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Abstract: This paper studies the portfolio selection problem where tradable assets are a bank account,
and standard put and call options are written on the S&P 500 index in incomplete markets in which
there exist bid–ask spreads and finite liquidity. The problem is mathematically formulated as an
optimization problem where the variance of the portfolio is perceived as a risk. The task is to find
the portfolio which has a satisfactory return but has the minimum variance. The underlying is
modeled by a variance gamma process which can explain the extreme price movement of the asset.
We also study how the optimized portfolio changes subject to a user’s views of the future asset
price. Moreover, the optimization model is extended for asset pricing and hedging. To illustrate the
technique, we compute indifference prices for buying and selling six options namely a European call
option, a quadratic option, a sine option, a butterfly spread option, a digital option, and a log option,
and propose the hedging portfolios, which are the portfolios one needs to hold to minimize risk
from selling or buying such options, for all the options. The sensitivity of the price from modeling
parameters is also investigated. Our hedging strategies are decent with the symmetry property of
the kernel density estimation of the portfolio payout. The payouts of the hedging portfolios are very
close to those of the bought or sold options. The results shown in this study are just illustrations of
the techniques. The approach can also be used for other derivatives products with known payoffs in
other financial markets.

Keywords: exotic option; indifference pricing; mean-variance utility; S&P 500; variance gamma
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1. Introduction

Financial risk and liability can be mitigated through appropriately trading in financial
markets. In other words, having a liability, which is normally stochastic, a user would want
to reduce their risk by buying or selling some other financial instruments available in the
markets [1–3]. In complete markets, where all assets are perfectly liquid and there is no
transaction cost, it has been shown by Black and Scholes [4] that financial derivatives can
be uniquely priced and perfectly hedged by dynamically trading their underlying and cash.
However, this is not true in incomplete markets, in which liquidity is limited. Moreover,
the pricing and hedging problems, in practice, are highly subjective. Different agents may
hold different current financial positions, view risk differently, and have different views on
the future values of the assets, see e.g., [5–9].

Most works in pricing and hedging financial derivatives assume market completeness.
Following the ground-breaking work by Black and Scholes [4], there has been extensive
literature on derivative pricing based on a risk-neutral measure. The fair price of a deriva-
tive is determined by the expectation of the discounted terminal payoff of the derivative
under a risk-neutral measure. The price, in terms of the expectation, can be easily and
analytically derived if its density is known, see [10–12]. For those where the density is
unknown, the no-arbitrage price can be computed by solving the corresponding partial
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differential equation derived from the Feynman–Kac representation [13–15]. For example,
Sepp [16] derived analytical pricing formulas for options on realized variance under Heston
stochastic volatility model, whereas the pricing formulas for an interest rate swap under
the extended Cox–Ingersoll–Ross (ECIR) and the constant elasticity of variance processes
were proposed in [17–21].

In incomplete markets, the classic risk-neutral approach cannot be applied. Most
works derive formulas for indifference prices by using convex duality theory, see
e.g., [22–24]. However, the scheme is complex and hard to apply in practice. A more
practical approach for option pricing was proposed by Breeden and Litzenberger [25]. The
option payoff is replicated by the collection of other options with different strikes finitely
available in the markets. The price of the payoff is thus the cost of replication. Although the
approach works reasonably well in practice when there are enough options available in the
markets, the combination of replicating the payoff might not be most suitable. Moreover,
the subjective factors, which are different for each individual, are not taken into account.
Thus, a more efficient scheme of pricing called “indifference pricing” was proposed. An
indifference price is a price a seller (buyer) needs to take (can pay) so that the risk after
selling or buying is not worsened, see [6,26]. In contrast to the approaches mentioned
above, indifference pricing takes subjectivity into account. The selling and buying prices of
financial derivatives for different agents can be different. Moreover, the approach ensures
that the combination for derivatives hedging is the best available in the markets. The indif-
ference pricing approach is built on an optimal investment model. Armstrong et al. [27]
illustrated the use of the indifference pricing technique to price and hedge index options
written on the S&P 500 index under the exponential loss utility by numerically directly
solving the primal problem. Another recent work that focused on indifference pricing and
hedging by solving the primal problem was by Pennanen and Bonatto [28]. They computed
hedging portfolios in oil markets under the exponential loss utility. As opposed to the
exponential loss utility, there are various risk measures such as the mean-variance criteria,
the value-at-risk (VaR), and the conditional value-at-risk (CVaR). Although the portfolio
optimization models of such risk measures have been extensively studied, see [29–32], the
study of indifference prices and hedging, in practice, is still limited.

In this paper, we consider indifference pricing and hedging where risk is measured by
a portfolio’s return variance, and the quotes come with bid–ask prices as well as the sizes,
and the maximum quantities one can buy or sell. In other words, our portfolio optimization
model in which the indifference pricing and hedging are built upon an extension of the
mean-variance portfolio optimization, first proposed by Markowitz [33], where we have
bid–ask prices and illiquidity. As an example, the technique is illustrated in the mini
S&P 500 index options market. The trading assets are a bank account with zero interest
rate, and the mini put and call options written on the S&P 500 index. The case where the
interest rate is not zero can be done in the same manner. The underlying is modeled by a
variance-gamma process (see [26,34]), which is similar to the Geometric Brownian motion
except that the time change is gamma distributed. This lets the process have control over
skewness and kurtosis which is more realistic as it is known that a return in stock markets
usually has fat tails.

