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Abstract: This research paper presents a deep-learning approach to early detection of skin cancer
using image augmentation techniques. We introduce a two-stage image augmentation process
utilizing geometric augmentation and a generative adversarial network (GAN) to differentiate skin
cancer categories. The public HAM10000 dataset was used to test how well the proposed model
worked. Various pre-trained convolutional neural network (CNN) models, including Xception,
Inceptionv3, Resnet152v2, EfficientnetB7, InceptionresnetV2, and VGG19, were employed. Our
approach demonstrates an accuracy of 96.90%, precision of 97.07%, recall of 96.87%, and F1-score of
96.97%, surpassing the performance of other state-of-the-art methods. The paper also discusses the
use of Shapley Additive Explanations (SHAP), an interpretable technique for skin cancer diagnosis,
which can help clinicians understand the reasoning behind the diagnosis and improve trust in the
system. Overall, the proposed method presents a promising approach to automated skin cancer
detection that could improve patient outcomes and reduce healthcare costs.

Keywords: deep learning; skin cancer; image augmentation; GAN; geometric augmentation; image
classification; interpretable technique

1. Introduction

Skin cancer is one of the most prevalent and potentially life-threatening forms of
cancer worldwide. For more effective therapy and better patient recovery, early detection
and diagnosis are essential [1,2]. In recent years, the study of medical image analysis
has been completely transformed by convolutional neural networks (CNNs) compared to
other advanced machine learning models, supervised or unsupervised, such as k-nearest
neighbor (KNN) and support vector machine (SVM), offering a promising approach for
the automated detection of skin cancer [3]. CNNs have shown to be extremely effective
at extracting complicated patterns and characteristics from medical images, making them
an ideal tool for automating the process of skin cancer detection. This technology has the
potential to assist dermatologists and healthcare professionals in identifying skin lesions
and distinguishing between benign and malignant tumors.

HAM10000 and the International Skin Imaging Collaboration (ISIC) are two datasets
that are widely utilized in skin cancer detection studies. HAM10000 is a comprehensive
dataset containing diverse dermoscopic images of pigmented skin lesions, a common
category of skin cancer [4]. An advantage of the HAM10000 dataset lies in its relatively
smaller size compared to the expansive ISIC dataset. This may be beneficial for researchers
facing limited computational resources or who want to focus on a specific subset of skin
lesions. However, the ISIC dataset has unique advantages, including a larger scale and the
inclusion of additional metadata such as lesion location and patient age. The ISIC datasets
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have been used for segmentation tasks, but the availability of delineated segmentation
masks is limited compared to the classification tasks [5]. The choice of dataset often depends
on the specific research investigation and the resources available for the study.

The issue with skin cancer detection datasets is the imbalance in the number of data
samples across different classes. This imbalance is observed in both the HAM10000 and ISIC
2017–2020 datasets. In the HAM10000 dataset, which includes a total of 10,015 images, the
highest number of data samples can be seen in the melanoma category, with 6705 images,
while the lowest number of samples is present in the dermatofibroma category, consisting of
115 images [6]. Meanwhile, in the ISIC 2020 dataset, encompassing a total of 33,126 images,
the most abundant data samples are found within the unknown (benign) category, which
comprises 27,126 images, whereas the solar lentigo category contains the fewest data
samples, with only 7 images [7]. Data imbalance can lead to biased results in classification
because the model may be more likely to predict the overrepresented class.

Several approaches can be employed to address imbalances in the amount of data,
such as geometric-transformation-based augmentation, feature-space augmentation, and
GAN-based augmentation [8]. Geometric data augmentation is a technique employed in
the areas of machine learning and computer vision to enhance the variability of a dataset
by doing geometric modifications on the original data. The technique transforms the
geometric configuration of images by moving the positions of individual pixels without
modifying the values of those pixels. These transformations involve altering the position,
orientation, or scale of the data while preserving their inherent characteristics. Geometric
data augmentation is particularly useful for image data and is often applied to improve the
performance of deep learning models. Some common geometric augmentations include
rotation, scaling, translation, shearing, flipping, cropping, and zooming.

