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Kůdela, J. Evolutionary Computation

Techniques for Path Planning

Problems in Industrial Robotics: A

State-of-the-Art Review. Computation

2023, 11, 245. https://doi.org/

10.3390/computation11120245

Academic Editor: Alexandros

Tzanetos

Received: 27 October 2023

Revised: 20 November 2023

Accepted: 22 November 2023

Published: 4 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

computation

Review

Evolutionary Computation Techniques for Path Planning
Problems in Industrial Robotics: A State-of-the-Art Review
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Abstract: The significance of robot manipulators in engineering applications and scientific research
has increased substantially in recent years. The utilization of robot manipulators to save labor and
increase production accuracy is becoming a common practice in industry. Evolutionary computation
(EC) techniques are optimization methods that have found their use in diverse engineering fields.
This state-of-the-art review focuses on recent developments and progress in their applications for
industrial robotics, especially for path planning problems that need to satisfy various constraints that
are implied by both the geometry of the robot and its surroundings. We discuss the most-used EC
method and the modifications that suit this particular purpose, as well as the different simulation
environments that are used for their development. Lastly, we outline the possible research gaps and
the expected directions future research in this area will entail.

Keywords: evolutionary computation; evolutionary algorithms; path planning; industrial robots;
robot manipulators

1. Introduction

Recently, the field of robotics has attracted increased attention due to its prevalence in
scientific and engineering applications, such as underwater and space exploration, welding,
painting, assembly and medical applications, industrial and military uses, and many oth-
ers [1]. Robot manipulators perform point-to-point motions under kinematic and dynamic
constraints stemming from their geometry. Due to the coupling characteristics of multiple
degrees-of-freedom (DOF), it is generally difficult to find a control for the robot manipulator
that would precisely follow a desired trajectory [2]. This path planning problem, with its
schematized depiction in Figure 1, is one of the most fundamental and challenging research
topics in the field of industrial robotics, and it has received considerable interest from
research institutions and industrial companies in recent decades. Traditionally, the two
main formulations of the path planning problem for robotic manipulators use either the
configuration space (C-space) representation or the kinematic model [3]. In the C-space
representation, the path of the manipulator is reduced to the motion of a single point that
moves in an n-dimensional space, where n is the number of links of the manipulator [4].
The approaches using the kinematic model of the manipulator combine path planning and
redundancy resolution by solving the relationship between joint and task space motion [5].

Motion planning is a fundamental problem in industrial robotics because it involves
generating a path or trajectory for various types of robotic structures to follow to accom-
plish a specific task while avoiding obstacles and complying with various constraints.
The traditional task of planning trajectories for robots with high degrees-of-freedom, such
as industrial robots (usually four to seven DOFs), has undergone a significant revolution in
motion planning with the development of sampling-based algorithms [6–8]. Representative
examples of these algorithms include Rapidly Exploring Random Trees (RRTs) and Proba-
bilistic Roadmaps (PRMs). Deep neural network methods have also found applications in
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the motion planning problem, where a bi-directional rapidly-exploring random tree with
long short-term memory is integrated for the task of multi-robot assembly operations [9],
reinforcement learning for pick and place operations [10], as well as multi-objective rein-
forcement learning for various types of tasks in the relevant domain [11]. Recent reviews on
the approaches for motion planning of industrial robots focused on neural networks [12],
reinforcement learning techniques [13], and various forms of adaptive control [14,15].

Another possible solution to this type of problem is to use evolutionary algorithms
to solve partial tasks in a given area. In recent years, evolutionary algorithms have been
increasingly used in various areas of industrial robotics, including solving inverse kinemat-
ics problem [16,17], robot structure design [18–20], the utilization of digital twins [21–23],
robot calibration [24], and, last but not least, path planning [25]. The generalization of
evolutionary computation methods to different robotics settings, and the various open
challenges, are currently a point of ongoing discussions [26–28].

The primary motivation of this paper lies in investigating recent advances and appli-
cations in the field of evolutionary algorithms focused on motion planning in industrial
robotics, with the goal of expanding the research focus of the robotics lab Industry 4.0
Cell [29,30]. Although the utilization of evolutionary algorithms in the field of indus-
trial robotics is growing in popularity, a text summarizing the state-of-the-art and recent
developments was missing.

Figure 1. The fundamental type of path planning task in industrial robotics involves finding a
collision-free path from a starting point (Pstart) to a goal point (Pgoal).

The remainder of this paper is structured as follows. Section 2 discusses the most
common robotic structures used for experiments in path planning research. Section 3
presents the most widely used tools for implementing biologically inspired computational
algorithms. Section 4, as the most important part of the paper, provides a thorough review
of the use of evolutionary algorithms in industrial robotics for path planning. Finally,
in Section 5, we summarize the lessons learned and recommend future research directions.

2. Industrial Robots

In the field of industrial robotics, one commonly encounters three basic types of
robots [31]. Firstly, the parallel robot (also known as a delta robot) is a highly specialized
robot widely used in various industries [32]. Its unique design typically consists of three
arms connected to a fixed base in a triangular configuration. Delta robots are a popular
choice in environments where hygiene and cleanliness are crucial due to their sealed design.

Secondly, Selective Compliance Assembly Robot Arm (SCARA) robots are known for
their exceptional speed [33]. These robots have two rotary joints and one prismatic joint,
with a fixed base. Their design allows for high-speed horizontal motion and precise vertical
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positioning, making them ideal for applications requiring both speed and accuracy. Both
types of these robots excel in terms of speed, precision, and agility, making them perfect for
tasks such as pick-and-place operations, packaging, and high-speed assembly.

Last but not least, a robotic arm is designed to mimic the functions and movements
of a human arm [34]. This robotic system consists of multiple joints and links, enabling
it to perform various tasks with precision and flexibility. Robots may come in different
configurations, playing a crucial role in repetitive tasks such as welding, painting, pick-
and-place operations, as well as more advanced applications such as surgical procedures
or fruit picking. The mentioned types of robots are depicted in the Figure 2.

Figure 2. The most common robotic structures used for experiments in motion planning research
tasks. On the left side, there is a parallel robot with three to five degrees of freedom, a SCARA robot
in the middle with four DOF, and an articulated robot on the right with six DOF.

3. Tools for Robotic Applications

One of the most commonly used tools for implementing biologically inspired (and
also other standard) computational algorithms for path planning industrial robots is the
MATLAB programming language, utilizing the Robotics System Toolbox (https://www.
mathworks.com/products/robotics.html, accessed on 1 October 2023) and Global Op-
timization Toolbox (https://www.mathworks.com/products/global-optimization.html,
accessed on 1 October 2023). It is proprietary software that provides all the essential
functions and tools for addressing the given problem. The Robotics System Toolbox also
offers the capability of direct integration with robotic platforms such as Kinova or Univer-
sal Robots.

Not to be overlooked is Robot Operating System (ROS) (http://wiki.ros.org/ROS/
Introduction, accessed on 1 October 2023), which is primarily known for its openness
and broad developer base. In the field of robotic trajectory planning based on evolution-
ary algorithms, ROS, along with its additional components, can be a valuable tool that
allows for a wide range of possibilities for integration with real hardware. ROS is not
limited to programming languages such as Python or C++; the core computation itself
can be implemented in, for example, programming languages such as Julia, R, MATLAB,
and others.

In the context of exploring the use of evolutionary algorithms to solve various types
of optimization tasks, physics simulators such as PyBullet (https://pybullet.org/, accessed
on 1 October 2023) and Multi-Joint dynamics with Contact (MuJoCo) (https://mujoco.org/,
accessed on 1 October 2023) [35] can be employed. Within these programs, models of
robotic arms and environments can be created for testing and optimizing robot behavior.
Both of these simulators can be programmed using the Python programming language.

https://www.mathworks.com/products/robotics.html
https://www.mathworks.com/products/robotics.html
https://www.mathworks.com/products/global-optimization.html
http://wiki.ros.org/ROS/Introduction
http://wiki.ros.org/ROS/Introduction
https://pybullet.org/
https://mujoco.org/
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An essential aspect of this is simulating the dynamics between bodies, collisions, and other
factors [36].