Given a required average return, we first determine the optimal portfolio and plot
its payout as a function of the index value at maturity. We also numerically illustrate
the effects of various parameters including modeling parameters and the required return
and plot the efficient frontier of the portfolio. Next, we compute indifference prices for
buying and selling six different options namely a call option, a quadratic option, a log
option, a digital option, a butterfly spread option, and a sine option. The hedging portfolio,
the portfolio one needs to hold after selling or buying in order to mitigate risk, for each
option is also computed. We showed that all options are hedged reasonably well given the
quantity constraints and spreads. The technique can be applied to any other markets for
any European options whose payouts are functions of the underlying at maturity.
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2. Methodology
2.1. Data

The tradable assets are a bank account with zero interest rate, and 199 mini S&P 500
put and call options with different strikes. Table 1 shows an example of mini S&P 500
option prices taken on 19 May 2020 at 12:00:01 New York time. The spot is 295.42. The
investment horizon is one month which is exactly the time when all of the options expire.
One can see that the options come with finite liquidities. For example, if a trader wants
to buy a call option with strike 262 (the first row), there are only 10 contracts available.
Although we have 199 options, it is worth noting that there is only one random factor
which is the value of the index at maturity as all of the options are written on the same
index. The full details on all 199 options can be found in Table A1 in Appendix A.

Table 1. Taken from Bloomberg terminal on the 19 May 2020 at 12:00:01 Bangkok time.

Bloomberg Ticker Bid Price Ask Price Bid Size Ask Size

S&P 19/05/2020 C262 Equity 34.54 35.09 10 10
S&P 19/05/2020 P262 Equity 1.93 2.01 7 26
S&P 19/05/2020 C263 Equity 33.63 34.18 10 10
S&P 19/05/2020 P263 Equity 2.02 2.10 12 5

2.2. Portfolio Optimization

In this section, we introduce the asset-liability management model where bid and ask
spreads as well as limited quantities for buying and selling are present. The model is an
extension of the classical portfolio optimization model described in [33] where an agent
may have an initial liability and expects to reduce the risk associated with the terminal loss.
The detailed process of the optimization as well as its algorithms are also provided here.

2.2.1. Asset-Liability Management (ALM) Model

The variance of a portfolio return can be perceived as a risk. Given the same aver-
age return, a portfolio whose return has a higher chance of deviating from the mean is
considered riskier. The mean-variance optimization was introduced by Markowitz [33]
in 1952. Let J denote a set of all tradable assets. We model the index value at the maturity,
idx1, as a random variable on a probability space (Ω,F , P). Given a portfolio vector x, the
units invested in each tradable asset, a vector of the future payoffs of the assets s1, and
the covariance matrix of the assets’ payouts Σ, the variance of payout of the portfolio x,
denoted by Var(s1 · x), can be written as,

Var(s1 · x) = xTΣx. (1)

The derivation of (1) can be found in [35] (page 20). For a required average return r,
the asset-liability management (ALM) problem where variance is perceived as risk for an
agent with a random contingent claim c ∈ L0(Ω,F , P) can be written as,

min Var(c− s1 · x) over x ∈ Rn

s.t. s0 · x ≤ W,
s1 · x ≥ W(1 + r),

(2)

where s0 is a vector of the current prices of the assets, s1 is a vector of the average payoffs
of the assets, and W ∈ R is an initial wealth. The problem is to minimize the risk (variance)
associated with the random terminal loss (c− s1 · x). The smaller the variance is, the more
unlikely the terminal wealth from the investment s1 · x will deviate from the claim c. The
first constraint is the cost constraint ensuring that an agent does not invest more than
what he or she has, while the second constraint makes sure that the average return of the
portfolio is at least r.
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However, as the quotes come with bid and ask prices, the costs of buying and selling
are not the same. One needs to pay the asking price if one wants to buy a particular option
but receives the bid price for selling. Since the vector of the costs of buying or selling
the assets s0 in (2) are independent of the type of position (buy or sell), the model (2)
needs to be modified. This can be done by duplicating all options into two sets, one for
selling and one for buying. Thus, the decision variable x can be divided into three parts
which are (i) the quantities invested in the assets with no bid–ask spreads, (ii) the quantities
invested in the assets when one can only buy, and (iii) the quantities invested in the assets
when one can only sell. Rigorously, let x̂ denote the new decision variable, we have that
x̂ = [x0 xb xa], where x0 is the quantity held in cash, and xa and xb are non-negative vectors
of quantities invested in the assets if one wants to buy and sell, respectively. Note that the
quantity invested in any option ith is equal to xa

i − xb
i because all options are duplicated to

two groups. One group is only for selling, while the other group is only for buying. It is
worth noting that xa

i and xb
i will not be non-zero at the same time as it would increase the

objective function value worsening the risk. Similarly, we also need to introduce the new
covariance matrix Σ̂, the cost vector ŝ0 = [s0

0 sb
0 sa

0], the future payout vector of the assets
ŝ1 = [s0

1 sb
1 sa

1], the and the new average payoffs vector ŝ1 = [s1
0 s1

b s1
a] in the same manner.

It is worth noting that the payoffs vectors sa
1 = sb

1 because both sa
1 and sb

1 are the payoffs of
the same options which have been duplicated. By duplicating the options to two sets, the
change is only on the costs which are now can be dependent on the type of the position
(buy or sell). In addition, as we do have quantity constraints, the quantity one wants to buy
(sell) a particular asset should not exceed its ask size (bid size).

The portfolio optimization model in which the bid–ask spreads and the illiquidity are
taken into account can be written as,

min Var(c− (s0
1 · x0 + sa

1 · xa − sb
1 · xb)) over x̂ ∈ Rn

s.t. s0
0 · x0 + sa

0 · xa − sb
0 · xb ≤ W,

s1
0 · x0 + s1

a · −s1
b · xb ≥ W(1 + r),

xa ≥ 0,
xb ≥ 0.

(3)

In this work, we model the future value of the index at the expiry date using the
Variance Gamma Model. The variance gamma process, introduced in Finance by Madan
and Seneta [26], is obtained by evaluating Brownian motion (with constant drift and
volatility) at a random time change given by a gamma process. Rigorously, the index value
at maturity, idx1 can be expressed as

idx1 = idx0 exp[αt + X(t; σ, ν, θ)], (4)

where α is a constant, idx0 is the current value of the index, and X(t; σ, ν, θ) is a variance
gamma process defined by

X(t; σ, ν, θ) = θγ(t; 1, ν) + σW[γ(t; 1, ν)], (5)

where θ and σ are constants, W[t] is a standard Brownian motion, γ(t; 1, ν) is a gamma
process with unit mean rate and a variance rate ν.

