined up and each one is filled with candies.
How many ways can one put candies on the first two plates so that when each plate
beginning from the third has as many candies as the previous two plates combined,
the fifth plate has 13 candies?

• Discussion: As a method of solving this brain teaser, consider the following algebraic
approach and computational triangulation within the method. Let x and y represent
the number of candies on the first and second plates, respectively. Then the sequence
x, y, x + y, x + 2y, 2x + 3y can be developed. Therefore, one has to solve the equation

2x + 3y = 13 (1)

in positive integers x and y. The following four problem-solving strategies exemplifying
computational triangulation within this method using Wolfram Alpha, the Graphing
Calculator, and a spreadsheet can be employed.

As the first strategy, one can use the symbolic computation capabilities of Wolfram Al-
pha in solving Equation (1). By entering the command “solve over the integers 2x + 3y = 13,
x > 0, y > 0” into the input box of the tool, the following two solutions result: x = 2, y = 3
and x = 5, y = 1 (Figure 1). One can check to see that the quintuples (2, 3, 5, 8, 13) and (5, 1,
6, 7, 13) provide the full information about the five plates filled with candies.

It should be noted that the former quintuple is what the author’s students typically
find through trial and error, perhaps due to the recognition of the hidden presence of
Fibonacci numbers in the formulation of the Brain Teaser. However, rarely the candidates
find the latter quintuple in which the second plate has fewer candies than the first one
(Figure 2). There might be two reasons for missing that case: (i) it is kind of counterintuitive
and (ii) the lack of past experience that, as educators in England put it, “there was more
than one way of doing things” [23] (p. 18). In fact, data for the Brain Teaser were selected
to provide this experience. Already having 13 candies on the sixth plate can be achieved in
one way only.
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The second strategy is to use the Graphing Calculator capable of graphing relations
from any two-variable equation or inequality. By constructing the graph of Equation (1),
one can interpret its solutions as points on the graph with integer coordinates; the location
of which can be determined by cursor, a combination of action and computation. Graphing
Equation (1) along with the inequalities x > 0, y > 0, yields a segment which includes
exactly two points, (2, 3) and (5, 1), with integer coordinates (Figure 3). In addition, by
using the inequalities (x− 2)2 + (y− 3)2 < 0.005, (x− 5)2 + (y− 1)2 < 0.005, the two
points can be computationally constructed in the form of tiny discs, thus demonstrating
how in the digital era the visual can be controlled by the symbolic. More specifically, this
approach allows one to learn how to control geometric images by algebraic inequalities
through the use of computational algorithms that “can build virtual worlds that are uncon-
strained by physical realities” [29] (p. 21). Johann Heinrich Pestalozzi, a Swiss educational
reformer of the 18th–19th centuries, argued that visual understanding is the foundation
of conceptual thinking and he “forced the children to draw angles, rectangles, lines and
arches, which he said constituted the alphabet of the shape of objects, just as letters are
the elements of the words” [30] (p. 299). In general, drawing supports the development of
higher mental functions [31]. Nowadays, these educational ideas can be computationally
enhanced through digital fabrication [32] enabling one “to visualize the results of varying
assumptions, explore consequences, and compare predictions with data” [33] (p. 90). This
is, perhaps, what mathematics educators in Singapore meant when stating that “integrating
technology into the learning of mathematics gives students a glimpse of the tools and
practices of mathematicians” [24] (p. 39).
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Figure 3. Graphical representations of Equation (1) and its solution.

The third computational strategy in solving Equation (1) is to use a spreadsheet.
Figure 4, in cells C5 and F3, displays asterisks which point at two positive integer solutions
to Equation (1), respectively, (2, 3) and (5, 1). The formula entered into the formula bar of
the spreadsheet allows for the direct verification of whether Equation (1) is satisfied by
a pair of the variables x and y, the ranges of which are located in row 2 and column A,
respectively. The right-hand side of Equation (1) is entered in cell A1. A change in cell A1
may (or may not) yield a change in the ranges. It should be noted that whereas the very idea
of triangulation is to verify the accuracy of outcomes obtained through different techniques,
in the case of computational triangulation the accuracy of an algorithm used within a
specific technique can be verified by what may be called a triangulation of the second
order; or, using a more traditional term, applying the process of debugging a computational
code. The process of “coding can support students in developing a deeper understanding
of mathematical concepts” [20] (p. 249) for it requires a conceptual understanding of
mathematics used in the creation of an algorithm. For example, changing 13 for 12 in cell
A1 (that is, changing the right-hand side of Equation (1)) would not change the (positive
integer) ranges for x and y within the spreadsheet. At the same time, changing 13 for 14
would extend by one the range for x to allow for x = 7; although, such a change would not
add a new solution to Equation (1) as the range for y does not include zero and, therefore
the pair (7, 0) does not satisfy the equation 2x + 3y = 14 within such a range.
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The generating function method is the fourth computational triangulation strategy
applied to Equation (1). It is based on the rule of multiplying exponents with the same base:
zn × zm = zn+m. Already found by different digital tools, two positive integer solutions
of equation (1) are: x = 2, y = 3 and x = 5, y = 1. As shown in Figure 5, this number
of solutions coincides with the coefficient in z13 generated by Wolfram Alpha through
the symbolic computation of the product