In feature-space data augmentation, there are two approaches: namely, the under-
sampling and oversampling approaches. In the undersampling approach, the number of
samples from the majority class is reduced to create a more balanced distribution between
the classes. By reducing the number of majority class samples, undersampling can help
prevent the model from being biased towards the majority class and can improve its ability
to recognize the minority class. However, undersampling may result in a loss of potentially
valuable information, so it should be applied carefully. In the oversampling approach, addi-
tional samples from the minority class are generated to create a more balanced distribution
between the classes. The goal is to increase the representation of the minority class to match
the number of samples in the majority class, making the dataset more balanced. There are
several oversampling methods, with one of the most commonly used techniques being
SMOTE (Synthetic Minority Over-sampling Technique). In order to generate synthetic sam-
ples for the minority class, SMOTE [9] interpolates between existing data points. This helps
to improve the model’s ability to learn from the minority class and can lead to better classi-
fication results. However, it is important to be cautious with oversampling, as generating
too many synthetic samples can lead to overfitting and reduced model generalization.

The concept of GAN-based augmentation refers to the use of generative adversarial
networks (GANs) for the purpose of producing synthetic data samples that can be used to
augment an existing dataset [10]. This technique is particularly useful in cases where the
original dataset is small or imbalanced, as it can help to increase the size of the dataset and
balance the class distribution. Augmentation by GAN has been implemented effectively
in numerous domains, including medical imaging, natural language processing, and
computer vision. Some examples of GAN augmentation in medical imaging include the
generation of synthetic CT scans, MRI images, and X-ray images to aid in disease diagnosis
and treatment.

In general, resampling approaches can be divided into two categories: namely, input-
space data augmentation and feature-space data augmentation. Input-space resampling
involves manipulating the original data instances themselves before any feature extraction.
Meanwhile, feature-space resampling is applied after feature extraction. Geometric transfor-
mations and GAN-based augmentations are categorized as input-space data augmentation,
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whereas SMOTE is classified as feature-space data augmentation. The benefit of input-space
data augmentation is its independence from the feature extraction method, providing greater
flexibility in choosing feature extraction methods. Therefore, in this study, we propose a two-
step augmentation, including geometric and GAN-based augmentation, for early detection of
skin cancer. The main contributions of this research article are:

• The integration of geometric and GAN-based augmentation for skin cancer detection;
• In this study, we provide an explainable AI using SHAP to explain how the model

makes decisions or predictions.

2. Related Works

The related studies in this research are categorized into three groups: studies us-
ing feature-space augmentation, geometric augmentation, and GAN-based augmentation.
Augmentation or oversampling is employed to address the issues of limited data and
imbalanced data. Both of these problems contribute to the reduced accuracy of the de-
tection model. This is also observed in skin cancer detection. Several studies have been
conducted regarding the use of augmentation or oversampling in skin cancer detection.
Abayomi et al. [11] proposed a data augmentation strategy that entails creating a new skin
melanoma dataset using dermoscopic images from the publicly available PH2 dataset. The
study adopted SMOTE-conv [12], which is a variant of SMOTE. SMOTE-conv utilizes a
covariance matrix to detect relationships among attributes and generate synthetic instances.
The SqueezeNet deep learning network was then trained using these modified images.
In the binary classification scenario, it resulted in an accuracy of 92.18%, while in the
multiclass classification scenario, it achieved an accuracy of 89.2%.

