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Abstract: During virus outbreaks in the recent past, web behavior mining, modeling, and analysis
have served as means to examine, explore, interpret, assess, and forecast the worldwide perception,
readiness, reactions, and response linked to these virus outbreaks. The recent outbreak of the Marburg
Virus disease (MVD), the high fatality rate of MVD, and the conspiracy theory linking the FEMA
alert signal in the United States on 4 October 2023 with MVD and a zombie outbreak, resulted in
a diverse range of reactions in the general public which has transpired in a surge in web behavior
in this context. This resulted in “Marburg Virus” featuring in the list of the top trending topics on
Twitter on 3 October 2023, and “Emergency Alert System” and “Zombie” featuring in the list of top
trending topics on Twitter on 4 October 2023. No prior work in this field has mined and analyzed
the emerging trends in web behavior in this context. The work presented in this paper aims to
address this research gap and makes multiple scientific contributions to this field. First, it presents
the results of performing time-series forecasting of the search interests related to MVD emerging
from 216 different regions on a global scale using ARIMA, LSTM, and Autocorrelation. The results of
this analysis present the optimal model for forecasting web behavior related to MVD in each of these
regions. Second, the correlation between search interests related to MVD and search interests related
to zombies was investigated. The findings show that there were several regions where there was a
statistically significant correlation between MVD-related searches and zombie-related searches on
Google on 4 October 2023. Finally, the correlation between zombie-related searches in the United
States and other regions was investigated. This analysis helped to identify those regions where this
correlation was statistically significant.

Keywords: Marburg Virus; Big Data; data mining; data analysis; Google Trends; web behavior;
Data Science; conspiracy theory

1. Introduction

The 2023 outbreak of the Marburg Virus Disease (MVD) was officially declared by
the Ministry of Health and Social Welfare of Equatorial Guinea on 13 February 2023. This
declaration followed the reporting of suspected fatalities caused by viral hemorrhagic fever
from 7 January 2023 to 7 February 2023, and a positive RT-PCR case for Marburg virus
on 12 February 2023, at the Institut Pasteur de Dakar in Senegal [1]. Between 13 February
2023, and 7 June 2023, 17 confirmed cases and 23 suspected cases were documented in the
continental area of Equatorial Guinea. A total of 12 individuals among the confirmed cases
succumbed to the illness, while all of the likely cases were reported as fatalities. It is worth
noting that the case–fatality ratio among the confirmed cases of this MVD outbreak was 75%
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(omitting one confirmed case for which the outcome was not known). The most recently
confirmed patient was released from a Marburg treatment center in the Bata area of Litoral
province on 26 April 2023, after the administration of two successive negative PCR tests for
MVD. The Ministry of Health of Equatorial Guinea officially declared the conclusion of
the outbreak on June 8, 2023, after a period of 42 days including two successive incubation
periods during which no new confirmed cases were recorded [2].

As a result of this outbreak and the high fatality rate of MVD [3], in the last few months
people from all over the world have been spending a lot more time than ever before on
social media platforms and the internet in general to seek, share, access, and disseminate
information about MVD [4,5]. During virus outbreaks of the past such as COVID-19 [6–8],
MPox [9–11], Ebola [12–14], H1N1 [15–17], and MERS [18–20], researchers from differ-
ent disciplines such as Healthcare, Epidemiology, Big Data, Data Analysis, Data Science,
and Computer Science have studied and analyzed the underlining web behavior, as web
behavior provides insights into the public health needs, interests, motives, concerns, per-
spectives, and opinions related to virus outbreaks. Furthermore, web behavior analysis
related to a virus outbreak has also had several applications related to the real-time surveil-
lance of outbreaks [21], prediction of cases [22], forecasting the behavior of different strains
of a virus [23], timely preparation of public health policies [24], better preparedness of
healthcare systems [25], identification of the themes of conversations of the general pub-
lic [26], and timely implementation of public health policies and guidelines [27]. In addition
to this, during virus outbreaks of the recent past, for example, COVID-19, such paradigms
of information-seeking and sharing behavior on the internet [28–32] led to the development
and dissemination of different conspiracy theories which led to a range of reactions, both
positive and negative, in the general public [33–35]. An example of a conspiracy theory in
the context of COVID-19 was related to the role of 5G towers in spreading COVID-19 [36].
In January 2020, this conspiracy theory started on social media, and it soon gained un-
precedented attention, leading to a surge in Google Searches related to 5G and COVID-19
around that time. Furthermore, the rapid dissemination of this conspiracy theory led to
people burning 5G towers in different regions in the United Kingdom [37]. Researchers
from different disciplines have also investigated such patterns of web behavior related
to the conspiracy theories associated with virus outbreaks of the past [38–40]. The recent
outbreak of MVD followed by a warning signal (for testing purposes) sent by the United
States Federal Emergency Management Agency (FEMA) to every TV, radio, and cellphone
in the U.S. on 4 October 2023, led to an unusual conspiracy theory involving the MVD
and zombies.