(
1 + z2 + z4 + z6 + . . .

)(
1 + z3 + z6 + z9 + . . .

)
of

two geometric series. Indeed, z13 = z4× z9 = z2×2× z3×3 and z13 = z10× z3 = z2×5× z3×1.
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Note that in Figure 5 the coefficient in z14 is equal to 3 which, in the case of Equa-
tion (1) with the right-hand side equaling 14, includes the solution x = 7, y = 0. How-
ever, in Equation (1) neither variable may be equal to zero as no plate is supposed
to be empty. In order to have z14 with the coefficient 2, one should use the product(
1 + z2 + z4 + z6 + . . .

)(
z3 + z6 + z9 + . . .

)
the expansion of which would not include the

term z14 × 1. This note is consistent with the Common Core State Standards [26] (p. 6), the
major educational document in the United States at the time of writing this paper, with
emphasis on the importance “of creating a coherent representation of the problem at hand
. . . attending to the meaning of quantities, not just how to compute them”.

4. Triangulation between Methods

Consider two methods of solving the Brain Teaser without using Equation (1) and com-
putational triangulation between the methods. To this end, note that the way Equation (1)
was constructed can prompt generalization of this equation by recognizing that the coeffi-
cients in x and y in the sequence x, y, x + y, x + 2y, 2x + 3y are Fibonacci numbers 1, 1, 2, 3, 5,
8, 13, 21, . . . , in which the first two numbers are equal to one and any number beginning
from the third is the sum of the previous two numbers. This algebraic sequence would
continue with the binomials 3x + 5y, 5x + 8y, 8x + 13y, 13x + 21y, and so on. So, another
computational method of solving the Brain Teaser is to create a generalized spreadsheet
capable of not only locating the number of candies on the first two (out of five) plates but
to consider more plates and much larger quantities of candies on the last plate, as well as
to display all solutions in terms of the number of candies on all the plates. To this end,
note that the left-hand side of Equation (1), while representing the fifth plate, includes
the third and the fourth Fibonacci numbers (F3 and F4) as coefficients in the unknown
number of candies on the first and second plates, respectively. So, in the case of n plates,
the numbers Fn−2 and Fn−1 would be the coefficients in x and y, respectively, and a more
general equation (to be used in spreadsheet programming) would be as follows:

Fn−2x + Fn−1y = n . (2)
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The programming of the spreadsheet, shown in Figure 6 displaying the quintuples

(2, 3, 5, 8, 13) and (5, 1, 6, 7, 13), is based on Binet’s formula, Fn = 1√
5
[( 1+

√
5

2 )
n+1
−(

1−
√

5
2 )n+1

]
, n = 0, 1, 2, . . . , representing the Fibonacci number sequence in a closed form.

As was mentioned in Section 3, Binet’s formula as a generator of Fibonacci numbers can
be verified by using a spreadsheet and Wolfram Alpha. Furthermore, from a mathematics
education perspective, Fibonacci numbers and Binet’s formula provide an opportunity to
illustrate what it might mean “that findings from historical research may contradict popular
accounts” [27] (p. 61). Put another way, the two famous concepts—a numeric sequence and
its closed formula—make it possible to provide the context of computational triangulation
with a kind of a historical triangulation.
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First, although already in the 13th century Fibonacci came across the sequence 1, 1, 2,
3, 5, 8, 13, . . . while investigating the growth of the population of rabbits breeding in ideal
circumstances; it was due to Edouard Lucas, a French mathematician of the 19th century,
that only since 1876 the celebrated numbers have been referred to mostly using their modern
name [34] (p. 5). This is consistent with the fact that in the writings of a Belgian/French
mathematician of the 19th century Eugène Charles Catalan one can find “la célèbre série
de Lamé [a French mathematician of the 19th century] ou de Fibonacci” [35] (p. 8, italics in
the original). Second [36–38]], the above formula, commonly associated with the name of
Jacques Binet, a French mathematician of the 19th century, was known more than a century
earlier to great Leonhard Euler and to Daniel Bernoulli—Swiss mathematicians of the 18th
century, as well as to Abraham de Moivre—a French-born English mathematician of the
17th–18th centuries.