SMOTE is an oversampling method used to balance the number of samples between
the majority and minority classes in a dataset. SMOTE randomly selects samples from
the minority class and creates new synthetic samples by combining them with those of
their nearest neighbors. This helps improve the classification performance on imbalanced
datasets. However, SMOTE tends to introduce noise and affect classification performance.
Therefore, K-means-SMOTE [13] was developed to address SMOTE’s limitations. It does
this by using k-means clustering to group samples and generate synthetic samples only
within clusters with fewer minority class instances. Chang et al. [14] adopted Kmeans-
SMOTE to address class imbalance in the ISIC 2018 and ISIC 2019 datasets. Five pre-
trained models—namely, VGG16, MELA-CNN, InceptionResNetV2, Inception V3, and the
dermatologist handcrafted method—were used to extract features. The minority class data
are oversampled using Kmeans-SMOTE and then classified using the Extreme Gradient
Boosting (XGB) classifier. The research yielded an accuracy of 96.5%, precision of 97.4%,
recall of 87.8%, AUC (Area Under the Curve) of 98.1%, and F1-score of 90.5%.

A study on a deep-learning-based skin cancer classification network (DSCC_Net) was
proposed by Tahir et al. [15]; the study proposes the development of a deep learning model
with multi-classification capabilities for the purpose of identifying skin cancer through the
analysis of dermoscopic pictures. The model was trained and evaluated on three public
datasets (HAM10000, ISIC2020, and DermIS), and the results showed that DSCC_Net
outperformed other state-of-the-art models in terms of accuracy, sensitivity, specificity, and
F1-score. The SMOTE Tomek [16] technique is used to balance the dataset by generating
synthetic samples for the minority class and removing noisy and borderline examples from
both the minority and majority classes. The DSCC_Net model demonstrates a notable level
of performance, achieving an accuracy rate of 94.17%, a recall rate of 93.76%, an F1-score of
93.93%, a precision rate of 94.28%, and an AUC of 99.42%.

An alternative approach is demonstrated by Alam et al. [17], who proposed geometric
augmentation in skin cancer detection. Data augmentation involved cropping the images
to 256 × 256, horizontal flipping, and rotation at various angles. The study utilized the
HAM10000 dataset, which initially consisted of 10,015 samples but which was increased to
over 30,000 images through data augmentation. Feature extraction was performed using
AlexNet, InceptionV3, and RegNetY-320. The proposed method achieved accuracy, F1, and
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ROC values of 91%, 88.1%, and 0.95, respectively. A similar approach was also carried
out by Sae Lim et al. [18], who proposed geometric augmentation techniques, including
rotation, zooming, shifting, and flipping. Experiments were performed using MobileNet
on the HAM10000 dataset, leading to performance metrics of accuracy 83.23%, specificity
87%, sensitivity 85%, and an F1-score of 82%.

Alsaidi et al. [19] demonstrated various augmentation techniques in skin cancer
detection. Their research proposed the use of GAN to address imbalanced data. Several pre-
trained models, including EfficientNet-B0, ResNet50, ViT, and ConvNeXT, were employed.
The utilization of GAN as augmentation and EfficientNet-B0 on the HAM1000 dataset
yielded an accuracy rate of 96.8%, precision rate of 96.8%, recall rate of 96.9%, and F1-score
of 96.8%. The development of GAN models for data augmentation was conducted by
Qin et al. [20], who proposed style-based GANs. This method was tested on the ISIC 2018
dataset and achieved an accuracy of 95.2%. Using the same dataset, Ali et al. [21] proposed
progressive generative adversarial networks (PGANs) and achieved an accuracy of 70.1%.