As per online reports, this conspiracy theory seems to have been initiated by a QAnon
influencer behind a Telegram channel called “The Patriot Voice”, which is followed by
more than 50,000 people, in a post shared at the end of September. That post from this
influencer cited a supposed military expert’s claim that COVID-19 vaccines contain sealed
pathogens including the Marburg Virus which can be released by an 18 Gigahertz 5G
frequency [41,42]. As per a study conducted by the Pew Research Center, the awareness
about QAnon in Americans has increased by more than double in the recent past [43].
Therefore, this conspiracy theory spread like wildfire on different social media networks
and the internet in general. One post about this conspiracy theory on Twitter [44], viewed
close to 11 million times at the time of writing of this paper, states—“Turn off your cell phones
on October 4th. The EBS is going to “test” the system using 5G. This will activate the Marburg
virus in people who have been vaccinated. And sadly turn some of them into zombies”. In the past,
there have been examples where just one Tweet started a conspiracy theory [45]. Since the
publication of this Tweet, there have been several other posts on Twitter associated with
this conspiracy theory which reveal the views, opinions, reactions, responses, and concerns
of the general public in this regard. This conspiracy theory created a buzz in the global
population to the extent that “Marburg Virus” featured in the list of the top trending topics
on Twitter on 3 October 2023 [46]. To add to this, “Emergency Alert System” and “Zombie”
featured in the list of top trending topics on Twitter on 4 October 2023 [47]. Furthermore,
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this conspiracy theory was covered by several popular and widely viewed news outlets
such as BBC News [48], The Standard [49], Yahoo News [50], AP News [51], The Mirror [52],
New York Magazine [53], The Messenger [54], Daily Mail [55], Sportskeeda [56], Daily Dot [57],
and USA Today [58]. As a result of the widespread nature of this conspiracy theory and
the associated concern and public reactions, Jeremy Edwards (press secretary and deputy
director of public affairs at FEMA) stated publicly—“I received it on my phone and saw it on
the TV. And I can confirm to you that I am not a zombie”, soon after the broadcast of the FEMA
emergency alert signal [59]. In view of this recent outbreak of MVD and the associated
conspiracy theory that created a significant buzz on the internet, which included this
conspiracy theory being amongst the trending topics on Twitter for two days—3 October
2023 and 4 October 2023, modeling and analyzing the underlining patterns of web behavior
of the general public in this context becomes highly crucial to investigate. This serves as
the main motivation for this research work.

1.1. Marburg Virus: A Brief Overview

In August of 1967, thirty people in Marburg and Frankfurt, Germany, became mysteri-
ously and dangerously ill. This was the first known outbreak of MVD. The virus was traced
to African green monkeys that had previously been imported from Uganda. Infection
occurred when autopsies were performed on the monkeys for the purpose of collecting
kidney cell samples [60]. When the Ebola virus (EBOV) emerged in Africa nearly ten years
later, in 1976, the two viruses were classified together as Filoviridae [60,61]. MVD appeared
sporadically between the years 1975 and 1985, but it did not result in deaths the way that
EBOV did, leading people to believe that MVD was not as deadly [62]. Though MVD is not
a prevailing threat in endemic locations, it poses a threat to tourists or travelers, especially
as they might bring the virus to other countries; the risk of infection also exists in laboratory
workers [63]. Because of its danger, transmissibility, and lack of vaccine, the World Health
Organization (WHO) categorizes MVD as Risk 4 Group (RG4). RG4 is the highest risk group
and defines pathogens as a serious risk to individuals and communities [64]. The MVD
infection is a zoonotic disease, but the original or natural host of the virus is yet to be iden-
tified [65–67]. However, researchers speculate that bats could be vital to the transmission of
the disease, or they may also be the original carriers of MVD [68]. In fact, MVD was isolated
from Egyptian fruit bats after the initial outbreak [69–73]. Research works involving the
Gabonese bat populations suggest that MVD is enzootic, and its transmissibility poses a
risk of appearing in other countries [74,75]. Transmission between humans usually occurs
through bodily fluids such as blood, saliva, and urine. Such interactions tend to happen
when caring for a sick patient but can include the handling of an infected corpse [76].