In a limited representation within the field of developing robotic applications for tra-
jectory planning using evolutionary algorithms, one also encounters commercial software
such as RoboDK (https://robodk.com/, accessed on 1 October 2023). Specifically, RoboDK
is offline programming software with a wide range of supported robots. Additionally, this
software includes a post-processor for controlling real robots or can connect to a robot
through TCP-IP communication, provided it is supported. The software also integrates
capabilities for Matlab, Python, and C# APIs.

4. Evolutionary Algorithms

Over its long history, the field of evolutionary (or nature-inspired) computation pro-
duced a handful of pivotal evolutionary (metaheuristic) optimization algorithms, which
were inspired by various natural processes [37]. Although there has been an explosion
of “novel” evolutionary methods that draw on these principles [38–40], many of which
were found to hide their lack of novelty behind a flawed experimental analysis [41–44] or a
metaphor-rich jargon [45,46], these techniques are still among the most-utilized methods
for diverse and complex applications, where the use of standard optimization methods is
either found to be inadequate or overly computationally demanding [47,48]. Among these
applications are for instance the design of mechanical components [49], quantum opera-
tors [50] or airfoil geometry [51], landslide displacement prediction [52], inverse kinematics
control of a robot [53], or barrier option pricing in economics [54].

In this review, we focus on the application of evolutionary algorithms in industrial
robotics. More specifically, we investigate the recent advances and progress in applying
solid evolutionary computation techniques, such as Particle Swarm Optimization (PSO),
Genetic Algorithm (GA), Ant Colony Optimization (ACO), Differential Evolution (DE),
and Artificial Bee Colony (ABC), on the path-planning related problems for industrial
robots. These methods were selected for their prevalence, their competence in solving com-
plex problems in diverse disciplines [55], and because they are still subjected to theoretical
development. For each of the selected methods, we briefly describe its main mechanisms
and then summarize the recent advances reported in the reviewed papers. Figures 3 and 4
show the number of articles that focus on applying evolutionary computation techniques
for industrial robotics problems in Web of Science, which serves as the main database of
state-of-the-art research in evolutionary computation [56], and in this paper, respectively.
We can observe an increasing trend, especially in the last three years. Table 1 summarizes
the utilization of the reviewed evolutionary algorithms for the different robotic structures.
Lastly, in Tables 2–7 we give a structured overview of the reviewed papers, with informa-
tion about the utilized type of the robotic structure, type of studied problem, used software,
and whether or not the given paper considered only a simulated environment (without a
real-world implementation).

Figure 3. The graph represents the number of publications through the years based on the Web
of Science (WoS) server where the search query ‘industrial robotics path planning + presented
evolutionary algorithm’ was entered. The selection also includes mobile robotics.

https://robodk.com/
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Figure 4. An approximate trend in the utilization of the presented evolutionary algorithms is
mentioned in this article. The trend indicates that the most commonly used evolutionary algorithms
for robot trajectory planning are undoubtedly PSO and GA.

Table 1. The use of robotic structures depending on the type of evolutionary algorithm used to solve
the motion planning problem.

Type of Robotic Structure
Evolutionary Algorithm

PSO GA ACO DE ABC Others

(2, 3, . . . , n)-link (redundant) X X X X X
SCARA X X X
Parallel X X
Articulated (Industrial) X X X X X
Articulated (Collaborative) X X X X
Multi-Robot Cooperation X X X X
Special X X X X

4.1. Particle Swarm Optimization

One of the oldest, but still extensively studied and used evolutionary computation
techniques is PSO. This method was designed by simulating a simplified social model
inspired by the foraging behavior of a bird flocking or fish schooling. In PSO, a population
of particles iteratively searches for the optimal solution by adjusting their positions in a
multi-dimensional search space based on their own experience and the collective knowledge
of the swarm [57,58]. The main mechanisms of PSO are

x(t+1)
i = x(t)i + v(t+1)

i , (1)

where

• x(t)i represents the current position of particle i at iteration t.

• v(t+1)
i is the velocity of particle i at iteration t + 1, which is determined based on the

particle’s own best position (p(t)
i ) and the global best position found by any particle in

the swarm (g(t)):

v(t+1)
i = w · v(t)

i + c1 · r1 · (p
(t)
i − x(t)i ) + c2 · r2 · (g(t) − x(t)i ) (2)

where

• w is the inertia weight;
• c1 and c2 are acceleration coefficients;
• r1 and r2 are random numbers sampled from the uniform distribution.

In Table 2 we list the reviewed papers that used PSO as the optimization method
for path planning in industrial robotics applications. Time-optimal trajectory planning
is one of the most extensively explored applications of the PSO algorithm in the context
of solving motion planning problems for robotic arms. Several research publications
aimed to enhance the PSO algorithm through various modifications [59–63]. One of the
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initial approaches introduced a modification where the entire trajectory was divided into
segments, and optimization was performed at connection points called knot points. These
knot points encompass parameters such as joint angles, joint angular velocities, and joint
accelerations. The primary goal was to optimize these parameters at the knot points to
achieve optimal time trajectory planning, representing an improved version of the PSO
algorithm for this purpose [64].

Table 2. Considered literature on the motion planning problem solved using PSO.

Ref. Year Type of Robotic Structure Type of Problem Software Simulation Only

[64] 2006 2-link (Redundant) Point-to-point motion planning and
trajectory tracking. Unspecified Yes

[59] 2020 Special Point-to-point motion planning and
trajectory tracking. MATLAB Yes

[60] 2021 Articulated (Industrial) Point-to-point motion planning and
trajectory tracking. MATLAB No

[61] 2022 Articulated (Industrial) Collision-free path planning. MATLAB No

[62] 2022 5-link (Redundant) Point-to-point motion planning and
trajectory tracking. MATLAB Yes

[63] 2022 Articulated Point-to-point motion planning and
trajectory tracking. Unspecified Yes

[65] 2015 Articulated (Industrial) Point-to-point motion planning and
trajectory tracking. MATLAB No

[66] 2021 Articulated (Industrial) Collision-free path planning. MATLAB Yes

[67] 2021 Articulated (Industrial) Optimal trajectory planning of
complicated robotic timber joints. Rhino & MATLAB No

[68] 2022 Articulated Point-to-point motion planning and
trajectory tracking. MATLAB Yes

[69] 2022 Articulated (Collaborative) Collision-free path planning. MATLAB Yes
[70] 2023 Articulated Collision-free path planning. Unspecified No

[71] 2020 Paralell Point-to-point motion planning and
trajectory tracking. MATLAB Yes

[72] 2020 Articulated (Collaborative) Collision-free path planning. MATLAB & RoboDK Yes

[73] 2020 Articulated (Collaborative) Energy optimization for optimal motion
planning. CoppeliaSim No

[74] 2020 Articulated (Industrial) Energy optimization for optimal motion
planning. MATLAB Yes

[75] 2023 Special Collision-free path planning. Unspecified No
[76] 2021 Articulated (Industrial) Collision-free path planning. MATLAB No

[77] 2008 2-link (Redundant) Point-to-point motion planning and
trajectory tracking. Unspecified Yes

[78] 2008 Articulated Point-to-point motion planning and
trajectory tracking. Unspecified Yes

[79] 2015 Articulated Point-to-point motion planning and
trajectory tracking. Unspecified Yes

[80] 2018 7-link dual-arm Collision-free path planning. Unspecified Yes
[81] 2022 4-link dual-arm Collision-free path planning. Unspecified Yes
[82] 2022 Special Collision-free path planning. MATLAB Yes

Another explored area is the optimization of the trajectory itself. Enhanced versions
of the PSO algorithm have inspired numerous research proposals [66–70]. One of the
first modifications involved the utilization of the normalized step cost (NSC) for particle
initialization. Building upon this change, a specialized method has been developed for
reusing optimized parameters, storing them together with their respective NSC vectors.
In cases of constraint violations, parameters resembling the query NSC vector were chosen
to initialize particles, ultimately improving the PSO’s convergence in motion planning [65].