Another method not requiring Equation (1) is based on the backward use of the rule
through which candies are put on the plates. One teacher candidate provided the following,
though incomplete, solution. As the candidate put it, “If plate 5 has 13 candies, and we
understand that each new plate is added up from the previous two plates, we can work
backwards and subtract until we find the number of candies from plates 1 and 2, which
gives us 2 candies on plate 1 and 3 candies on plate 2”. The second solution, shown in
Figure 2, was not offered by the candidate, perhaps due to the commonly held belief that a
problem may only have one correct answer. Mathematically speaking, the new method,
beautifully conceptualized by a future elementary teacher, may be referred to as the well-
ordering principle [39] (p. 34). To clarify, note that, as the candidate suggested, starting
from the 5th plate with 13 candies, one can check to see if it can be preceded by a plate with
12 candies, noting that only the first plate may have more candies than the next one. In that
case, 12 is preceded by 1 and 1 is preceded by 11 (the second plate). If 13 is preceded by 11,
then 11 is preceded by 2 and 2 is preceded by 9 (the second plate). If 13 is preceded by 10,
then 10 is preceded by 3 and 3 is preceded by 7 (the second plate). If 13 is preceded by 9,
then 9 is preceded by 4 and 4 is preceded by 5 (the second plate). If 13 is preceded by 8,
then 8 is preceded by 5 and 5 is preceded by 3 and 3 is preceded by 2 (the first plate). If
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13 is preceded by 7, then 7 is preceded by 6 and 6 is preceded by 1 and 1 is preceded by
5 (the first plate). It remains to be noted that if 13 is preceded by a number smaller than
7, then the next number is greater than 6, that is, already the third plate has more candies
than the next one. The well-ordering principle can be computerized by using a spreadsheet
shown in Figure 7 (the case 2, 3, 5, 8, 13—left; the case 5, 1, 6, 7, 13—right). The scroll
bars attached to cells A1 and A2 control, respectively, the number of candies on the fifth
and fourth plates. This method can computationally confirm the results found through a
different method involving Fibonacci numbers, thereby demonstrating the triangulation
between the methods. By the way, applying the well-ordering principle to the case of 18
candies on the fifth plate, the first solution would result in the quintuples (0, 6, 6, 12, 18)
and (9, 0, 9, 9, 18) that point at a possible modification of the Brain Teaser to allow for
one of the first two plates to be empty (cf. coefficient in z18 in Figure 5). This shows how
computational triangulation not only brings rigor and confidence in problem solving but,
through modification of conditions of existing problems, may contribute to problem posing.
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5. Computational Triangulation and Internal Rival Factors