The disease is observed over three phases: generalization, early organ, and late organ
or convalescence [77–79]. During the generalization phase, the patient usually displays
symptoms similar to the flu. During the second phase, which occurs between days five to
thirteen of the illness, patients may display psychological symptoms. This may manifest as
general confusion and irritability but could also include swelling of the brain and delirium.
During this stage, patients might face difficulty in performing Activities of Daily Living
(ADLs) [80–82]. The last stage of the disease is either late organ or convalescence, depending
on if the patient is able to recover. After a patient enters the late organ stage, they may
experience dementia or a coma. Death usually comes about by shock from multiorgan
failure. The convalescence phase is marked by a slow recovery with symptoms like muscle
pain, exhaustion, and peeling of the skin where the rash appeared [77–79]. Nearly 600 MVD
cases have been reported since the first outbreak. These recent cases of MVD have catalyzed
the creation of MARVAC, a WHO-coordinated cooperative aimed at tackling the Marburg
vaccine [83,84]. The vaccine has since been under development through the use of the MVD
glycoprotein and animal testing. Of approved vaccines, Ad26-MARV, developed using the
Ad26 vector encoding of MVD, is set to be moved forward in development. It is currently
available for emergency use alongside another Ad-based vaccine, ChAd3-MARV, which
takes the Ad vector from a chimpanzee. Several vesicular stomatitis virus-based vaccines
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are scheduled to advance to clinical testing after manufacturing, namely VSV-N4CTI-MARV,
VSV-MARV Musoke vector, and VSV-MARV Angola vector [85].

1.2. Concept of Conspiracy Theories

A conspiracy theory is an explanation for an event or occurrence that typically cites
outgroups or authority powers as the perpetrators. Douglas et al. [86] proposed that
people believe in conspiracy theories due to three key psychological motives: knowledge,
existential, and social. Knowledge refers to certainty and the desire to create patterns or
fill gaps in understanding. Existential motives include exerting control or safety in one’s
own situation, and knowledge allows people to have the certainty to feel safe. Lastly, social
motives may be a person’s desire to fit into a group, and following conspiracy theories may
provide them with the agency to look good or feel desirable in social settings.

In addition to the core psychological motives, conspiracy theories can appeal to certain
demographics [87,88]. People who are more likely to believe in conspiracy theories tend to
include those with lower levels of education, lower levels of income, weak social networks,
and low media literacy [89–92]. Males, unmarried people, and unemployed people are
also seen to have a higher belief in conspiracy theories [92]. A final reason why people
might believe in conspiracy theories could be attributed to politics. Politically motivated
conspiracy theories give people of a particular party the reasoning needed to further
a point, argument, or campaign, regardless of whether the content is true or not [87].
Conspiracy theories tend to have largely negative social and/or psychological impacts [93].
Research indicates that people who participate in conspiracy theory dialogue are less
likely to vote or participate in politics in general, due to a lack of trust in the political
system [94–96]. Conspiracy theories can also be associated with prejudiced views of certain
groups of people. Research into conspiracy theories suggests that said conspiracy theories
can portend anti-Semitic beliefs, discrimination against Jewish people, and sometimes even
racism towards groups who are not a part of the conspiracy theory at all. Such sentiments
contribute to and exacerbate division between groups of people [97–99].

One of the more significant impacts of conspiracy theories may be scientific skepticism.
Climate change, for example, is commonly the target of many conspiracy theories, driving
people away from caring about the core issue [100]. Those who might believe in climate
change conspiracy theories may also believe in theories that surround scientific evidence,
like GMOs or the forensics of the 9/11 attacks [101,102]. Scientific skepticism of this nature
can extend to issues of human health as well. Belief in anti-science theories correlates
with unsafe health choices, like being anti-vaccines (especially the COVID-19 vaccine),
not using contraceptives, alternative medicinal practices, or refusing professional help
for physical or mental illnesses [103–109]. Conspiracy theories surrounding COVID-19
specifically contributed to an unwillingness to comply with COVID-19 regulations [110,111].
The insights into why people believe in conspiracy theories may play a role in how they
are transmitted as well. People generally only believe in conspiracy theories after learning
about them, and they may come across them in certain political spheres. Prior works
in this field have found that political agendas could be furthered by conspiracy theories,
making people who fall into particular political categories more inclined to share conspiracy
theories [112–115]. Conspiracy theories may also be used to generate doubt in mainstream
politics and media [116]. Research work in this field has shown that people commonly
avoid sharing conspiracy theories out of fear of ostracization. However, the involvement
in politics and feelings generated by it may be so strong that it negates this fear anyway.
This may further indicate how conspiracy theorists find community among each other [117].