3. Materials and Methods
3.1. Dataset

HAM10000 (https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/
DVN/DBW86T, accessed on 2 July 2023) is a dataset containing clinical images of various
pigmented skin lesions, including both malignant (cancerous) and benign cases. The dataset
consists of 10,015 dermatoscopic images of various skin lesions. These images vary in their
types and characteristics. The data are categorized into seven categories based on the type
of skin lesion. These categories include melanocytic nevi (nv), melanoma (mel), benign-
keratosis-like lesions (bkl), basal cell carcinoma (bcc), actinic keratoses and intraepithelial
carcinoma (akiec), vascular lesions (vasc), and dermatofibroma (df ). Figures 1 and 2 show
the number and image samples of each category, respectively. Every image in the collection
is accompanied by clinical metadata that includes information such as patient age and
gender and the location of the skin lesion. Dermatology experts have provided annotations
and diagnoses for each image in this dataset. These annotations include information
about the type of lesion (whether it is malignant or benign) and its characteristics. The
images in the HAM10000 dataset are of high resolution and good quality, making them
suitable for in-depth analysis and diagnosis. HAM10000 is widely used by researchers
and machine learning practitioners to develop and evaluate algorithms for skin cancer
diagnosis. These data have played a crucial role in advancing the field of computer-aided
skin cancer diagnosis. HAM10000 is a publicly available dataset, allowing researchers and
developers to access and use it for non-commercial purposes.

Figure 1. Category distribution of HAM10000 dataset.

https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/DBW86T
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/DBW86T
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Figure 2. Example image of each class in HAM10000 dataset. From top to bottom: akiec, bcc, bkl, df,
nv, mel, and vasc.

3.2. The Proposed Skin Cancer Detection Method

Transfer learning is especially beneficial when there is minimal data for the new task or
when building a deep model from scratch would be computationally expensive and time-
consuming. In this study, skin cancer classification employs six pre-trained CNN models,
which include Xception, Inceptionv3, Resnet152v2, EfficientnetB7, InceptionresnetV2, and
VGG19. In order to build a robust model, we apply augmentation techniques to categories
that have a limited number of images. Two-stage input-space augmentations—namely,
geometric and GAN augmentations—are proposed. Figure 3 shows the flow of skin cancer
detection with the proposed augmentation.

Geometric augmentation is one of the data augmentation techniques used in computer
image processing, particularly in the context of deep learning and pattern recognition. The
goal of geometric augmentation is to enhance the diversity of training data by altering the
geometry of the original image without changing the associated labels or class information
related to that image. In this way, machine learning models can learn more general patterns
and are not overly dependent on specific poses, orientations, or geometric transformations.

Some commonly used geometric augmentation techniques in deep learning include:
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1. Rotation: images can be rotated by a certain angle, either clockwise or counterclock-
wise.

2. Translation: images can be shifted in various directions, both horizontally and verti-
cally.

3. Scaling: images can be resized to become larger or smaller.
4. Shearing: images can undergo linear distortions, such as changing the angles.
5. Flipping: images can be flipped horizontally or vertically.
6. Cropping: parts of the image can be cut out to create variations.
7. Perspective Distortion: images can undergo perspective distortions to change the

viewpoint.

By applying these geometric augmentation techniques, training data can be enriched
with geometric variations, which helps machine learning models become more robust
to variations in real-world images. This allows the model to perform better in pattern
recognition tasks, such as object classification, object detection, or image segmentation,
even when objects appear in different orientations or poses.

Figure 3. The proposed skin cancer detection method.

GAN [22] augmentation refers to the use of generative adversarial networks (GANs)
as one of the data augmentation techniques in the context of machine learning, especially
in image processing. GAN is an artificial neural network architecture consisting of two
models, the generator and the discriminator, that compete in a game to improve their capa-
bilities [23]. In the context of data augmentation, GAN augmentation involves using the
GAN generator to create additional data that are similar to the existing training data. The
GAN generator tries to create images that appear authentic, while the GAN discriminator
attempts to distinguish between images generated by the generator and real images.
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By combining the images generated by the GAN generator with the training data, the
dataset can be enhanced with image variations that appear realistic. GAN augmentation
has been proven effective at improving the performance of machine learning models,
especially in image recognition tasks such as object classification, object detection, or image
segmentation, as it can create more diverse and relevant image variations.