The PSO algorithm can be used not only with traditional robotic arms but also in
solving trajectory planning problems for delta robots. In this area, a modified PSO was
applied to optimize the spatial trajectory of a 4-3-3-4 degree polynomial interpolation.
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To obtain an optimal solution to the optimization process, particle parameters needed to be
optimized to achieve the best solution for each particle, leading to an extension involving
the addition of a dynamic change learning factor [71].

It is worth highlighting that the concept of Industry 4.0 takes collaborative robotics
into account, which involves the idea of robots safely and efficiently collaborating with
humans. The article [72] combined the methods of PSO and Charge Search System (CSS)
for dynamic path planning with obstacle avoidance in the field of human–robot collabora-
tion. The proposed method included the creation of a configuration space with obstacle
regions, the formulation of motion planning with obstacle avoidance using the CSS method,
and finally, the application of the PSO method to solve the path planning problem.

The PSO method, in conjunction with trajectory planning for robotic arms, has been
enhanced and implemented in various fields, including space, agriculture, and energy
consumption. In the context of energy consumption, the PSO method, along with a Bézier
curve interpolator, was designed to increase energy efficiency [73]. The combination of the
Bezier curve generator and PSO method generated smooth and energy-efficient trajectories
for point-to-point movements. In this case, the method was tested on a collaborative robot
UR3, with test results showing up to 40% savings, even in the worst-case scenario of 10%.
However, a weakness of this approach still exists in conducting several hundred real-world
experiments to find the optimal trajectory.

In the industrial sector, welding is an integral part of the process, and within Indus-
try 4.0, repetitive welding tasks are being replaced by robots, specifically robotic arms.
The authors of Ref. [74] addressed the optimization of trajectory planning for a collabo-
rative welding robot working alongside other industrial manipulators. The goal was to
minimize the energy consumption and running time of this robot while maintaining the
smoothness of its motion, without unnecessary pauses. Trajectory planning is carried out
by interpolating a cubic B-spline curve with time, which was optimized using PSO.

The field of agriculture presents an interesting challenge for trajectory planners based
on the PSO method, specifically in the context of fruit or vegetable picking. The improved
version PSO proposed in Ref. [75] can reduce collisions between the robotic arm and
branches while increasing the overall collection success. This enhanced version of PSO
is based on adaptively changing weights according to population density. Using the
proposed improved PSO allowed for finding the optimal desired point in the manipulator’s
workspace, minimizing the polynomial path length, and avoiding collisions with obstacles.
A similar issue was also addressed based on the extended Multi-Objective Particle Swarm
Optimization (MOPSO) method [76].

Robotic arms can be used not only on Earth but also in space. When solving problems
in space, it is important to consider that prior states of individual arm joints are often
needed when designing and implementing a trajectory planner. The metaheuristic solution,
such as MOPSO or PSO, has been found for solving the free-floating space robot path
planning problem [77–81] and it has also been extended to address obstacle avoidance.
The method introduced in Ref. [82] offered an extension with three populations, where the
first and second populations are optimized in the same way, while the third population
depends on them. Another extension of PSO in this context could be the implementation of
adaptive inertia weight [81].

4.2. Genetic Algorithm

GA is an optimization algorithm inspired by the process of natural selection and genet-
ics [83]. It is a population-based search algorithm that utilizes the concept of the survival of
the fittest. The new populations are produced through the iterative use of genetic operators
on individuals present in the population. The key elements of GA include chromosome
representation, selection, crossover, mutation, and fitness function computation.

GAs are highly versatile and can be applied to a wide range of problems, including the
motion planning problem in the field of industrial robotics, where they are quite popular
as is demonstrated by the list of reviewed papers shown in Table 3. The first article on this
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topic was published in 1991 [84]. The paper focused on a new GA-based obstacle avoidance
method with a three-degree-of-freedom planar robotic manipulator. Another publication
from the 1990s dealt with a similar topic, building on the previous article and improving
the accuracy of finding the desired point [85]. The results of the papers show that there
is great potential for the use of GAs in the field of robotics, as evidenced by the following
published papers.

Since the 2000s, the number of articles published in this area has increased several-
fold. One of the first publications presents a solution to the problem of determining the
optimal trajectory for a two-link robot and two cooperating robots in 2D space using GAs
and Adaptive Simulated Annealing (ASA) [86]. The GA and ASA techniques identify the
optimal trajectory based on the minimum joint torque requirements, but the simulations
show that although both methods converge to the global minimum, ASA converges to
the solution faster than the GA. As in the previous case, the trajectory planning of the
robotic manipulator is solved only in 2D space, with the difference being the use of a
three-link arm [87]. Trajectory planning in joint space uses GAs to minimize vibration
and/or execution time for point-to-point motion.

Table 3. Considered literature on the motion planning problem solved using GA.

Ref. Year Type of Robotic Structure Type of Problem Software Simulation
Only

[84] 1991 3-link (redundant) Path planning with obstacle avoidance. Unspecified Yes
[85] 1995 3-link (redundant) Collision-free path planning. Unspecified Yes

[86] 2002 2-link (redundant)
cooperating robots Path planning and torque minimization. Unspecified Yes

[87] 2002 3-link (redundant) Point-to-point trajectory planning to minimize time
and/or vibration. Unspecified Yes

[88] 2004 2-link (redundant) Minimization of rotation angles Unspecified Yes

[89] 2004 (2, 3)-link (redundant) Collision-free path planning with multiple
objectives. Unspecified Yes

[90] 2008 3-link (redundant) Collision-free point-to-point trajectory planning to
minimize travel time and space. Unspecified Yes

[91] 2008 Articulated (Industrial) Collision-free path planning for sand-blasting
operation. Unspecified No

[92] 2010 3-link (redundant) Point-to-point trajectory planning to minimize time
and energy. Unspecified Yes

[93] 2011 2-link (redundant) and
Articulated (Industrial) Collision-free Cartesian path planning. Unspecified Yes

[94] 2013 3-link (redundant) Point-to-point motion planning in a complex
geometric environment. MATLAB Yes

[95] 2014 Articulated
(Collaborative)

Point-to-point motion planning and trajectory
tracking.

MATLAB &
Simulink Yes

[96] 2014 Articulated (Industrial) Minimization of the operating-time, energy
consumption and rotations angles. Unspecified Yes

[97] 2016 3-link (redundant)
Path planning to reach the position of an object
obtained from EEG (electroencephalography)
signals.

MATLAB Yes

[98] 2017 Articulated (Collaborative) Trajectory planning with obstacle avoidance. MATLAB No
[99] 2018 Articulated (Industrial) Adaptive singularity-robust path planning. ADAMS Yes
[100] 2019 Articulated (Industrial) Online time-optimal trajectory planning. MATLAB No

[101] 2020 Articulated (Industrial)
cooperating robots Path optimization to reduce joint torques. Unspecified No

[102] 2021 Articulated (Industrial)
cooperating robots

Automatic calculation of paths of cooperating
robots.

Helix Toolkit &
BEPUphysics No

[67] 2021 Articulated (Industrial) Optimal trajectory planning of complicated robotic
timber joints.

Rhino &
MATLAB No

[103] 2022 Special Path planning method with obstacle avoidance for
tomato picking. MATLAB No

[104] 2022 SCARA cooperating robots Energy optimization for optimal motion planning. Python &
K-ROSET No

[105] 2022 Articulated (Collaborative) Minimization of the risk of collisions and travel
time.

ABB
RobotStudio No

The following several research works demonstrate the solution to the robot trajectory
planning problem using the GA method for a two/three-link (redundant) robotic arm in
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two-dimensional (2D) space. The first paper presents an efficient optimization technique
for a robotic arm with two DOF in an unstructured environment [88], and a similar paper,
but for a robotic arm with three DOF [90], uses GAs to minimize travel time and space.
The next paper discusses a robot arm with two and three degrees of freedom and its
optimization using a multi-objective (Joint: q, q̇, Cartesian: p, ṗ, Energy: Ea) GA approach
based on kinematics to achieve the optimal solution [89]. The demonstration of the use of
GAs in trajectory planning, using the example of a simple n-link (redundant) robotic arm
in 2D space, is very popular because the results can be easily and quickly demonstrated.
This statement is supported by the fact that several other papers have been published
that utilize the mentioned robotic structure. Other research papers also focused on energy
optimization using a GA for point-to-point trajectory planning for a three-link robotic
arm [92]. In Ref. [94], the authors demonstrated point-to-point motion planning for a
3-DOF robotic arm with the extension, in which the path planning task was joined with the
optimization objective of minimizing the joint angle traveling distance in an environment
with complex geometric obstacles. Ref. [97] focused on using a GA for path planning
to reach the object’s position with a 3-DOF robotic arm. The x and y coordinates of the
object were obtained from EEG (electroencephalography) signals using a Brain–Computer
Interface (BCI).