One of the internal rival factors in computationally enhanced mathematics education
is a skill of a teacher to go beyond solving a problem and use triangulation activities
for posing new problems. This is consistent with the sociological understanding of rival
causal factors of internal validity concerned “whether the assumed causal variables make a
difference” [12] (p. 22) that include, according to [2], maturation and instrumentation. The
former factor relates to a developed problem-posing skill and the latter factor relates to the
choice of a digital instrument to be used in support of this skill. For example, using the
result of application of the generating function method to finding the number of solutions
of Equation (1), one can select from Figure 5 the term 4z18 and formulate a problem similar
to the Brain Teaser. The coefficient 4 in z18 points at four ways to put 18 candies on the first
two plates. However, using the Graphing Calculator, one can locate inside the segment
connecting the coordinate axes only two points with integer coordinates. As was mentioned
above, the difference in the number of solutions provided by different digital instruments
can be explained conceptually in terms of the conditions of the Brain Teaser—there should
be no empty plates. If we allow for one of the first two plates to be empty, then putting
nine candies on the first plate and keeping the second plate empty, one will end up with
18 candies on the fifth plate. Likewise, keeping the first plate empty and putting six candies
on the second plate, the fifth plate would have 18 candies. This is exactly what one can
see on the graph of Figure 8—the segment connects the points (9, 0) and (0, 6) residing on
the x and y axes, respectively. Furthermore, the equation 2x + 3y = 18 (unlike the equation
2x + 3y = 14) shows that both x = 0 and y = 0 provide a solution to this equation as both 2
and 3 divide 18 (whereas only 2 divides 14).
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In that way, the Brain Teaser can be reformulated to include the condition that one
of the first two plates may be empty. Keeping in mind that “reformulation is useful in
learning” [40] (p. 49) and “reformulation requires an awareness of all dimensions of a prob-
lem” [41] (p. 79), several observations can follow from this reformulation/modification:
(i) it does not affect cases when coefficients and the right-hand side are relatively prime
numbers; (ii) it does not affect reasoning of the well-ordering principle and its computeriza-
tion; (iii) whereas modification of the spreadsheet of Figure 4 requires one to extend ranges
for x and y to include zero values, the spreadsheet of Figure 6 requires both physical and
programming modification of entries associated with the first two plates. Balancing internal
rival factors requires conceptual understanding of mathematics involved in the use of com-
putational triangulation within and between methods. Whereas computational thinking
includes “reformulating a seemingly difficult problem into one we know how to solve” [8]
(p. 33), computational triangulation may lead to reformulation of a solved problem into an
unsolved one which may “have potentials that the user may or may not developed . . . and
artifacts will take on functions that will be temporary or permanent” [42] (p. 186). It is due
to the conceptual understanding of mathematics involved in the process of computational
triangulation that enables teachers’ pragmatic choice of mathematical methods and digital
artifacts required for problem solving and posing. After all, as educators in South Africa
believe, “mathematics teachers, and not ICT tools, are the key to quality education” [25]
(p. 78).

6. Computational Triangulation of the Second Order

Another example of computational triangulation between the methods deals with
solving a difference equation

fn+1 = 3 fn − fn−1, f0 = 1, f1 = 2, (3)

using Wolfram Alpha and Maple as two distinct computational methods. It turned out
that the two methods when applied to Equation (3) generate closed formulas which are
symbolically different. Equation (3) represents the number sequence 1, 2, 5, 13, 34, 89, . . . ,
known as the Fibonacci sieve of order one [43] or bisection of Fibonacci numbers [44]. A
historical significance of Equation (3) is due to its appearance in a notable paper [45] in
which the famous Hilbert’s Tenth Problem [46] was announced to be solved.

As shown in Figure 9, according to Maple,
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While it is not difficult to see without any digital computation that both formulas
confirm the initial conditions f (0) = 1, f (1) = 2, manipulating such complex formulas in
the general case is difficult not only from a mathematics education perspective but from
a mathematical research perspective as well [10] (p. 1399). In the words of Langtangen
and Tveito [47] (pp. 811–812), “much of the current focus on algebraically challenging,
lengthy, error-prone paper and pencil work can be significantly reduced. The reason for
such an evolution is that the computer is simply much better than humans on any theoreti-
cally phrased well-defined repetitive operation”. Therefore, computational triangulation
between the methods can be seen as the modern-day approach aimed at demonstrating
mathematical equivalence of Formulas (4) and (5) for all n. One can use Wolfram Alpha
(Figure 11) as an instrument capable of verifying technological invariance of the mathemat-
ical algorithms used by different software programs by establishing this equivalence. The
use of Wolfram Alpha as an instrument of this verification may be considered as another
example of computational triangulation of the second order (see the issue of debugging
spreadsheet codes in Section 3 above).
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7. A Misprint in Computational Triangulation as a Window on New Phenomenon

During the process of computational triangulation as a way of achieving the accuracy
of mathematical problem solving through different means, an unintended error in computer
programming may be considered as a rival factor invalidating (or, at least, confounding)
other factors used in this process. However, sometimes such an error, when recognized and
attended through an epistemic lens either by a mindful student or by a teacher as a ‘more
knowledgeable other’, can open a window on an entirely new conceptual domain within
which new computational triangulation techniques can be employed. In other words,
computational triangulation “contributes to a learning environment in which the curiosity
of students can lead to rich mathematical discoveries” [21] (p. 9).