3.3. Design of Experiments

In the experiment, 20% of the 10,015 images, which are 2003 images, are utilized for
testing, while the remaining 8012 images are split into 90% (7210) for training and 10%
(802) for validation. Three methods are used to oversample the data: geometric, GAN,
and geometric+GAN augmentations. Experiments are carried out using Python 3.11.5 and
were run on an Nvidia DGX Station A100 with a 40 GB GPU, a 64-core CPU, and 512 GB of
DDR4 RAM.

Several experimental schemes are established to achieve the best performance. In
the first scheme, skin cancer detection is conducted using the original data (without aug-
mentation). In the second, third, and fourth schemes, the original data are augmented
using geometric augmentation, GAN augmentation, and geometric+GAN augmentation,
respectively. This study uses rotation, shift, shear, zoom, flip, and brightness for geometric
augmentation, with detailed parameter values shown in Table 1. During GAN-based
augmentation, a total of 1000 epochs are run with a batch size of 64. Table 2 shows the
structure of discriminator and generator networks of GAN-based augmentation. In the dis-
criminator, we employ the Adam optimizer with a learning rate of 0.0002 along with binary
cross-entropy as the loss function. LeakyReLU with α = 0.2 is applied as the activation
function for all layers except the last one, where a sigmoid activation function is utilized. A
discriminator dropout with a probability of 0.2 is applied. Also in the generator network,
each layer utilizes LeakyReLU with α = 0.2 except for the final layer, which employs Tanh
as the activation function. The parameter values of the training model, such as optimizer,
learning rate, and epoch, are shown in Table 3. In this experiment, we also conduct trials
with a custom FC layer configuration as shown in Table 4, consisting of a dense layer with
64 neurons, a dense layer with 32 neurons, and a dense layer with 7 neurons [24].

Table 1. Summary of geometric augmentation parameters.

Parameter Value

rotation_range 20
width_shift_range 0.2
height_shift_range 0.2
shear_range 0.2
zoom_range 0.2
horizontal_flip True
brightness_range (0.8, 1.2)

This study also uses SHAP to explain skin cancer detection, which is a technique or
approach that utilizes the concept of Shapley values to explain the contribution of each
pixel or feature in an image to the model’s predictions. CNNs are frequently referred to as
black boxes due to the difficulty in deciphering their decision-making processes. For the
purpose of understanding model behavior and building trust, SHAP assists in improving
the transparency and interpretability of the CNN’s decision-making. In SHAP, the concept
of Shapley values is applied to measure and understand the influence of each pixel in the
image on the model’s output or prediction. This technique is valuable for interpreting
machine learning models, including the convolutional neural network (CNN) models
frequently used for image-based tasks. Positive SHAP values signify that the presence of a
pixel had a positive impact on the prediction (red pixel), whereas negative values indicate
the contrary (blue pixel) [25].
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Table 2. Summary of GAN-based augmentation parameters.

Layer Activation

Discriminator

Conv2D LeakyReLU
Conv2D LeakyReLU
Conv2D LeakyReLU
Conv2D LeakyReLU
Flatten
Dropout
Dense Sigmoid

Generator

Dense LeakyReLU
Conv2DTranspose LeakyReLU
Conv2DTranspose LeakyReLU
Conv2DTranspose LeakyReLU
Conv2D Tanh

Table 3. Parameters of training model.

Parameter Value

Optimizer Adam
Learning rate 0.0001
Optimizer parameters beta_1 = 0.9, beta_2 = 0.999
Epochs 100 (with early stopping)

Table 4. Summary of custom FC layers.