The solution to more complex industrial path planning problems with GAs, partic-
ularly in three-dimensional (3D) space, began in 2008 [91], when the GA was used to
obtain an effective path with the minimum arm travel distances and magnitude of turns for
the real-world problem of sand-blasting operation in steel bridge maintenance. Another
problem focuses on a novel method called Continuous Genetic Algorithm (CGA) [93].
The method was tested to solve the problem of collision-free path planning while avoiding
singularities for non-redundant manipulators such as the PUMA 560 and 2R (revolute
joints manipulator). The proposed approach autonomously selected a collision-free path
for the manipulators that minimized the deviation between the generated path and the
desired Cartesian path, satisfied the joint limits of the manipulator, and maximized the
minimum distance between the manipulator links and the obstacles.

As the number of publications increased, so did the complexity of the solved problems.
This fact is confirmed by the selection of more complex robotic structures for the implemen-
tation of the path planning problem using GAs. The first publication that used a 7-DOF
collaborative robotic manipulator, more precisely the KUKA LBR iiwa, implemented the
hybrid algorithm based on PSO with real-coded GA to solve the problem of obtaining the
set of seven joint angles for any point-to-point movement [95]. Another publication [96]
used the robotic arm ABB IRB 6400 with 6-DOF to minimize various values such as opera-
tion time, joint rotation, energy consumption, as well as combined optimization, where the
optimizer was designed based on a GA.

Since collaborative robots have been very popular in research, the next paper is real-
ized with the UR10 robotic manipulator from Universal Robots [98]. A novel approach,
based on a GA combined with a Modified Artificial Potential Field, was presented as a
hybrid algorithm for trajectory planning with obstacle avoidance. Their approach was
tested with both simulation and real-world application. Not only collaborative robots but
also space robots have been used to solve path planning problems using GA. The problem
of simulating an on-orbit detection platform, with the aim of improving tracking accuracy
using a GA-based adaptive singularity-robust algorithm was studied in Ref. [99]. The pro-
posed approach involved optimizing two adaptive parameters λmax (maximum damping
factor) and ε (parameter for evaluating the singularity of generalized Jacobian matrix)
of the singular value decomposition. Compared to the standard damped least squares
method, the accuracy of the end-effector tracking increased by 26.7%.

Recent research works show that path planning problems using evolutionary algo-
rithms are tested not only on different types of robot structures but also on robots from
various manufacturers. The first of the following papers addresses the problem of on-
line time-optimal trajectory planning, comparing methods such as Adaptive Elite Genetic
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Algorithm with Singularity Avoidance, Adaptive Elite Genetic Algorithm, and Genetic
Algorithm Combined with Singularity Avoidance for the 6-DOF robotic manipulator SIA-
SUN SR10C [100]. Another article [101] dealt with the use of evolutionary algorithms
for optimizing the paths of ABB IRB 120 robotic manipulators (single robot solution and
multi-robotic collaboration) with the goal of decreasing the joint torques. The experiment
compared the methods of evolutionary algorithms, including GAs, using random and
average recombination, simulated annealing using linear and geometric cooling strategies,
and differential evolution. The results show that the GA method provided the best results
for the torque minimization problem. Next, similar to the previous case, an experiment is
presented for industrial robots with 6-DOF in the single robot scenario and with 14-DOF
in the cooperating robot scenario with an additional linear track. The main objective of
their paper was to automatically calculate the paths of Kuka Quantec KR210 R3100 robotic
manipulators using the GA method [102]. Ref. [67], using the KUKA-KR90 6-DOF robotic
manipulator, focused on the real-world problem of cutting complex timber joints using a
robotic chainsaw. PSO and Adaptive Genetic Algorithm (AGA) were applied to optimize
the path distance and travel time interval, with both optimization methods achieving
optimal objectives.

The number of recent works, specifically from 2022, on the problem of trajectory
planning using GAs, shows that the area of evolutionary algorithms in industrial robotics
still has great research potential (as we can see in Table 3). One of these recent articles [103]
focused on the intelligent obstacle avoidance path planning method for the tomato-picking
manipulator. A GA determined the parameters of the Artificial Potential Field (APF)
method, and subsequent path planning was performed using the APF method in conjunc-
tion with reinforcement learning (RL). Another article deals with energy optimization for
optimal motion planning for a dual-arm industrial robot [104], where achieving the optimal
parameters involves fine-tuning using both GA and PSO. The GA was used to optimize
PID gains, while PSO was applied to optimize both the robot configuration and motion
simultaneously. Last but not least, the article [105] focused on trajectory optimization
in collaborative robotics using the ABB YuMi dual arm. A GA randomly modified the
parameters of the trajectory on a digital twin, and lexicographic optimization is used to
evaluate the optimal robot trajectory online. The result was the minimization of the risk of
collisions and travel time.

4.3. Ant Colony Optimization

ACO is a nature-inspired optimization algorithm commonly used to find approximate
solutions to combinatorial optimization problems. It models the foraging behavior of ants
to discover optimal paths or solutions. In ACO, artificial ants build solutions incrementally,
laying pheromone trails to communicate their findings. Over time, these trails guide other
ants toward better solutions [106,107].

The key components of ACO include:

• Ants: Artificial ants are used to explore and construct solutions. Each ant represents a
potential solution to the problem;

• Pheromones: Ants deposit pheromones on the paths they traverse. Pheromone levels
on a path represent the quality of that path;

• Decision Rule: Ants use a decision rule to probabilistically choose the next path to
explore. Pheromone levels and heuristics guide their decisions;

• Pheromone Update: After all ants have completed their exploration, the pheromone
levels are updated based on the quality of the solutions found. This guides future
ant exploration.

The mathematical representation of the pheromone update in ACO is given by:

τij = (1− ρ) · τij + ∆τij (3)

where:
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• τij is the pheromone level on path (i, j).
• ρ is the pheromone evaporation rate.
• ∆τij is the pheromone increment for path (i, j).

The reviewed papers that utilize ACO are shown in Table 4. In the context of robotic
arm trajectory planning, well-known methods such as RRT, EST, and PRM have been
extensively used. In this regard, a method was proposed in Refs. [108,109] that employs
a metaheuristic approach combining the PRM algorithm. The concept of this fusion is
referred to as Ant Colony Robot Motion Planning (ACRMP). This combination leverages
the characteristics of the ACO algorithm, where pheromones and collective ant behavior
are utilized for robot navigation. Ants are divided into teams located at the nest and
food sources, creating pheromone trails along the path between these points. This way,
the optimal path through the traversable free space defined by PRM is sought.

Efficient collision-free path planning has also been investigated using the ACO al-
gorithm in Ref. [110]. It has also been applied in Ref. [111] to dual-arm robots in three-
dimensional configuration space (C space) using an enhanced version of the ACO meta-
heuristic. The improvements included strategic adjustments for joint movements, grid size
optimization for space partitioning, improved local pheromone updates, and a strategy
for ant return. These enhancements have resulted in increased performance and reduced
collisions between robotic arms.

Collision-free trajectory planning has also been tested on a SCARA robot using the
enhanced algorithm Dynamic Recursive Ant Colony Algorithm for Obstacle Avoidance
Path Planning [112]. Key modifications involve the introduction of a sliding window and a
forgetting factor. These adjustments alter correlation parameters and pheromone rules to
better adapt to varying conditions, as fixed parameter values are insufficient for optimal
performance throughout the calculation. Collaboration among ants is utilized to establish
an optimal path for obstacle avoidance, and the proposed optimal path for manipulator
motion is based on a dynamic recursive ant colony algorithm. Similar adjustments for the
same type of manipulator have also been proposed, including a combination with the D*
Algorithm [113].