As the variance gamma model is similar to the Geometric Brownian motion except
that the time change in the model is modeled by a gamma process with unit drift and a
variance rate ν. This makes the variance gamma process capable of having control over
skewness and kurtosis of the distribution, and it is known that the data in financial markets
usually exhibit fat tails. We use the Variance gamma process to model the index return as
opposed to the Geometric Brownian motion due to the jumps exhibited in historical data.
We used Monte Carlo simulation to simulate the values of the index at the expiry date
under the variance gamma process. We first need to simulate the time change under the
gamma process with the unit mean rate and the variance rate of ν and then simulate the
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Brownian motion using the simulated time change as a variance. Unless otherwise stated,
the parameters used in the variance gamma model are as Table 2.

Table 2. The statistical density parameters on variance gamma models.

Parameter Estimated Variance Gamma Meaning

α 0.000001 mean rate of return
σ 0.2 volatility
T 0.83333 time to maturity

idx0 295.42 current index value
ν 0.01 variance rate of the gamma process
θ 0 mean rate of the variance gamma process

2.2.2. ALM Algorithms

Our current available data is the current S&P 500 mini index value and the 199 standard
put and call European options’prices written on the index on the 19 May 2020. Together
with a bank account, we have a total of 200 tradable assets. However, due to the presence
of bid and ask spreads, as explained earlier in Section 2.2.1, we need to duplicate the
199 options to 398 options. The first 199 options can only be sold, while the last 199 options
can only be bought. In this section, we assume that we do not have any liability. In other
words, c = 0. This is back to the classical optimization problem where we just want to find
the optimal portfolio which has the required average return but has a minimum variance.

To find the optimal portfolio in model (3), We first need to simulate a large number
of the index values at the expiry date. Then, we compute the payoffs of the cash s0

1, and
the options for buying sa

1, and the options for selling sb
1. The averages of the payoffs,

ŝ1 = [s1
0 s1

b s1
a], can also be computed by computing the means of the payoffs for each

asset for all simulated index values. The detailed process is as follows,

1. Find the matrix of the payoffs of the assets. The matrix has the dimension of Q× L
where Q is the number of simulations and L is the number of total tradable assets.

(a) Calculate the payoff of the cash after 30 days.
(b) Simulate a large numbers of the future index values after 30 days.
(c) Compute the payoffs of all options based on the simulated values of the index.

2. Calculate means and covariances of payoffs.
3. Use the built-in quadprog function in Matlab to solve the problem.

Algorithm 1, namely PayoffMatrix, illustrates the process of computing the future
payoffs of all tradable assets at the maturity time T obtained with simulated index values
taking bid and ask prices into account. This algorithm requires five input parameters,
including simulatedIndexValues which are the values of the index simulated by the
Variance Gamma Model at maturity time T, numOptions which is a number of options, s0
which is the costs of entering positions in cash, and the options , κ which is the strike of
the option which is removed from the tradable assets, and c which is the contingent claim
(liability) an agent may have as in the ALM model. Algorithm 1 returns one output s1
which is payouts matrix obtained with simulated index value for all assets at the maturity
time T. It is worth noting that in normal circumstances, we do not remove any options
from the tradable assets. In this case, we denote κ by ∅.

Note that in all Algorithms shown here, [A B], [A; B], A(:, j), A(i, :), A(i, j), and A(i, k :
l) are just notations to concatenate and to access some elements of matrices. [A B] and
[A; B] denote horizontal matrix concatenation and vertical matrix concatenation of matrix
A and B, respectively. A(:, j), A(i, :), and A(i, k : l) denote vectors extracted from the matrix
A. A(:, j) denotes the vector of the elements from all rows but from column j of the matrix
A. A(i, :) denotes the vector of the elements from row i but from all columns of the matrix
A. A(i, k : l) denotes the vector of the elements from row i but from columns k to l where
k < l. A(i, j) is the element of the matrix A on row i and column j.
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• No liability c = 0
• European call option c = max{0, (simulatedIndexValues− κ)}
• quadratic option c = max{0, (simulatedIndexValues− κ)2}
• log-option c = max{0, 1000 log(κ./simulatedIndexValues)}
• digital option c = 1000(simulatedIndexValues ≥ κ)
• sine option c = 1000 sin(simulatedIndexValues× 2π/10)
• butterfly spread option c = 100(max{0, simulatedIndexValues− 295}

−2 max{0, simulatedIndexValues− κ}
+max{0, simulatedIndexValues− 305})

Algorithm 1: Return the payoffs of the assets based on the simulated values of the index
(PayoffMatrix).

Input: simulatedIndexValues, numOptions, s0, κ, and c
Output: s1

1: let s1(:, 1)← cash := exp(0× 30
365 )

2: let K← column A (Strike) of Table A1 in Appendix A, remove the strike κ if κ 6= ∅
3: let IsPut← column D (IsPut) of Table A1 in Appendix A
4: for i← 1 to numOptions do
5: if IsPut(I) = 0 then
6: compute s1(:, i + 1)← max{0, simulatedIndexValues− K(i)}
7: else
8: compute s1 (:, i + 1)← max{0, K(i)− simulatedIndexValues}
9: end if

10: end for
11: update s1 ← [s1 s1(:, 2 : n + 1) c] /* choose c from above */

Algorithm 2, namely VarianceMinimize, illustrates the portfolio’s variance minimiza-
tion process. In other words, it shows how a portfolio with minimal variance is obtained
given a required average return. This Algorithm 2 requires twelve input parameters con-
sisting of µ, a drift (1/year) or the mean rate of return, σ, modeling volatility, r, a required
average return (%), m, the number of simulated prices, numOptions, a number of options,
ν, the variance rate of the gamma process, θ, mean rate of the variance gamma process, W,
an initial wealth, T, a time to maturity (year), idx0, the current index value (USD), κ, the
strike of the options which will be removed in the computation, and c, the future claim of
an agent. It returns three outputs, including x, which is an optimal portfolio or a vector of
the optimal unit invested in each asset, portMean, which is the mean of the portfolio at the
maturity time T, and portSd, which is the optimal standard deviation of the portfolio at
the maturity time T.