As an illustration, consider the case of verifying the appearance of the Golden Ratio in
different contexts using different digital instruments. One such context deals with Fibonacci
numbers and an instrument is a spreadsheet. A possible misprint worthy of attention is
when in Equation (3) the coefficient 3 in fn was (erroneously) omitted and the equation

fn+1 = fn − fn−1, f0 = 1, f1 = 2, (6)

was used instead. Alternatively, such a misprint might occur through accidentally typing
the minus sign in fn−1 when exploring the appearance of the Golden Ratio in the context
of Lucas numbers 2, 1, 3, 4, 7, 11, 18, . . . defined by the classic Fibonacci recursion (hidden
in the formulation of the Brain Teaser). In both cases, the behavior of the ratios fn+1/ fn
can be explored. In the case of Equation (3), the ratios approach the number 2.61803
which is one greater than 1.61803, an approximation to the Golden Ratio, 1+

√
5

2 . Indeed,
1+
√

5
2 + 1 = 3+

√
5

2
∼= 2.161803. However, as shown in Figure 12, modelling the behavior of

the ratios fn+1/ fn in Equation (6) using a spreadsheet yields the triple (2, 0.5, −1) rather
than a single number which the ratios approach as n grows larger. While this modeling
result could be due to a misprint in the context of exploring Equation (3), a mindful
observer, student included, can recognize in this unexpected (and possibly confounding)
situation a conceptually significant outcome—the ratios of solutions to a second order
linear difference equation may form a cycle, in particular, of period three. In other words,
the Golden Ratio can be generalized from a number to a string of numbers. It is such
unexpected generalization stemming from the use of computers that, in the words of
Australian educators, “enhance the potential for teachers to make mathematics interesting
for students” [19] (p. 9) and, as mathematics educators in Chile put it, “stimulate an
inquisitive attitude and reasoning among students” [22] (p. 37).
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Figure 12. Spreadsheet modeling of Equation (6).

As a way of triangulation of the result observed in the context of spreadsheet modeling,
one can use Wolfram Alpha to find a closed form of the sequence defined by Equation (6).
The result shown in Figure 13 can be simplified to the form

f (n) =
1

2n+1 [(1− i
√

3)
n
+ (1 + i

√
3)

n
+ i
√

3(
(

1− i
√

3)n −
(

1 + i
√

3)n
)]

using which the first five (repeated) triples (2, 1/2, −1) as the values of the ratio f (n + 1)/ f (n)
for n = 0, 1, 2 . . . , 14 can then be generated by Wolfram Alpha (Figure 14). Note that the
above (paper-and-pencil) algebraic simplification is necessary to minimize the number of
characters that the tool (even its Pro version) is able to handle when computing the ratios
for different values of n.
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An important question to be answered under the umbrella of this conceptually un-
expected outcome deals with the issue of generalization from an experimental finding
of a single pair of coefficients forming Equation (6) to a parametric relation between the
coefficients so that the experiment could be repeated for any pair of parameters satisfying
such a relation. This is consistent with what sociologists [2,12] understand under external
validity of rival causal factors to allow for the formulation of a general proposition applica-
ble to a variety of situations. In the context of accidental finding that the ratios fn+1/ fn in
Equation (6) are attracted by a three-cycle, the task of generalization is to find a relation
between the coefficients a and b in the equation

fn+1 = a fn + b fn−1 (7)
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so that the ratios fn+1
fn

form cycles of length three and then use the computational tri-
angulation approach to validate the results using different instruments. One can use a
combination of Wolfram Alpha and Maple to triangulate the convergence of the ratios
fn+1

fn
to the three-cycle (2, 1/2, −1) already confirmed by the spreadsheet (Figure 12) and

Wolfram Alpha (Figure 13). To this end, dividing both sides of Equation (7) by fn, setting
a = 1, b = −1, and rn = fn+1