Another explored area of research involves collision-free trajectory planning for high-
precision assembly. An improvement proposed in this context introduces the Elite Smooth-
ing Ant Colony Algorithm (ESACO) [114] for planning such collision-free paths with high
precision. The enhanced ESACO algorithm improves the probabilistic transition formu-
lation and pheromone update strategies to enhance algorithm reliability and flexibility.
Additionally, a segmented B-spline curve is employed to eliminate inflection points and
create a smooth path.

Table 4. The considered literature on the motion planning problem solved using ACO.

Ref. Year Type of Robotic Structure Type of Problem Software Simulation Only
[108] 2005 Articulated (Industrial) Collision-free path planning. Visual C++ Yes
[109] 2006 Articulated (Industrial) Collision-free path planning. Visual C++ Yes
[111] 2009 3-link (redundant) dual-arm Collision-free path planning. Visual C++ Yes

[110] 2017 2-link (redundant)
Point-to-point motion
planning and trajectory
tracking.

MATLAB Yes

[112] 2019 SCARA Path planning with obstacle
avoidance. Unspecified No

[113] 2021 2-link (redundant) Collision-free path planning. Unspecified Yes
[114] 2022 Articulated (Industrial) Collision-free path planning. ABB RobotStu-dio. Yes

4.4. Differential Evolution

DE is a type of evolutionary algorithm, which is based on mimicking the process of
natural selection to gradually improve a group of potential solutions. In each iteration, DE
generates new candidate solutions by combining information from three randomly chosen
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individuals from the current population. These new solutions are then compared to the
current ones, and if they prove to be better based on a specific fitness measure, they replace
the old solutions. DE is celebrated for its versatility as it employs mutation and crossover
operations to effectively explore the solution space [115,116]. The whole process can be
divided into three parts where the mathematical description corresponds to:

• Population Initialization:

X(0)
i = x(0)i , i = 1, 2, . . . , N (4)

• Mutation (differential variant):

V(g+1)
i = X(g)

r1 + F · (X(g)
r2 − X(g)

r3 ), i = 1, 2, . . . , N (5)

• Crossover (exponential variant):

U(g+1)
i,j =

V(g+1)
i,j if randj ≤ CR or j = jrand,

X(g)
i,j otherwise,

(6)

• Selection (elitism):

X(g+1)
i =

{
U(g+1)

i if f (U(g+1)
i ) < f (X(g)

i )

X(g)
i otherwise,

(7)

where f (·) is the fitness function, i = 1, 2, . . . , N, r1, r2, and r3 are randomly selected
indices from the population, and F is the mutation factor, randj represents random
values for each element j of the vector, CR is the crossover constant, and jrand is a
randomly selected index.

In the context of industrial robotics problems, DE can be used to compute optimal
trajectories for industrial robotic manipulators, aiming to minimize costs while adhering
to constraints such as position, velocity, and torques. The reviewed papers utilizing DE
for this purpose are shown in Table 5. An extension of the DE algorithm demonstrated
good convergence and outperformed the state-of-the-art Non-dominated Sorting Genetic
Algorithm (NSGA-II) in terms of results [117]. The comparison involved utilizing clamped
cubic spline curves to optimize a cost function that includes transfer time, singularity
avoidance, and acceleration. The extended version of Multi-Objective Differential Evolution
also surpasses NSGA-II when planning optimal motions for industrial robotic manipulators
in obstacle-filled spaces, considering both energy efficiency and obstacle avoidance [118].

DE can also find applications in determining optimal trajectories for robotic manipula-
tors based on known joint paths [119]. Here, the objective was to minimize the end-effector
position error and total joint displacements to achieve smooth motion close to the learned
trajectory. The DE algorithm could effectively address these problems by working with can-
didate solution populations, even in situations involving singular points, without requiring
Jacobian matrices.

Another critical area is energy-efficient path planning for industrial robotic arms in
the presence of obstacles [120]. This problem is formulated as an optimization task to find
the shortest and energy-optimal path for a robotic arm, avoiding obstacles while moving
from the initial position to a predefined goal. Additionally, DE-based solutions can be
applied in space robotics, specifically for free-floating space robots, where the algorithm
considers forward kinematics and utilizes Bézier curves to plan joint trajectories, achieving
orientation accuracy and effective base regulation [121].

The DE algorithm also found its application in the field of robotic grasping. The com-
bination of the Fast Marching Square (FM2) method and the DE optimization evolutionary
filter creates an intriguing concept for computing robot trajectories [122]. In solving this
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problem, it was necessary to consider geometric constraints caused by the lengths of links
in the kinematic chain comprising the robot arm and hand. During trajectory calcula-
tion, the potential field of the surroundings created using FM2 and the robot’s kinematic
constraints are used as cost functions minimized by the DE-based evolutionary filter. Em-
ploying this optimization filter allowed for finding nearly optimal solutions that satisfy
kinematic constraints while preserving the characteristics of trajectories computed with
FM2. The proposed method was tested on an advanced robot structure consisting of a
mobile base with two arms.

Table 5. Considered literature on the motion planning problem solved using DE.

Ref. Year Type of Robotic Structure Type of Problem Software Simulation Only

[117] 2008 Articulated Optimal trajectory planning of
dynamic free motion. Visual C++ Yes

[118] 2010 SCARA Collision-free path planning. Visual C++ No

[119] 2009 Articulated (Industrial) Point-to-point motion planning and
trajectory tracking. Unspecified Yes

[120] 2018 3-link (redundant) Energy optimization for optimal
motion planning. MATLAB Yes

[121] 2018 Articulated Point-to-point motion planning and
trajectory tracking. Unspecified Yes

[122] 2022 Special Collision-free path planning. MATLAB No

4.5. Artificial Bee Colony

The ABC algorithm is a population-based optimization algorithm inspired by the
foraging behavior of honeybees. It was introduced in 2005 and has since been applied to
a wide range of optimization problems. ABC simulates the process of honeybee colonies
searching for the best food sources [123,124].

The ABC algorithm consists of the following main components:

• Population Initialization:

X(0)
i = x(0)i , i = 1, 2, . . . , N (8)

• Employed bees: In this phase, employed bees explore food sources and perform local
searches around the food sources they are currently exploiting.

V(t)
i = X(t)

i + φ · (X(t)
i − X(t)

j ), i, j ∈ {1, 2, . . . , N}, i 6= j (9)

• Onlooker bees: Onlooker bees choose food sources to exploit based on the information
provided by employed bees. The probability of selecting a food source is determined
by its quality.

X(t+1)
i =

{
V(t)

i if f (V(t)
i ) < f (X(t)

i ),

X(t)
i otherwise,

(10)

• Scout bees: Scout bees are responsible for discovering new food sources. If a food
source has not been improved for a certain number of iterations, it is abandoned and
replaced with a randomly generated solution.

X(t+1)
i = xrand, i ∈ {1, 2, . . . , N} with a probability p (11)

where N is the number of bees, X(t)
i represents the position of bee i at iteration t, x(0)i is

the initial position, V(t)
i is the position after exploration, f (·) is the fitness function, φ

is a random number in the range [−1, 1], and xrand is a randomly generated solution.
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The best solution found by the employed and onlooker bees is updated if a better
solution is discovered. Then the algorithm repeats the above phases for a specified number
of iterations or until a termination condition is met. The reviewed papers utilizing ABC in
the field of industrial robotics are shown in Table 6.

ABC is one of the newer algorithms designed to solve obstacle avoidance problems for
free-flying space robots [125]. In the context of solving obstacle avoidance problems for free-
flying space robots, it is significant from a trajectory planning perspective. An important
feature is the ability to adjust the obstacle avoidance coefficient, allowing for trajectory
optimization and increased adaptability of robots in various situations. The artificial bee
colony algorithm also offers parallel execution, demonstrating strong robustness in solving
these problems.