Layer Output Shape Activation

Dense (None, 64) Relu
Dense (None, 32) Relu
Dense (None, 7) Softmax

3.4. Performance Metrics

The evaluation of performance was conducted using seven metrics: accuracy (Acc),
precision (Prec), recall (Rec), F1-score, SpecificityAtSensitivity, SensitivityAtSpecificity, and
G-mean. Accuracy assesses the proportion of true positives and true negatives among
all the images. Precision is a metric that quantifies the accuracy of a model’s positive
predictions. It is calculated by dividing the number of accurate positive predictions by the
total number of positive predictions. Recall, also known as sensitivity, measures the ratio
of true positives to all relevant elements, i.e., the true positives in the dataset. Specificity
is a metric that assesses the model’s capability to accurately recognize instances that are
actually not part of the positive class in a classification scenario. The F1-score represents the
harmonic mean of recall and precision, providing an indication of classification accuracy
in imbalanced datasets. Equations (1)–(6) define these seven metrics. G-mean, short for
geometric mean, is utilized to assess the effectiveness of classification models, particularly
in situations where imbalanced datasets exist.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision =
TP

TP + FP
(2)

Recall = Sensitivity =
TP

TP + FN
(3)

F1-score =
2 ∗ Precision ∗ Recall

Precision + Recall
(4)
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Speci f icity =
TN

TN + FP
(5)

G-mean =
√

sensitivity × speci f icity (6)

4. Results and Discussion

Before the prediction process, data augmentation is performed on the training, vali-
dation, and testing data in the HAM10000 dataset using geometric augmentation, GAN
augmentation, and geometric+GAN augmentation. The limited number of images in the
skin cancer class is augmented to bring it closer to the number of images in the class with
the highest number of images (nv class). The number of images in each class before and
after augmentation is shown in Table 5.

Table 6 shows the performance comparison of several pre-trained models with the
proposed augmentation method. Using the original data, Resnet152v2 performed the best
based on accuracy (84.12%), precision (84.77%), recall (83.67%), and F1-score (84.22%). How-
ever, when considering sensitivity, specificity, and G-mean, EfficientnetB7 achieved the best
metric values with 99.49%, 94.91%, and 97.17%, respectively. Through the augmentation
scheme we proposed, the accuracy of skin cancer detection can be enhanced, reaching a
range of 96% to 97.95%. Overall, geometric augmentation produced the best performance
based on accuracy, precision, and F1-score metrics, while geometric+GAN yielded the
best metrics in terms of sensitivity, specificity, and G-mean values. SensitivityAtSpecificity,
SpecificityAtSensitivity, and G-mean all approach 100% when employing geometric+GAN
on a tested pre-trained model. It is clear from Table 7 that changing the FC layer makes the
accuracy go up to 98.07% when EfficientnetB7 and geometric augmentation are used.

Table 5. Distribution of each skin cancer category for each augmentation scheme.

Original Geometric Aug. GAN Geometric Aug.+GAN

Category Train Test Val Train Test Val Train Test Val Train Test Val

vasc 110 26 6 4801 1350 554 4843 1359 503 4805 1371 529
nv 4822 1347 536 4826 1316 563 4854 1302 549 4856 1300 549
mel 792 222 99 4877 1303 525 4858 1319 528 4836 1361 508
df 83 25 7 4775 1423 507 4831 1325 549 4831 1340 534
bkl 785 224 90 4887 1316 502 4813 1329 563 4831 1337 537
bcc 370 101 43 4783 1360 562 4792 1387 526 4798 1394 513
akiec 248 58 21 4844 1319 542 4802 1366 537 4836 1284 585

Num. images 7210 2003 802 33,793 9387 3755 33,793 9387 3755 33,793 9387 3755

Total images 10,015 46,935 46,935 46,935

Figure 4 shows sample accuracy results from the training and validation of Efficient-
netB7 on the original dataset and the proposed augmentation. The training and validation
accuracies appear to overfit the original dataset (Figure 4a). Validation accuracy is im-
proved by geometric augmentation (Figure 4b), thereby reducing overfitting. Training
accuracy is enhanced through the use of GAN and geometric+GAN (Figure 4c,d).