It is noticeable that in Algorithm 2, we have one extra variable added to the end of the
vector of the decision variable which is bounded above by z2 and bounded below by z1.
The variable is added because we need to add the liability c to the objective function in the
ALM model (3). This is done by introducing a dummy variable and adding it at the end of
the vector of the decision variables. In the case where we do not have any claims or when
c = 0, we can set the last variable to 0 by setting z1 = z2 = 0. The dummy variable will be
zero automatically as it is bounded above by z2 = 0 and bounded below by z1 = 0. If c is a
non-zero liability which means we need to pay it in the future, we then set z1 = z2 = −1.
Similarly, if c is not zero but it is a random receivable, we can set z1 = z2 = 1. Note that, in
Algorithm 2, 0m×n is an m× n zero matrix, and the function quadprog(·) is the minimizing
command in MatLab software based on quadratic programming.
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Algorithm 2: Variance minimization (VarianceMinimize).

Input: µ, σ, r, m, numOptions, ν, θ, W, T, idx0, κ, and c
Output: x, portMean and portSd

1: let BID← column B (Bid) of Table A1 in Appendix A
2: let ASK← column C (Ask) of Table A1 in Appendix A
3: let Sizebid ← column E (Bid size) of Table A1 in Appendix A
4: let Sizeask ← column F (Ask size) of Table A1 in Appendix A
5: construct s0 ← [1 BID> ASK>]
6: simulate idx1 ← with m paths following the Variance Gamma Model (5)
7: compute s1 ← PayoffMatrix(simulatedIndexValues, numOptions, s0, κ, c)
8: compute s1 ← mean(s1)
9: compute H ← cov(s1)

10: let Aeq← [s0; M]
11: let beq← [W; W(1 + r)]
12: let f ← 0(2numOptions+2)×1
13: let `← [−∞; −100Sizebid; 0numOptions×1; z1]
14: let u← [∞; 0numOptions×1; 100Sizeask; z2)]
15: return x ← quadprog(H, f , [], [], Aeq, beq, `, u, [], [])
16: return portMean← mean(s1 × x>)
17: return portSd← std(s1 × x>)

2.3. Indifference Pricing and Hedging

In this section, we describe the scheme of finding indifference prices, which are the
prices that do not worsen the risk of an agent if he or she agrees to commit to the transaction,
for financial derivatives. The whole scheme is based on the ALM optimization problem.
As taking an additional claim will change the agent risk he or she was initially taking, we
want to find the compensation (cash) added to the initial wealth which makes the risk
after taking the claim equal to that before taking the claim. The detailed process and the
algorithm are also provided in this section.

2.3.1. Indifference Pricing Model

As the indifference pricing is built on an optimal investment model, We first need
to define the optimal value function ϕ(W, c) as a function of an initial wealth W and the
future liability c ∈ L0(Ω,F , P). Let D denote the optimization constraints stated in (3), the
optimal value function can be defined by

ϕ(W, c) := inf
{

Var
(

c−
[
s0

1 · x0 + sa
1 · xa − sb

1 · xb
])
| x̂ ∈ D

}
.

We can see that ϕ(W, c) is the minimal variance possible once the liability c is taken.
This formulation makes sense in terms of pricing as normally, after taking the liability c, one
would like to find a suitable collection of assets, usually correlated with the liability, to trade
to reduce the risk. The optimal value function is non-increasing in w and is non-decreasing
in c, which means the unhappiness of traders will not increase if they have more initial
wealth.

The remaining question is how much a seller should charge if he or she decides to sell a
particular financial derivative creating a liability c. Considering a trader with initial wealth
w and initial liability c, the indifference price for selling a financial derivative creating a
claim c is given by

πs(w, c, c) := inf{w | ϕ(w + w, c + c) ≤ ϕ(w, c)}.
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This is the minimal amount of money a seller needs to charge so that the risk after
selling, ϕ(w + w, c + c), is not higher than that before selling ϕ(w, c). Similarly, the indiffer-
ence price for buying a financial derivative in order to receive the claim c in the future is
given by

πb(w, c, c) := sup{w | ϕ(w− w, c− c) ≤ ϕ(w, c)}.

This is the minimal amount of money a buyer can pay so that the risk after buying,
ϕ(w− w, c− c), is not higher than that before buying, ϕ(w, c). It is worth noting that after
the purchase, the buyer has lower initial wealth, but will have low liability as well. We can
see that in order to find indifference prices for selling and buying, one needs to solve the
infimum and the supremum problems. This can be done by a line search algorithm such as
the bisection method. In other words, to compute the indifference prices, a user needs to
guess w and solve the optimization problem (3) iteratively and determine its infimum or
supremum.

Once the prices are computed, the hedging portfolio, which is a portfolio that needs
to hold after selling or buying, can be determined by x − x where x and x are optimal
portfolios after and before taking the claim, respectively. This hedging portfolio should
have a payout close to that of the claim, especially at the points with a high probability of
occurring.

2.3.2. Indifference Pricing Algorithm

As described in Section 2.3.1, an indifference price for selling a liability c is the least
amount of cash one needs to add to the initial wealth so that his or his risk does not worsen.
To explain this in more detail, assume that an agent does not have any initial liability, but
has an initial wealth, W. The agent has the minimum risk ϕ(W, 0). As he or she sells a claim
(exotic option) c creating future liability, the agent’s minimum risk becomes ϕ(W, c). It is
clear that ϕ(W, c) ≥ ϕ(W, 0) as including a non-negative liability c in the objective function
will only worsen the optimal risk. In order to reduce the additional risk from selling, the
agent needs to add some cash w into the initial wealth. The minimum cash needed to be
added to the initial wealth after selling which makes ϕ(W, c) = ϕ(W + w, 0) is called an
indifference price for selling. It is called “indifference” as it is the cash an agent needs to
charge so that after selling, his or her minimum risk remains the same. The mechanism for
finding the indifference price for buying is similar.