fn
, the resulting equation rn = 1− 1

rn−1
, r0 = 2, can be solved by

Wolfram Alpha (Figure 15). A slight paper-and-pencil modification of rn is entered into
Maple (Figure 16) which generates exactly the same result as the spreadsheet (numerically)
and Wolfram Alpha (symbolically). Whereas this paper advocates for the use of digital tools
in doing symbolic computations, traditional mathematical skills may not be completely
replaced by technology. One has to be careful to avoid the situations when “the exercise
of procedural knowledge is supplanted by (rather than supplemented by) machines” [48]
(p. 549). Therefore, the very intent of computational triangulation and its successful out-
come (using the language of a social science researcher) “depend on how thoroughly and
defensibly or correctly this [paper-and-pencil modification] has been done” [18] (p. 346).
At the same time, although “in the realm of computers, unreliability sometimes seems to be
the norm” [10] (p. 1400), notwithstanding, in the true spirit of computational triangulation,
if a new tool does not successfully triangulate the result of another tool, one can always
come back to check the accuracy of mathematical formulas used for computations.
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Note that although the case a = 1 and b = −1 (just explored using three instruments)
satisfies the relation a + b = 0 (the first one that might come to mind), the case a = −1
and b = 1 yields Lucas numbers with alternating signs, 1, 2, −1, 3, −4, 7, −11, 18, and
(not surprisingly) results in the convergence of the corresponding ratios to the negative
Golden Ratio. This process of convergence of the ratios rn = fn+1

fn
, satisfying a non-

linear modification rn = −1 + 1
rn−1

of linear Equation (7), to the negative Golden Ratio
(rather than to a three-cycle) is shown graphically in Figure 17 through a staircase diagram.
The staircase, by bouncing down/left to up/right between the graphs of the functions
y = −1 + 1

x and y = x, approaches the value x = −1−
√

5
2 . This value is the attracting

fixed point of the hyperbolic map x → −1 + 1
x because the absolute value of the slope of

the tangent line to the graph of the map at the point x = −1−
√

5
2 (unlike x = −1+

√
5

2 —the
second fixed point of the map) is smaller than one.
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√

5
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In order to find all three-cycles which, just as the triple (2, 0.5, −1), attract the ratios
fn+1/ fn, Equation (7) can be re-written in the form rn = a + b

rn−1
where rn = fn+1

fn
, r1 = 2,

so that the relation r1 = r4 expressed in terms of a and b provides the relation sought. In
doing so, one can write r2 = a + b/2, r3 = a + b

a+b/2 , r4 = a + b
a+ b

a+b/2
. Using Wolfram

Alpha (Figure 18), one can solve the continued fraction equation a + b
a+ b

a+b/2
= 2 yielding

b = 4 − 2a, a trivial case of a cycle of any length (consisted of twos—initial values), and
b = −a2—the non-trivial case of a three-cycle formed by the ratios rn = fn+1

fn
. For example,
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when r1 = 2 we have r 2 = a− a2

2 = 2a−a2

2 , r3 = a− a2

2a−a2
2

= a2

a−2 , r4 = a− a2

a2
a−2

= 2 so that(
2, 2a−a2

2 , a2

a−2

)∣∣∣
a=1

=
(

2, 1
2 ,−1

)
.
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Alternatively, as part of computational triangulation, the relation r1 = r4 can be
graphed (Figure 19) using the Graphing Calculator (substituting x for a and y for b). This
graphing can be considered as triangulation within a method (of finding three-cycles)
demonstrating that the point (−1, 1), which corresponds to a possible accidental mis-
print in a spreadsheet formula, belongs to the parabola b = −a2. Likewise, the point
(a, b) = (1.290569415, −1.665569415) selected by the cursor on the parabola b = −a2 and
then plugged into the spreadsheet of Figure 20 to model the behavior of the ratios fn+1

fn
in Equation (7), can be used to triangulate the phenomenon of convergence to another
three-cycle (2, 0.45778471, −2.3477553).
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Figure 20. Using a point from the parabola to triangulate the phenomenon of a three-cycle.

Computational triangulation helps teacher candidates appreciate relationship that
exists between two types of knowledge—experimental and theoretical. As one of the
author’s students noted: “It is important to make connections between experimental
and theoretical knowledge in order to deepen one’s understanding of the material. The
experimental portion came when picking points off of the theoretically found parabola
[see Figures 18 and 19] and plugging them into the spreadsheet [see Figure 20]. It was
also hypothesized that the equation relating variables a and b for a cycle of 3 would also
be present in any cycle that was a multiple of 3. This was tested experimentally using the
spreadsheet and Maple software [see Figure 21]”.
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Finally, using Maple (Figure 21) to solve equations with continued fractions, computa-
tional triangulation can be extended to generate parabolic loci of the cycles of lengths four,
five and six, all of the form

b = −µa2, µ > 0 (8)

and all including the trivial cycle b = 4 − 2a. Furthermore, as part of computational
triangulation, one can see (Figure 21) that the cycles of length six do include cycles of
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length three. In addition, one can see that beginning from cycles of length five, the loci
of the cycles consist of more than one parabola, all such parabolas sharing the origin of
the plane of parameters as their common vertex. It is this activity that another teacher
candidate described as follows: “In this project, spreadsheets were used first to observe
convergence. Graphs clearly depicted if a coordinate point (a, b) converged to a specific
value, helping students to visually understand convergence. Additionally, the graphing
calculator was used to graph the cubic equation obtained from Maple when working with
continued fractions. The cubic equation about aˆ2/b contained three parabolas, which
students can visualize; graphing the cubic equation also allows students to see all points on
the parabolas that result in cyclic behavior for a particular difference equation.” For more
information about the behavior of generalized Golden Ratios see [43].