The sample confusion matrices generated from the original dataset and the best-
proposed model are shown in Figures 5 and 6, respectively. Both of these confusion
matrices were generated using EfficientnetB7. In Figure 5, many classes are still predicted
inaccurately due to imbalanced data. In Figure 6, skin cancer images in the df and vasc
classes can be accurately classified with no classification errors. Only 3 images out of
1319 images in the akiec class were misclassified as bcc. Six mispredictions were observed
among bcc samples out of 1360. Fifty-two instances of bkl samples were inaccurately
predicted out of a comprehensive pool of 1316 samples. Out of the overall 1303 samples,
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70 samples belonging to the mel class were predicted incorrectly. Similarly, for nv cases,
50 mistakes were found in 1316 samples.

Table 6. Performance of the proposed augmentation method on several pre-trained models.

Augmentation
Method

Pre-Trained
Model Acc Prec Rec F1 Sensitivity

AtSpecificity
Specificity

AtSensitivity G-Mean Epoch

Original Data

Xception 79.93 80.70 79.53 80.11 99.16 91.71 95.36 12
Inceptionv3 78.88 79.51 78.48 78.99 99.31 92.31 95.75 11
Resnet152v2 84.12 84.77 83.67 84.22 99.33 93.56 96.40 18
EfficientnetB7 78.03 79.63 77.28 78.44 99.49 94.91 97.17 11
InceptionresnetV2 79.63 80.20 78.68 79.44 99.28 91.76 95.45 19
VGG19 81.73 81.83 81.63 81.73 99.12 91.26 95.11 28

Geometric

Xception 97.05 97.06 97.01 97.03 99.87 99.12 99.49 19
Inceptionv3 97.38 97.48 97.35 97.41 99.90 99.20 99.55 31
Resnet152v2 96.90 96.95 96.86 96.90 99.85 98.93 99.39 28
EfficientnetB7 97.95 98.00 97.90 97.95 99.91 99.41 99.66 19
InceptionresnetV2 97.40 97.46 97.36 97.41 99.89 99.20 99.55 28
VGG19 97.22 97.24 97.20 97.22 99.83 98.84 99.33 32

GAN

Xception 96.08 96.35 95.96 96.16 99.86 98.70 99.28 10
Inceptionv3 96.50 96.62 96.45 96.53 99.86 98.64 99.25 16
Resnet152v2 96.30 96.47 96.23 96.35 99.79 98.37 99.08 20
EfficientnetB7 96.48 96.59 96.44 96.51 99.79 98.25 99.02 20
InceptionresnetV2 96.22 96.32 96.20 96.26 99.82 98.44 99.13 18
VGG19 96.22 96.26 96.20 96.23 99.70 100.00 99.85 38

Geometric
+ GAN

Xception 96.21 96.51 96.04 96.27 99.94 99.22 99.58 9
Inceptionv3 96.45 96.56 96.39 96.48 99.86 98.56 99.21 20
Resnet152v2 96.59 96.75 96.45 96.60 99.86 98.87 99.36 14
EfficientnetB7 96.50 96.61 96.43 96.52 99.89 98.92 99.40 14
InceptionresnetV2 96.71 96.82 96.67 96.74 99.85 98.62 99.23 21
VGG19 95.39 97.36 93.89 95.59 100.00 99.93 99.96 17

Table 7. Performance of the proposed augmentation method on the custom FC layer (three dense
layers with 64 neurons, 32 neurons, and 7 neurons, respectively).

Augmentation
Method

Pre-Trained
Model Acc Prec Rec F1 Sensitivity

AtSpecificity
Specificity

AtSensitivity G-Mean Epoch

Geometric EfficientnetB7 98.07 98.10 98.06 98.08 99.92 99.46 99.69 20
GAN Inceptionv3 96.48 96.63 96.44 96.53 99.83 98.54 99.18 17
Geometric
+ GAN InceptionresnetV2 96.90 97.07 96.87 96.97 99.86 98.90 99.38 22