The process of finding indifference prices for buying and selling and their hedging
portfolio are illustrated in Algorithm 3. This algorithm requires thirteen inputs. Most inputs
are the same as Algorithm 2 except TOL which is the tolerance level one can accept in
computing indifference prices. There are two outputs, w∗ and x, which are the indifference
price for the claim c (required as an input) and the hedging portfolio, defined by x = x∗ − x
where x∗ and x are optimal portfolios after and before selling, respectively. Algorithm 3
uses the bisection method to find the indifference prices. It starts with finding the optimal
risk where there is no initial liability (c = 0). It then finds the additional cash needed to be
added to the initial wealth so that the risk after selling or buying the new claim c 6= 0 is as
close to the initial risk as possible (with the difference less than TOL).
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Algorithm 3: Indifference prices and hedging portfolios (IndifferencePrices).

Input: µ, σ, r, m, numOptions, ν, θ, W, T, idx0, κ, TOL, and c
Output: w∗ and x

1: find [x, Mean0, initialRisk]← VarianceMinimize(µ, σ, r, m, numOptions, ν, θ, W, T, idx0, κ, 0)
2: find wl and wu ← additional cash wl and wu which make

VarianceMinimize(µ, σ, r, m, numOptions, ν, θ, W + wl , T, idx0, κ, c) ≤ initialRisk,
VarianceMinimize(µ, σ, r, m, numOptions, ν, θ, W + wu, T, idx0, κ, c) ≥ initialRisk

3: find [xl , Meanl , Sdl ]← VarianceMinimize(µ, σ, r, m, numOptions, ν, θ, W + wl , T, idx0, κ, c)
4: find [xu, Meanu, Sdu]← VarianceMinimize(µ, σ, r, m, numOptions, ν, θ, W + wu, T, idx0, κ, c)
5: while |Sdu − Sdl | ≥ TOL do
6: compute w∗ ← 1

2 (wl + wu)
7: find [x∗, Mean∗, Sd∗]← VarianceMinimize(µ, σ, r, m, numOptions, ν, θ, W + w∗, T, idx0, κ, c)
8: if Sd∗ ≥ initialRisk then
9: update wu ← w∗

10: update Sdu ← Sd∗

11: else
12: update wl ← w∗

13: update Sdl ← Sd∗

14: end if
15: end while
16: return w∗
17: return x ← x∗ − x

3. Results and Discussion
3.1. Results: Portfolio Optimization

In this section, we show the results which are the optimal portfolios obtained under
the ALM model and their payoffs as functions of the index value at the expiry date. We
also show the sensitivity of the optimal portfolios from the modeling parameters and the
required return. In other words, we investigate how the optimal portfolio changes if the
modeling parameters or the required return change. Unless otherwise stated, the initial
wealth is USD 100,000 and the required average return is 5%.

3.1.1. Optimized Portfolio

Figures 1 and 2 show the optimized portfolio as well as its payoff as a function of the
index value at the expiry date, respectively. The minimum standard derivation (risk) as well
as the mean of the payoff obtained with 10,000 out-of-sample simulations of the optimal
portfolio are given in Table 3. The optimization result was obtained using MATLAB version
R2022a which took on average 3.7511 seconds on a MacBook Air 13′′ with macOS 13.1
Apple M1 8-Core(TM) and 8.00 GB memory.

The left and the right panels of Figure 1 show the optimal quantities taken in put
and call options, respectively. It can be seen that the optimization suggests buying a
large amount of a call option with strike 265 and selling a relatively smaller amount of
the options with multiple strikes from 250–260. This portfolio is guaranteed to have a
minimum required return of 5% but has minimal variance given the view of the future
value of the index. It is interesting to see, in Figure 2, that the optimal portfolio payoff is
above USD 100,000, which is the initial wealth if the index value at the maturity is higher
than 250. Note that the current index value is 295.42. This portfolio is considered to be
very good as in reality, it is unlikely that the index will fall from 295.42 to below 250 within
30 days. However, if the index at the expiry date falls below 250, the loss increases sharply.
This payoff profile is very unlikely to be found for portfolio optimization in spot markets
such as those, for example, in [31,33,35].
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Figure 1. Optimized portfolio in the put options (left) and the call options (right).

Figure 2. The payoffs of the optimal portfolios as functions of the S&P 500 index.

As shown in Table 3, the mean of the optimized portfolio obtained with 10,000 out-of-
sample simulations is USD 105,000. This is not surprising as our required average return is
5%. The standard deviation is USD 1756.98, which is the smallest any portfolio can attain
given the required return.

Table 3. The mean and the standard deviation of the optimized portfolio obtained with 10,000
out-of-sample simulations.

Mean Standard Deviation

105,000.00 1756.98

Figure 3 shows the efficient frontier of the standard deviation minimization given bid
and ask spreads. The x-axis indicates the standard derivation, whereas the y-axis indicates
the level of the expected return. The plot indicates the minimum standard derivation
which can be attained given the required average return. We can see that as the required
average return increases, the minimum standard deviation (risk) which can be attained also
increases. This implies the classic statement in investment, the higher the risk, the higher
the return. The shape of the efficient frontier plotted here is standard and similar to those
plotted in [36–38].
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Figure 3. The coefficient frontier of the variance minimization.

3.1.2. Portfolio Sensitivity

Figure 4 (left) shows the payoffs of the optimized portfolios obtained with different
modeling parameters σ. The blue (solid) line is for σ = 0.2, and the yellow (dashed) line is
for σ = 0.3. The required average return is 5%. It can be seen that the optimized portfolio
changes according to the probabilistic view. The higher value of the modeling parameter σ
is, the more volatile the agent believes the value of the index at maturity will be. The payoff
for higher volatility (yellow) has a higher payoff at both tails compared with the blue one.
It suffers some loss if the index value at maturity is close to the current index value which
is more unlikely for higher volatility. It is worth noting that with the higher value of the
modeling parameter model σ, the variance of the payoff of the optimized portfolio becomes
bigger (see Figure 4 (right)).