The significance of the ABC algorithm in research lies in its applications for planning
and optimizing robotic manipulator trajectories. For example, it can be used for trajectory
optimization, such as for a 3-DOF robotic manipulator [126] or planning the trajectory of
a redundant dual-chain manipulator with a fixed base. The proposed use of the method
involved the initial optimization of the configuration of the kinematic system of the dual-
chain manipulator. Subsequently, the toolpath of the dual-chain manipulator was planned
using the Rapidly-Exploring Random Tree Star algorithm. Finally, joint trajectories were
generated using the Gradient Projection Method. One of the main objectives was to devise
a suitable optimization method for the initial configurations of the dual-chain manipulator,
enabling smooth motion planning for the dual-chain manipulator and optimizing the
trajectory [127].

Another potential application of the ABC algorithm is palletizing planning using
robotic arms in an industrial setting [128]. For instance, it can involve servicing three
production lines, where considering cycle time and maximum allowable waiting time for
each item is essential. To solve such problems, the ABC algorithm with Deb’s rules has
been proposed. This results in increased production that meets specific requirements, such
as minimizing the energy consumption per palletized item or ensuring equal container
filling. The approach can be applied to various constraints, achieving optimal planning for
robotic arms.

Table 6. Considered literature on the motion planning problem solved using ABC.

Ref. Year Type of Robotic Structure Type of Problem Software Simulation Only
[125] 2012 Special Collision-free path planning. MATLAB Yes

[126] 2013 3-link (redundant) Point-to-point motion planning and
trajectory tracking. MATLAB Yes

[127] 2023 Special Collision-free path planning. Unspecified No
[128] 2022 Articulated (Collaborative) Collision-free path planning. MATLAB No

4.6. Other Methods

Apart from the already described methods, there are also other evolutionary computa-
tion techniques that were used in the field of industrial robotics. A brief overview of the
reviewed papers regarding these methods is shown in Table 7.

The APF method, combined with the Simulated Annealing algorithm, can be em-
ployed for real-time motion planning of manipulators in a three-dimensional space [129].
The artificial potential field method is suitable due to its simple structure, but it faces the
issue of local minima. To overcome the problem of local minima, the simulated annealing al-
gorithm is utilized for optimization. This combination results in an extension of traditional
manipulator motion planning, enabling obstacle avoidance and enhancing efficiency.

Among other algorithms that can be utilized for planning and optimizing trajectories
for 6-DOF manipulators in an industrial setting, Cuckoo Search stands out. For instance,
in the case of smooth motion planning with time optimization, the continuous quintic B-
spline algorithm can be used for generating smooth trajectories, and the Adaptive Cuckoo
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Search algorithm can be employed to minimize motion time while adhering to dynamic
constraints [130].

The Beetle Antennae Search algorithm can represent a motion planning method for
redundant manipulators with variable joint velocity limits [131]. Unlike conventional ap-
proaches that require solving velocity kinematics equations and may overlook joint velocity
constraints, the proposed method directly addresses the inverse kinematics equation to
obtain the desired joint angles. Experiments conducted with a five-link planar manipulator
and an industrial manipulator demonstrate the effectiveness and reliability of the proposed
approach for motion planning in redundant manipulators.

The Grey Wolf Optimizer (GWO) metaheuristic also had its implementations for par-
allel robots concerning energy consumption during rapid object picking and placing [132].
Lamé curves were employed to round rectangular trajectories in the end-effector space
of the robot. Additionally, a piecewise design method was used for trajectory planning
considering position, velocity, and acceleration. The primary objective was to minimize the
mechanical energy consumption of the delta robot, and the GWO algorithm was employed
for trajectory optimization. Optimization of the Lamé curve parameters depends on specific
conditions such as lifting height and the pick-and-place endpoints of the object. However,
there are recent works about the negative theoretical [45] and empirical [41] properties
of GWO.

Optimal trajectory planning in the field of grinding can have a positive impact on
both processing quality and machining efficiency, especially when experimenting with and
combining metaheuristics. One example is the enhanced Whale Optimization Algorithm,
which combines Whale Optimization Algorithm (WOA) and DE [133]. This combination
involves emulating the mutation and selection operations of DE during population initial-
ization by WOA, followed by WOA’s search tasks. The optimization objective includes
minimizing time and the rate of acceleration change to achieve smooth robot motion based
on cubic spline interpolation. However, similar to GWO, the WOA method was also shown
to contain substantial structural defects [44,134].

A comparison of 12 evolutionary computation techniques on the 6-DOF industrial
robot trajectory planning problem was carried out in Ref. [135]. The authors compared both
the standard techniques discussed above (such as DE, ABC, or ACO) and more recent tech-
niques, which included some of the best-performing methods from recent IEEE Congress
on Evolutionary Computation (CEC) Competitions on numerical optimization. The overall
best methods that came from this analysis were the Covariance matrix adaptation evolution
strategy (CMAES) [136], and the Success-history based adaptive differential evolution with
linear population size reduction (LSHADE) [137]. Interestingly, in this setting, WOA was
found to be between the worst methods.

In Ref. [138], the authors compared seven evolutionary computation techniques on
a large set of optimization problems that were a combination of inverse kinematics and
path planning in industrial robotics. The results of their investigation also show that the
best-performing methods from the CEC competitions, in this case, LSHADE [137] and
Adaptive Gaining-Sharing Knowledge (AGSK) [139], along with CMAES [136] are the
overall best-suited methods for this application.
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Table 7. Considered literature on the motion planning problem solved using other evolutionary
computation methods.

Ref. Year Type of Robotic Structure Type of Problem Software Simulation Only
[129] 2019 Articulated (Industrial) Collision-free path planning. Unspecified Yes

[130] 2021 Articulated (Industrial)
Point-to-point motion
planning and trajectory
tracking.

MATLAB No

[131] 2020 Articulated (Collaborative)
Point-to-point motion
planning and trajectory
tracking.

MATLAB No

[132] 2019 Parallel
Point-to-point motion
planning and trajectory
tracking.

Unspecified No

[133] 2020 Articulated (Industrial)
Point-to-point motion
planning and trajectory
tracking.

MATLAB &
ABB RobotStudio No

[135] 2018 Articulated (Industrial)
Point-to-point motion
planning and trajectory
tracking.

Unspecified Yes

[138] 2023 Articulated (Industrial) Optimal trajectory planning. MATLAB Yes

4.7. Research Gaps and Directions

Although evolutionary algorithms are proving to be one of the potential and promis-
ing methods for industrial robotics path planning, there are still significant gaps in the
application of these techniques. In the realm of utilizing and implementing evolutionary
algorithms for these problems, the majority of the publications often present issues that
are mostly related to simple point-to-point planning from the desired to the target posi-
tion and collision-free path planning in a static environment. Moreover, these problems
are frequently solved without testing the solutions on real-world implementations. New
research in this area should address more complex real-world problems and also focus
on multi-objective approaches [76,89]. Testing practical applications in the real world can
highlight the applicability of the proposed solution (in terms of precision and computa-
tional complexity), as well as validate that the developed techniques operate using real
industrial/collaborative robots rather than just simulations. Significant expansion could
be achieved through research related to trajectory planning for painting and palletizing
robots, which are widely used in the general industry.

A fundamental gap arises in benchmarking [140,141] individual methods for robotic
trajectory planning, which would indicate the distinguishing features of various meta-
heuristics in comparison. This area is linked to the problem of recognizing and imple-
menting state-of-the-art evolutionary computation techniques [138]. There should be
more focus on the implementation of modern evolutionary algorithms, such as jSO [142],
AGSK [139], LSHADE [137], and CMAES variants [136]. These methods were recently
shown to have excellent performance on a range of various complex [43,143–145] and ap-
plied problems [146–148]. In addition, the development of a common framework/platform
with a range of standardized industrial robotics path planning problems for benchmarking
different methods (from the various possible approaches) would be immensely valuable.
Such a platform should support multiple programming languages and various problem
settings. The COCO platform (https://numbbo.github.io/coco/, accessed on 1 October
2023) for benchmarking black-box optimization methods could serve as a great source of
inspiration [149].