We performed a comparative analysis to evaluate the performance of our model by
comparing it to the outcomes of earlier research that utilized the use of the HAM10000
dataset, as shown in Table 8. Our proposed approach outperforms earlier findings in
a number of metrics. Our limitation is mainly in terms of accuracy when compared to
Gomathi et al. [4]. The accuracy rate still needs improvement, and we plan to explore
other deep-learning architectures to enhance skin cancer detection. However, in terms of
recall, precision, and F1, our approach outperforms the previous research. The standard
deviations of accuracy, precision, and recall in our proposed methods also indicate low
values, suggesting that our proposed approach demonstrates consistent performance across
all three metrics. Figure 7 shows the SHAP explanations of akiec, bcc, bkl, df, mel, nv, and
vasc samples. The explanations are displayed on a clear grey background, with the testing
images on the left.
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(a) Original dataset (b) Geometric augmentation

(c) GAN Augmentation (d) Geometric+GAN Augmentation

Figure 4. The samples of training and validation accuracy on EfficientnetB7.

Figure 5. Confusion matrix of EfficientnetB7 on original dataset.

Figure 6. Confusion matrix of the best performance model (EfficientnetB7+Custom FC using geomet-
ric augmentation).
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Figure 7. The results of SHAP explanation on InceptionResnetV2 using Geometric+GAN augmenta-
tion. The sample images are correctly classified as akiec, bcc, bkl, df, mel, nv, and vasc since the high
concentrations of red pixels are located in the second, third, fourth, fifth, sixth, seventh, and eighth
explanation column images, respectively.

Table 8. A comparative analysis of performance with the latest models.

Ref. Method Acc Prec Rec F1 Stdev

Alam et al. [17] AlexNet, InceptionV3, and RegNetY-320 91 - - 88.1 -
Kalpana et al. [2] ESVMKRF-HEAO 97.4 96.3 95.9 97.4 0.7767
Shan et al. [26] AttDenseNet-121 98 91.8 85.4 85.6 6.3003
Gomathi et al. [4] DODL net 98.76 96.02 95.37 94.32 1.7992
Alwakid et al. [27] InceptionResnet-V2 91.26 91 91 91 0.1501
Sae-Lim et al. [18] Modified MobileNet 83.23 - 85 82 -
Ameri [28] AlexNet 84 - - - -
Chaturvedi et al. [6] ResNeXt101 93.2 88 88 - 3.0022
Shahin Ali et al. [29] DCNN 91.43 96.57 93.66 95.09 2.5775
Sevli et al. [30] Custom CNN architecture 91.51 - - - -
Fraiwan et al. [31] DenseNet201 82.9 78.5 73.6 74.4 4.6522
Balambigai et al. [32] Grid search ensemble 77.17 - - - -
Shaheen et al. [33] PSOCNN 97.82 - - 98 -
This study Geometric+EfficientnetB7+Custom FC 98.07 98.10 98.06 98.08 0.0002

GAN+InceptionV3 96.50 96.62 96.45 96.53 0.0009
Geometric+GAN+InceptionresnetV2+Custom FC 96.90 97.07 96.87 96.97 0.0011

5. Conclusions

This study provides valuable insights into a deep-learning approach for the early
detection of skin cancer using image augmentation techniques. The proposed two-stage
image augmentation technique, involving both geometric augmentation and GAN aug-
mentation, demonstrated high performance. The proposed model achieves an accuracy of
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96.90%, precision of 97.07%, recall of 96.87%, and F1-score of 96.97%. The other metrics,
such as sensitivity, specificity, and G-mean, of the proposed augmentation method also
achieve better performance compared to the results from the original dataset. The use
of an interpretable technique for skin cancer diagnosis is also a significant contribution
to the field, as it can help clinicians understand the reasoning behind the diagnosis and
improve trust in the system. Overall, this research paper presents a promising approach to
automated skin cancer detection that could have a significant impact on patient outcomes
and healthcare costs. For future research, we will include another dataset, namely ISIC
2020, to validate the results of the next experiments.
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