Figure 4. The payoffs of the optimized portfolios as functions of the index value at the expiry date
obtained with σ = 0.2 and σ = 0.3 (left), and the kernel density of the payoff of at the optimized
portfolios obtained with 10,000 out-of-sample simulations (right).

Figure 5 (left) shows the payoffs of the optimized portfolios obtained different required
average returns r = 20% (green line, dashed), r = 10% (orange line, dotted), and r = 5%
(blue line, solid). We can see that with the higher required average return, the optimized
portfolio suffers bigger losses at the left tail. Although the probability that the index value
at the expiry date drops significantly below 250 is low, it increases the risk associated with
the optimized portfolio. None of the portfolios is better than the other. It after all depends
on the required average return the agent needs and the risk he or she can accept. It can
be seen on the right panel of Figure 5 that the distribution of the payoff of the optimized
portfolio with the higher required return is shifted to the right. This is not surprising as
the mean of this payoff must be equal to the required return. However, as you can see,
requiring a higher average return results in higher variance (risk) of the optimized portfolio.
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Figure 5. The minimum standard deviation of the portfolio payout distribution with r = 0.2, 0.1, 0.05
(left), the kernel density estimation of the portfolio payout with r = 0.2, 0.1, 0.05 (right).

Figure 6 shows the transaction cost of the portfolio payout. We increase the bid–ask
spread by adding 5% and 10% transaction costs for all trades. We can see that the graph
with transaction cost added has a more negative payoff than non-added transaction cost
(where r = 0.05 and σ = 0.2).

Figure 6. The transaction cost of the portfolio payout.

Table 4 and Figure 7 show the standard deviation and the payoffs of the optimized
portfolios obtained with different values of ν (the parameter in variance gamma models
which has control over kurtosis). The higher the kurtosis, ν = 0.1, the greater the value of
the risk, and when we lower the kurtosis, ν = 0.00001, the value of the risk also decreases.
In other words, the fatter the tails are, the harder the investment with low risk is.

Figure 7. The payoffs of the optimized portfolios obtained with ν = 0.1 (left) and ν = 0.00001 (right).
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Table 4. The standard deviations of the optimized portfolios obtained with the different values of ν.

ν Standard Deviation

0.1 5214.13
0.00001 1018.50

3.2. Results: Static Hedging

In this section, we price six difference “exotic” options, namely, an “European call
option” with c(ST) = ST − κ, a “quadratic option” with c(ST) = |ST − κ|2, a “log-option”
with c(ST) = 1000 ln(κ/ST), a “digital option” with c(ST) = 1000(ST ≥ κ), a “butterfly
spread option” with c(ST) = 100((ST − 295)− 2(ST − κ) + (ST − 305)), and “sine option”
with c(ST) = 1000 sin(ST × 2π/10), all with strike κ = 300. Note that the butterfly spread
option in the experiment has three strikes at 295, 300, 305.

We compute the indifference prices assuming that w = 100,000 and c = 0, that is,
assuming the agent has an initial position consisting only of 100,000 units of cash. The
indifference prices for buying and selling are given in Table 5.

Table 5. Indifference prices.

Claim Selling Price Buying Price

European call option 5.6 5.6
quadratic option 544.5 541.0
log-option 38.8 38.5
digital option 513.4 462.5
butterfly spread option 68.7 54.8
sine option 351.9 0.1

Figures 8–13 illustrates the hedging portfolios for the sale of all exotic options men-
tioned above and compare the payouts of the hedging portfolios as functions of the index
value at the maturity with the payouts of the exotic options. One can see that the hedging
portfolio replicates the payout of the sold option reasonably well under the incompleteness
of the market. We can see that the hedging portfolios try to replicate the payoffs of the sold
options, especially at the values of the index with a higher probability of occurring. This is
because we are minimizing the variance of the difference between the hedging portfolio
payoff and the sold option payoff. The difference between the two where the probability of
occurring is low does not significantly affect the overall variance. Note that if the payout
of the hedging portfolio is above that of the sold option, the seller will end up with some
profit. Because the seller enters this hedging portfolio after receiving the selling price from
the buyer. If the payout of the hedging portfolio is higher than that of the sold option, the
seller will have some money left after paying the buyer. In practice, the seller may charge
an additional amount which makes the hedging portfolio payoff higher. This will reduce
the risk where the hedging portfolio payout is less than that of the sold option.

It is noticeable that there are residuals in the hedgings. This is not the case in the
Black and Scholes framework in which standard put and call options can be hedged with
just it’s underlying and a bank account, see [4]. In such a framework, the completeness
of the market is assumed. Comparing the results with the Breeden–Litzenberger formula
carried out in [25] which provides an approximation formula for pricing and hedging
exotic options incomplete markets which normally includes holding many standard put
and call options for hedging, our hedging portfolio consists of just a few options. This is
very important in practice as it is much more inconvenient and more expensive to take a
position in many options. In addition, our scheme looks for the best combination of assets
subject to the agent’s view, initial position, and required return. Compared with the work
by Armstrong et al. [27,28] where the risk is measured by the exponential loss function, the
hedging portfolio under mean-variance criteria focuses more on reducing the deviation of
the hedging portfolio payout from that of the exotic option than to make a profit. Unlike
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the exponential loss utility, which is more sensitive to the loss, for mean-variance criteria,
the discrepancy on both profit and loss sides is equally minimized. Whether or not this
hedging scheme is better is subjective. Some users may focus more on perfect hedging
where the hedging payoff is as close as possible to that of the exotic option. However, some
may be willing to sacrifice the low discrepancy for the opportunity to make more profit.