It is important to emphasize that the low percentage of research applications in a given
field translates into real-world applications, as we can see in the tables above, especially
in terms of validation and testing on real industrial robots. It is quite common to develop
the control in simulation, and then transfer it to real manipulators post-optimization to
avoid the time and energy-consuming nature of performing all evaluations on the real

https://numbbo.github.io/coco/
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hardware [28]. The central issue with this simulate-and-transfer approach is known as
the reality gap [150]. Trajectories optimized in simulation can become ineffective once
transferred to the physical manipulator because of their exploitation of features that are
present only in the simulated world (and nonexistent in the real world). The differences
between the real world and the simulation can vary—from simulation-only artifacts due to
abstractions, simplifications, discreteness, and idealizations of physics implementations to
inaccurate sensor modeling [28]. The reality gap is a frequent phenomenon and is still one
of the main obstacles to progress in utilizing not only evolutionary computation [151] but
other techniques as well [152].

An area where evolutionary algorithms can find justification is in solving path plan-
ning with a focus on energy consumption, which can be an important topic for practical use
in production operations. Industrial robotic arms are electromechanical devices with a lim-
ited lifecycle. However, with a well-optimized trajectory that is more energy-efficient [73,74]
and includes minimal robot stops, it would be possible to increase the lifetime of the robots
themselves. Such research directions are becoming increasingly important, especially with
respect to the issue of sustainability.

Another possible direction of further research could lie in the utilization of surrogate-
assisted techniques [47,153,154], which are methods suited for problems where the computa-
tions of the objectives are prohibitively expensive. Such situations may arise in problems with
complex, dynamic, or collaborative environments, or for problems with several objectives.

Lastly, one of the most significant shortcomings in the use of evolutionary algorithms
in path planning is the limited availability of open-source code, especially in the field
of industrial robotics, that could be used as a basis for real-world solutions. In addition,
a description of the software used is essential, and many publications do not specify
this information [155]. The majority of the publications use a proprietary multi-paradigm
programming language MATLAB for their research. However, there is also a rationale for
developing a solution in Python, a programming language that has grown in popularity
among scientists in recent years. The Python programming language offers very similar
features and tools to MATLAB, even for industrial robotics, such as Robotics Toolbox for
Python (https://petercorke.github.io/robotics-toolbox-python/index.html, accessed on 1
October 2023) [156].

5. Conclusions

In this paper, we reviewed the recent trends and progress in the utilization of evo-
lutionary computation techniques for the various path planning problems in industrial
robotics. We have focused primarily on the well-studied evolutionary computation meth-
ods such as PSO, GA, DE, ACO, and ABC, as well as the best-performing methods from
the CEC Competitions. The various enhancements of the standard techniques and the
utilization of the state-of-the-art methods showed great potential for solving the studied
industrial path planning problems.

In summary, great achievements of the evolutionary techniques in this area have
been gained, especially in the last two decades. However, we have also identified an
overabundance of recent studies that focus on the rather simple and already well-studied
point-to-point planning and collision-free path planning problems in static environments.
Finally, we have outlined several possible future research directions that would make the
utilization of the evolutionary computation techniques in this field even more applicable.
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101. Baressi Šegota, S.; And̄elić, N.; Lorencin, I.; Saga, M.; Car, Z. Path planning optimization of six-degree-of-freedom robotic
manipulators using evolutionary algorithms. Int. J. Adv. Robot. Syst. 2020, 17, 1–16. [CrossRef]

102. Larsen, L.; Kim, J. Path planning of cooperating industrial robots using evolutionary algorithms. Robot. Comput.-Integr. Manuf.
2021, 67, 102053. [CrossRef]

103. Fang, Z.; Liang, X. Intelligent obstacle avoidance path planning method for picking manipulator combined with artificial potential
field method. Ind. Robot. Int. J. Robot. Res. Appl. 2022, 49, 835–850. [CrossRef]

104. Nonoyama, K.; Liu, Z.; Fujiwara, T.; Alam, M.M.; Nishi, T. Energy-Efficient Robot Configuration and Motion Planning Using
Genetic Algorithm and Particle Swarm Optimization. Energies 2022, 15, 2074. [CrossRef]

105. Zanchettin, A.M.; Messeri, C.; Cristantielli, D.; Rocco, P. Trajectory optimisation in collaborative robotics based on simulations
and genetic algorithms. Int. J. Intell. Robot. Appl. 2022, 6, 707–723. [CrossRef]

106. Dorigo, M.; Birattari, M.; Stutzle, T. Ant colony optimization. IEEE Comput. Intell. Mag. 2006, 1, 28–39. [CrossRef]
107. Dorigo, M.; Stützle, T. Ant Colony Optimization: Overview and Recent Advances. In Handbook of Metaheuristics; Gendreau, M.,

Potvin, J.Y., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 311–351. [CrossRef]
108. Mohamad, M.; Dunnigan, M.; Taylor, N. Ant Colony Robot Motion Planning. In Proceedings of the EUROCON 2005—The

International Conference on “Computer as a Tool”, Belgrade, Serbia, 21–24 November 2005; Volume 1, pp. 213–216. [CrossRef]
109. Mohamad, M.; Taylor, N.; Dunnigan, M. Articulated Robot Motion Planning Using Ant Colony Optimisation. In Proceedings of

the 2006 3rd International IEEE Conference Intelligent Systems, London, UK, 4–6 September 2006; pp. 690–695. [CrossRef]
110. Baghli, F.Z.; bakkali, L.E.; Lakhal, Y. Optimization of Arm Manipulator Trajectory Planning in the Presence of Obstacles by Ant

Colony Algorithm. Procedia Eng. 2017, 181, 560–567. [CrossRef]

http://dx.doi.org/10.1109/SECON.1991.147764
http://dx.doi.org/10.1109/ICSMC.1995.537808
http://dx.doi.org/10.1016/S0952-1976(02)00067-2
http://dx.doi.org/10.1017/S0263574701003861
http://dx.doi.org/10.1016/j.mechatronics.2003.10.001
http://dx.doi.org/10.1007/978-3-540-24854-5_64
https://api.semanticscholar.org/CorpusID:957663
http://dx.doi.org/10.1109/ICINFA.2008.4608157
http://dx.doi.org/10.5772/50902
http://dx.doi.org/10.1016/j.asoc.2012.09.025
http://dx.doi.org/10.1109/ARIS.2014.6871496
http://dx.doi.org/10.13140/2.1.4466.1123
http://dx.doi.org/10.1016/j.procs.2016.04.080
http://dx.doi.org/10.1109/CYBER.2017.8446214
http://dx.doi.org/10.1155/2018/3702916
http://dx.doi.org/10.1109/ACCESS.2019.2945824
http://dx.doi.org/10.1177/1729881420908076
http://dx.doi.org/10.1016/j.rcim.2020.102053
http://dx.doi.org/10.1108/IR-09-2021-0194
http://dx.doi.org/10.3390/en15062074
http://dx.doi.org/10.1007/s41315-022-00240-4
http://dx.doi.org/10.1109/MCI.2006.329691
http://dx.doi.org/10.1007/978-3-319-91086-4_10
http://dx.doi.org/10.1109/EURCON.2005.1629898
http://dx.doi.org/10.1109/IS.2006.348503
http://dx.doi.org/10.1016/j.proeng.2017.02.434


Computation 2023, 11, 245 22 of 23

111. Wang, J.; Guo, M.; Li, L.; Sun, S.; Gu, S. Collision-free path planning of Dual-arm robots based on improved ant colony algorithm.
In Proceedings of the 2009 Chinese Control and Decision Conference, Guilin, China, 17–19 June 2009; pp. 1438–1442. [CrossRef]

112. Huadong, Z.; Chaofan, L.; Nan, J. A Path Planning Method of Robot Arm Obstacle Avoidance Based on Dynamic Recursive Ant
Colony Algorithm. In Proceedings of the 2019 IEEE International Conference on Power, Intelligent Computing and Systems
(ICPICS), Shenyang, China, 12–14 July 2019; pp. 549–552. [CrossRef]

113. Sadiq, A.; Raheem, F.; Abbas, N.F. Ant Colony Algorithm Improvement for Robot Arm Path Planning Optimization Based on D*
Strategy. Int. J. Mech. Mechatronics Eng. 2021, 21, 96–111.