8. Conclusions

The word triangulation, having origin in mathematics, is commonly used in social
sciences toward achieving rigor as the unity of theory and method [12]. In mathematics,
since the time of Euclid—the most prominent mathematician of the 3rd century BC—
methods of proof have been continuously perfected under the banner of rigor, leading to
more and more abstract mathematics. Nonetheless, as Pierpont [49] (p. 23) put it, achieving
absolute rigor “will be a sign that the race of mathematicians has declined”. In the era of
standards-based mathematics education, many fundamental ideas, otherwise intrinsically
abstract, can nonetheless be well explained contextually, by using concrete problems. This
points to the importance of concrete problems as pedagogical tools in the teaching of
mathematics. Concreteness makes a student confident in the usefulness of material to be
studied, seeing a logical connectivity of mathematical ideas and their successive reliance
on each other. Such a pedagogical approach helps a student of the subject matter “to
recognize a mathematical concept in, or to extract it from, a given concrete situation” [50]
(pp. 100–101).

With this in mind, the paper started with the problem of putting candies on plates in
which the recursive character of addition guided by Fibonacci-like numbers was hidden
behind a homely action with the intent of being revealed later to support the programming
of a computational environment. Originally, the problem (Brain Teaser) served as the
background for the introduction of four computational triangulation techniques; although
they were not needed for the problem to be solved. However, from the point of view of
mathematics education, computational approaches to problem solving are better under-
stood when hidden mathematical elements of a problem are extracted from the context in
order to be used as building blocks of computational algorithms. At that point, several
mathematical ideas were discussed including the Golden Ratio, Binet’s formula, parametric
difference equations, and, eventually, continued fractions.

The use of the Graphing Calculator made it possible to construct a staircase diagram
demonstrating the geometric meaning of multiple phenomena. These included two types
of fixed points that the graph of a function may have—attracting and repealing—when
crossed by the identity line y = x; visual recognition of which type the point belongs to
in terms of the slope that the tangent line to the graph at a fixed point has and the angle
it forms with the identity line. In that way, computational triangulation enables a fairly
intelligible demonstration of rather complicated mathematical ideas, something that is
especially beneficial for the mathematics education of teachers.

It was shown how a peculiar outcome of an accidental misprint in carrying out
computational triangulation when attended with epistemic care can open a window to
new mathematical ideas stemming from classic concepts to be further explored using the
same computational tools that were used to triangulate conventional outcomes. The new
(i.e., not commonly known in mathematics education or even previously in mathematics)
concept discussed in the paper included the so-called generalized Golden Ratio in the form
of a string of numbers the length of which, depending on the value of µ in relation to (8),
can be as long as one wishes.
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The ideas of this paper were motivated by the author’s work with teacher candidates of
the United States and Canada using various tools of technology in the courses of different
degrees of mathematical complexity. The notion of computational triangulation made
it possible to carefully differentiate the presentation of mathematics between primary
and secondary levels by either exiting the computational train at the appropriate place
or allowing it to continue moving full speed ahead demonstrating the true meaning of
the motto “mathematics unlimited” [51]. The approach made it possible to demonstrate
to both populations of future teachers that in the age of standards-based teaching and
learning, digital computations open multiple windows to mathematical ideas that, using
one more time, in the conclusion, quotations from different parts of the paper, “stimulate
an inquisitive attitude and reasoning among students” [22] (p. 37), “enhance the potential
for teachers to make mathematics interesting” [19] (p. 9) thus allowing for “virtual worlds
that are unconstrained by physical realities” [29] (p. 21), “in which the curiosity of students
can lead to rich mathematical discoveries” [21] (p. 9). Although the paper is limited to K-12
teacher education, all these affirmational quotes are applicable to the use of computational
triangulation at the tertiary level of mathematics education as well.
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