Figure 8. The payoff of the hedging portfolio together with the payoff of the claim being priced of a
call option (left), the hedging portfolios for the put option (center) and call option (right).

Figure 9. The payoff of the hedging portfolio together with the payoff of the claim being priced of a
quadratic option (left), the hedging portfolios for the put option (center) and call option (right).

Figure 10. The payoff of the hedging portfolio together with the payoff of the claim being priced of a
log-option (left), the hedging portfolios for the put option (center) and call option (right).
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Figure 11. The payoff of the hedging portfolio together with the payoff of the claim being priced of a
price digital (left), the hedging portfolios for the put option (center) and call option (right).

Figure 12. The payoff of the hedging portfolio with the payoff of the claim being priced of a butterfly
spread option (left), the hedging portfolios for the put option (center) and call option (right).

Figure 13. The payoff of the hedging portfolio together with the payoff of the claim being priced of a
sine option (left), the hedging portfolios for the put option (center) and call option (right).

4. Conclusions

In this paper, we propose a scheme to compute indifference prices and the hedging
portfolios for financial derivatives in incomplete markets where the quotes come with
finite liquidity and bid–ask spreads. The scheme is built upon the modified mean-variance
portfolio optimization model as computing the indifference prices is the same as iteratively
solving the optimal investment problems. We illustrate the application of the scheme in the
S&P 500 mini options market where the tradable assets are cash, and 199 mini put and call
options written on the S&P 500 index. The index return is modeled by the variance gamma
process which gives the user control over the skewness and kurtosis.

We first solve the portfolio optimization problem and demonstrate the effects of
various parameters such as modeling parameters and the required average return on
the optimal portfolio and its payoff. After that, we compute the indifference prices for
six exotic options which are a “European call option”, a “quadratic option”, a “log-option”,
a “digital option”, a “butterfly spread option”, and a “sine option”. We show that the
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hedging portfolios obtained under this scheme provide decent approximations of the
payoffs of exotic options. This method can be an alternative to the classical derivatives
pricing under the Black and Scholes framework where all assets are assumed to be perfectly
liquid, ignoring bid and ask spreads as well as the limited available quantities for buying
and selling, which is not true in general. The six options priced here are just examples.
In addition, as opposed to the risk-neutral pricing and hedging scheme where it is very
unlikely to have solutions for complex derivatives, the method illustrated herein can also
be applied to price any exotic derivatives with explicit payoff functions. It can also be easily
applied in any other financial market apart from the S&P 500 market by just changing the
input data and the appropriate stochastic model used in the simulation.

The scheme herein can be improved in many aspects. First, the optimization is too
slow. By the time we finish the computation, the bid and ask prices and available sizes of
some assets might already have changed which renders the hedging portfolio not optimal
or not attainable. This can be improved by using an integral quadrature instead of Monte
Carlo simulations to estimate the objective function. As the density of the process is known,
the variance of the terminal loss can be expressed in terms of an integration that can be
approximated more efficiently with an integral quadrature reducing the simulation time as
well as the optimization problem size resulting in the reduction in overall computational
time. Another improvement is to include more than one random factor in the problem. As
seen in the Data section, we only have options written on a single index. The problem can
become more interesting if the data includes options in multiple markets such as options
written on S&P 500 index and options written on VIX. The challenge is to come up with a
sensible stochastic process to jointly model the two random factors.
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Appendix A

We illustrate the data mini S&P 500 which has 199 option prices taken on 19 May 2020
at 12:00:01 New York time in Table A1. IsPut = 1 means that it is the data for a put option.
Similarly, the data is for a call option if IsPut = 0.
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Table A1. Taken from Bloomberg terminal on the 19 May 2020 at 12:00:01 Bangkok time.