114. Meng, X.; Zhu, X. Autonomous Obstacle Avoidance Path Planning for Grasping Manipulator Based on Elite Smoothing Ant
Colony Algorithm. Symmetry 2022, 14, 1843. [CrossRef]

115. Storn, R.; Price, K. Differential Evolution—A Simple and Efficient Heuristic for global Optimization over Continuous Spaces. J.
Glob. Optim. 1997, 11, 341–359. [CrossRef]

116. Price, K. Differential evolution: A fast and simple numerical optimizer. In Proceedings of the North American Fuzzy Information
Processing, Berkeley, CA, USA, 19–22 June 1996; pp. 524–527. [CrossRef]

117. Saravanan, R.; Ramabalan, S. Evolutionary Minimum Cost Trajectory Planning for Industrial Robots. J. Intell. Robot. Syst. 2008,
52, 45–77. [CrossRef]

118. Saravanan, R.; Ramabalan, S.; Balamurugan, C.; Subash, A. Evolutionary trajectory planning for an industrial robot. Int. J. Autom.
Comput. 2010, 7, 190–198. [CrossRef]

119. Gonzalez, C.; Blanco, D.; Moreno, L. Optimum robot manipulator path generation using Differential Evolution. In Proceedings
of the 2009 IEEE Congress on Evolutionary Computation, Trondheim, Norway, 18–21 May 2009; pp. 3322–3329. [CrossRef]

120. Das, S.D.; Bain, V.; Rakshit, P. Energy Optimized Robot Arm Path Planning Using Differential Evolution in Dynamic Environment.
In Proceedings of the 2018 Second International Conference on Intelligent Computing and Control Systems (ICICCS), Madurai,
India, 14–15 June 2018; pp. 1267–1272. [CrossRef]

121. Wang, M.; Luo, J.; Fang, J.; Yuan, J. Optimal trajectory planning of free-floating space manipulator using differential evolution
algorithm. Adv. Space Res. 2018, 61, 1525–1536. [CrossRef]

122. Muñoz, J.; López, B.; Quevedo, F.; Barber, R.; Garrido, S.; Moreno, L. Geometrically constrained path planning for robotic
grasping with Differential Evolution and Fast Marching Square. Robotica 2023, 41, 414–432. [CrossRef]

123. Karaboga, D. An Idea Based on Honey Bee Swarm for Numerical Optimization; Technical Report, Technical Report-tr06; Erciyes
University, Engineering Faculty, Computer Engineering Department: Kayseri, Turkey, 2005.

124. Karaboga, D.; Gorkemli, B.; Ozturk, C.; Karaboga, N. A comprehensive survey: Artificial bee colony (ABC) algorithm and
applications. Artif. Intell. Rev. 2014, 42, 21–57. [CrossRef]

125. Jin, F.; Shu, G. Path planning of free-flying space robot based on artificial bee colony algorithm. In Proceedings of the 2012 2nd
International Conference on Computer Science and Network Technology, Changchun, China, 29–31 December 2012; pp. 505–508.
[CrossRef]

126. Savsani, P.; Jhala, R.; Savsani, V. Optimized trajectory planning of a robotic arm using teaching learning based optimization (TLBO)
and artificial bee colony (ABC) optimization techniques. In Proceedings of the 2013 IEEE International Systems Conference
(SysCon), Orlando, FL, USA, 15–18 April 2013; pp. 381–386. [CrossRef]

127. Zhou, Z.; Zhao, J.; Zhang, Z.; Li, X. Motion Planning of Dual-Chain Manipulator Based on Artificial Bee Colony Algorithm. In
Proceedings of the 2023 9th International Conference on Control, Automation and Robotics (ICCAR), Beijing, China, 21–23 April
2023; pp. 55–60. [CrossRef]

128. Szczepanski, R.; Erwinski, K.; Tejer, M.; Bereit, A.; Tarczewski, T. Optimal scheduling for palletizing task using robotic arm and
artificial bee colony algorithm. Eng. Appl. Artif. Intell. 2022, 113, 104976. [CrossRef]

129. Chen, Z.; Ma, L.; Shao, Z. Path Planning for Obstacle Avoidance of Manipulators Based on Improved Artificial Potential Field. In
Proceedings of the 2019 Chinese Automation Congress (CAC), Hangzhou, China, 22–24 November 2019. [CrossRef]

130. Zhang, L.; Wang, Y.; Zhao, X.; Zhao, P.; He, L. Time-optimal trajectory planning of serial manipulator based on adaptive cuckoo
search algorithm. J. Mech. Sci. Technol. 2021, 35, 3171–3181. [CrossRef]

131. Cheng, Y.; Li, C.; Li, S.; Li, Z. Motion Planning of Redundant Manipulator With Variable Joint Velocity Limit Based on Beetle
Antennae Search Algorithm. IEEE Access 2020, 8, 138788–138799. [CrossRef]

132. Zhang, X.; Ming, Z. Trajectory Planning and Optimization for a Par4 Parallel Robot Based on Energy Consumption. Appl. Sci.
2019, 9, 2770. [CrossRef]

133. Wang, T.; Xin, Z.; Miao, H.; Zhang, H.; Chen, Z.; Du, Y. Optimal Trajectory Planning of Grinding Robot Based on Improved
Whale Optimization Algorithm. Math. Probl. Eng. 2020, 2020, 3424313. [CrossRef]

134. Camacho-Villalón, C.L.; Dorigo, M.; Stützle, T. Exposing the grey wolf, moth-flame, whale, firefly, bat, and antlion algorithms: Six
misleading optimization techniques inspired by bestial metaphors. Int. Trans. Oper. Res. 2023, 30, 2945–2971. [CrossRef]

135. Wichapong, K.; Pholdee, N.; Bureerat, S.; Radpukdee, T. Trajectory planning of a 6D robot based on Meta Heuristic algorithms.
In Proceedings of the MATEC Web of Conferences, EDP Sciences, Moscow, Russia, 21–23 June 2018; Volume 220, p. 06004.

136. Hansen, N. The CMA Evolution Strategy: A Tutorial. arXiv 2016, arXiv:1604.00772. https://doi.org/10.48550/ARXIV.1604.00772.
137. Tanabe, R.; Fukunaga, A.S. Improving the search performance of SHADE using linear population size reduction. In Proceedings

of the 2014 IEEE Congress on Evolutionary Computation (CEC), Beijing, China, 6–11 July 2014; IEEE: New York, NY, USA, 2014;
pp. 1658–1665.

http://dx.doi.org/10.1109/CCDC.2009.5192261
http://dx.doi.org/10.1109/ICPICS47731.2019.8942495
http://dx.doi.org/10.3390/sym14091843
http://dx.doi.org/10.1023/A:1008202821328
http://dx.doi.org/10.1109/NAFIPS.1996.534790
http://dx.doi.org/10.1007/s10846-008-9202-0
http://dx.doi.org/10.1007/s11633-010-0190-8
http://dx.doi.org/10.1109/CEC.2009.4983366
http://dx.doi.org/10.1109/ICCONS.2018.8663106
http://dx.doi.org/10.1016/j.asr.2018.01.011
http://dx.doi.org/10.1017/S0263574722000224
http://dx.doi.org/10.1007/s10462-012-9328-0
http://dx.doi.org/10.1109/ICCSNT.2012.6525987
http://dx.doi.org/10.1109/SysCon.2013.6549910
http://dx.doi.org/10.1109/ICCAR57134.2023.10151753
http://dx.doi.org/10.1016/j.engappai.2022.104976
http://dx.doi.org/10.1109/CAC48633.2019.8996467
http://dx.doi.org/10.1007/s12206-021-0638-5
http://dx.doi.org/10.1109/ACCESS.2020.3012564
http://dx.doi.org/10.3390/app9132770
http://dx.doi.org/10.1155/2020/3424313
http://dx.doi.org/10.1111/itor.13176
https://doi.org/10.48550/ARXIV.1604.00772


Computation 2023, 11, 245 23 of 23
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