A B C D E F A B C D E F

Strike Bid Ask IsPut Bid
Size

Ask
Size Strike Bid Ask IsPut Bid

Size
Ask
Size

265 31.84 32.36 0 10 10 322 0.43 0.48 0 19 10
270 27.42 27.9 0 10 10 323 0.39 0.43 0 9 17
275 23.14 23.56 0 10 10 325 0.31 0.35 0 6 16
278 20.65 21.04 0 10 10 327 0.25 0.28 0 5 13
279 19.9 20.1 0 1 1 328 0.22 0.26 0 14 20
280 19.08 19.29 0 1 1 330 0.18 0.21 0 5 19
281 18.28 18.5 0 1 1 335 0.11 0.14 0 1 3
282 17.49 17.68 0 16 16 340 0.06 0.1 0 1 1
283 16.71 16.9 0 32 32 345 0.01 0.07 0 1050 1
284 15.92 16.12 0 48 48 350 0.02 0.05 0 1 1
285 15.16 15.37 0 48 48 250 1.12 1.17 1 16 10
286 14.41 14.59 0 64 64 255 1.4 1.48 1 15 210
287 13.67 13.85 0 80 80 260 1.76 1.84 1 8 134
288 12.93 13.11 0 80 80 264 2.11 2.2 1 13 108
289 12.22 12.39 0 96 96 266 2.32 2.4 1 6 2
290 11.51 11.69 0 96 96 267 2.42 2.51 1 6 5
291 10.82 11 0 112 112 268 2.54 2.62 1 2 14
292 10.14 10.34 0 162 112 269 2.65 2.74 1 4 106
293 9.49 9.68 0 162 112 271 2.9 2.99 1 1 107
294 8.85 9.04 0 50 128 272 3.02 3.13 1 2 100
295 8.24 8.42 0 50 128 273 3.16 3.27 1 2 101
296 7.65 7.82 0 50 128 274 3.29 3.41 1 100 101
297 7.07 7.25 0 50 128 276 3.61 3.72 1 1 100
298 6.52 6.69 0 50 128 277 3.77 3.89 1 1 100
299 6 6.16 0 50 128 307 14.8 15.08 1 1 1
300 5.5 5.65 0 50 144 308 15.4 15.84 1 10 10
301 5.02 5.16 0 50 144 309 16.12 16.58 1 10 10
302 4.57 4.71 0 50 160 311 17.64 18.14 1 10 10
303 4.14 4.28 0 50 176 312 18.43 18.95 1 10 10
304 3.74 3.88 0 50 192 313 19.24 19.78 1 10 10
305 3.37 3.5 0 100 308 314 20.07 20.63 1 10 10
306 3.03 3.15 0 100 324 316 21.78 22.39 1 10 10
310 1.91 2 0 110 1 317 22.66 23.29 1 10 10
315 1.02 1.1 0 5 9 318 23.56 24.2 1 10 10
320 0.55 0.6 0 7 11 319 24.47 25.12 1 10 10
265 2.21 2.29 1 9 2 321 26.32 27 1 10 10
270 2.77 2.86 1 4 4 322 27.25 27.95 1 10 10
275 3.45 3.56 1 2 100 323 28.2 28.9 1 10 10
278 3.94 4.06 1 1 100 325 30.11 30.83 1 10 10
279 4.1 4.24 1 100 100 327 32.04 32.77 1 10 10
280 4.29 4.43 1 100 100 328 33.01 33.75 1 10 10
281 4.47 4.62 1 50 50 330 34.96 35.71 1 10 10
282 4.68 4.83 1 50 50 335 39.88 40.65 1 10 10
283 4.89 5.04 1 50 50 340 44.83 45.61 1 10 10
284 5.11 5.27 1 50 50 345 49.8 50.58 1 10 10
285 5.34 5.5 1 50 50 350 54.78 55.57 1 10 10
286 5.58 5.75 1 50 50 329 0.2 0.23 0 6 18
287 5.83 6.01 1 50 50 329 33.99 34.73 1 10 10
288 6.1 6.28 1 50 50 331 0.16 0.2 0 16 24
289 6.37 6.57 1 50 50 332 0.15 0.18 0 6 18
290 6.72 6.86 1 144 50 331 35.94 36.7 1 10 10
291 6.97 7.18 1 50 50 332 36.92 37.68 1 10 10
292 7.3 7.51 1 50 50 333 0.13 0.17 0 19 28
293 7.7 7.86 1 128 50 333 37.91 38.67 1 10 10
294 7.99 8.23 1 50 50 334 0.12 0.15 0 1 6
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Table A1. Cont.

A B C D E F A B C D E F

Strike Bid Ask IsPut Bid
Size

Ask
Size Strike Bid Ask IsPut Bid

Size
Ask
Size

295 8.37 8.61 1 50 50 334 38.89 39.66 1 10 10
296 8.77 9.02 1 50 50 336 0.1 0.13 0 1 3
297 9.18 9.44 1 142 13 336 40.87 41.64 1 10 10
298 9.62 9.9 1 13 13 337 0.09 0.12 0 1 12
299 10.09 10.37 1 125 13 338 0.08 0.11 0 6 17
300 10.59 10.87 1 112 13 337 41.86 42.63 1 10 10
301 11.11 11.4 1 96 109 338 42.85 43.62 1 10 10
302 11.65 11.94 1 80 80 339 0.07 0.11 0 18 12
303 12.22 12.52 1 64 64 341 0.03 0.11 0 1050 950
304 12.8 13.13 1 48 48 339 43.84 44.61 1 10 10
305 13.46 13.74 1 32 32 341 45.83 46.6 1 10 10
306 14.11 14.4 1 16 16 342 0.02 0.11 0 1250 1050
310 16.87 17.35 1 10 10 342 46.82 47.6 1 10 10
315 20.92 21.5 1 10 10 343 0.02 0.1 0 950 950
320 25.39 26.06 1 10 10 344 0.04 0.1 0 1 900
324 0.34 0.39 0 14 25 343 47.81 48.59 1 10 10
324 29.15 29.87 1 10 10 344 48.81 49.59 1 10 10
326 0.28 0.31 0 6 11 346 0.03 0.09 0 1 950
326 31.07 31.8 1 10 10 346 50.8 51.58 1 10 10
250 45.66 46.3 0 10 10 347 51.8 52.58 1 10 10
255 40.96 41.57 0 10 10 348 52.79 53.57 1 10 10
260 36.36 36.93 0 10 10 349 53.79 54.57 1 10 10
264 32.73 33.27 0 10 10 262 34.54 35.09 0 10 10
266 30.95 31.46 0 10 10 263 33.63 34.18 0 10 10
267 30.06 30.56 0 10 10 262 1.93 2.01 1 7 26
268 29.18 29.67 0 10 10 263 2.02 2.1 1 12 5
269 28.3 28.78 0 10 10 251 44.71 45.35 0 10 10
271 26.56 27.02 0 10 10 252 43.77 44.4 0 10 10
272 25.7 26.15 0 10 10 253 42.83 43.45 0 10 10
273 24.84 25.28 0 10 10 254 41.9 42.51 0 10 10
274 23.99 24.42 0 10 10 256 40.03 40.63 0 10 10
276 22.31 22.71 0 10 10 257 39.11 39.7 0 10 10
277 21.48 21.87 0 10 10 258 38.2 38.78 0 10 10
307 2.71 2.83 0 100 340 259 37.28 37.86 0 10 10
308 2.42 2.53 0 101 356 261 35.45 36.01 0 10 10
309 2.15 2.25 0 102 1 251 1.17 1.22 1 15 8
311 1.69 1.78 0 113 1 252 1.23 1.28 1 12 12
312 1.49 1.58 0 102 4 253 1.29 1.34 1 3 16
313 1.32 1.4 0 3 2 254 1.35 1.4 1 14 4
314 1.16 1.24 0 4 8 256 1.46 1.54 1 21 13
316 0.91 0.96 0 2 1 257 1.53 1.61 1 23 13
317 0.8 0.85 0 2 6 258 1.6 1.68 1 19 12
318 0.71 0.76 0 3 9 259 1.68 1.76 1 14 9
319 0.63 0.67 0 5 4 261 1.84 1.92 1 12 9
321 0.49 0.54 0 7 16
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