The remainder of the paper is presented as follows. A review of recent works in
this field is presented in Section 2. Section 3 presents the detailed methodology that was
followed for the investigation, interpretation, and analysis of the underlying web behavior.
The results are presented and discussed in Section 4, which is followed by the conclusion.
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2. Literature Review

A review of recent works related to web behavior investigation, interpretation, and
analysis during recent virus outbreaks is presented in this section. This section is divided
into three parts. Section 2.1 presents a review of works related to time-series forecasting in
the context of recent virus outbreaks such as COVID-19 and MPox as time-series forecasting
approaches have been popular in the last few years for modeling web behavior. Section 2.2
presents a review of various conspiracy theories that were associated with virus outbreaks
in the recent past. Section 2.3 presents an overview of healthcare research based on web
behavior analysis from Google Trends, as Google Trends is the most popular platform for
web behavior analysis [118] and it was used for data collection in this research project.

2.1. Review of Works Related to Time-Series Forecasting in the Context of Recent Virus Outbreaks
Such as COVID-19 and MPox

To predict the spread of COVID-19, Shahid et al. [119] used Auto Regressive Integrated
Moving Average model (ARIMA), Support Vector Regression (SVR), Long Short-Term
Memory (LSTM), and Bidirectional Long-Short Term Memory (Bi-LSTM). They found that
Bi-LSTM outperformed the rest when trying to predict cases of COVID-19. In a similar
study, Chandra et al. [120] found that different types of LSTM models could be used to
predict COVID-19 with high levels of accuracy. They used LSTM, Bi-LSTM, and encoder-
decoder LSTM (ED-LSTM) to predict cases. While ED-LSTM tended to underperform
compared to LSTM and Bi-LSTM models, it performed at the highest accuracy with static-
split training. Alabduldrazzaq et al. [121] also used ARIMA in their study. Their work used
cases in Kuwait and resulted in a correlation coefficient of 0.996, indicating that ARIMA
was a strong contender for the best prediction model. In a similar study, the authors
used ARMIA to predict where COVID-19 infections might occur [122]. Using data from
Johns Hopkins University, they were able to accurately predict COVID-19 cases. Katoch
et al. [123] used ARIMA modeling to devise numbers for the COVID-19 outbreak during
the time of 30 January 2020 to 16 September 2020, in India. Ospina et al. [124] found that
ARIMA models successfully predicted cases in Recife, contributing to the prevention effort.
In the work carried out by Vilinová et al., a spatiotemporal analysis was used to analyze
the spread of COVID-19 [125]. More specifically, spatial autocorrelation was used by the
authors to analyze cases across Slovakian districts, and data was synthesized with Moran’s
global autocorrelation index and local index. A similar study was carried out by El Deeb
et al. [126]. In this study, spatial autocorrelation was used with certain parameters to
analyze COVID-19 cases across Lebanese districts, and the authors found that geographic
bordering, resident population, density, distance between district centers, and poverty
density correlated with disease clustering and spread.

The work of Iftikhar et al. [127] focused on forecasting new cases and death counts
related to the MPox virus using a hybrid forecasting system that combined time-series
and stochastic models. Long et al. [128] worked on addressing the global health concern
during the MPox outbreak, particularly in the United States, using short-term forecast-
ing, and, somewhat similar to the comparative studies discussed in [129,130], the authors
compared the working and performance of multiple machine learning models. Among
the models tested, NeuralProphet emerged as the most efficient, achieving a low RMSE
and high accuracy in predicting future cases. The work of Wei et al. [131] addressed the
increasing prevalence of MPox cases in non-endemic countries, particularly in North Amer-
ica and Europe since May 2022. The researchers employed various forecasting models,
such as ARIMA, exponential smoothing, LSTM, and GM(1,1), to predict daily cumulative
confirmed MPox cases in different regions. Similar to the comparative study of machine
learning models presented in [132], Priyadarshini et al. [133] used different machine learn-
ing models—linear regression, decision trees, random forests, elastic net regression, ANN,
and CNN to assess the spread of the MPox virus across different countries. The results
indicated that CNNs performed the best in modeling the virus’s spread, while time-series
analysis using ARIMA and SARIMA models provided valuable insights for risk assessment
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and preventive measures. Pathan et al. [134] used a deep learning-based LSTM model to
analyze the gene mutation rate of the MPox virus. The work of Eid et al. [135] introduced a
novel approach called BER-LSTM, which optimized LSTM deep networks using the Al-
Biruni Earth Radius (BER) algorithm to predict MPox cases accurately. Patwary et al. [136]
examined the global spread of MPox using concepts of GIS technology and spatial data
analysis. Du et al. [137] examined online search activity related to the MPox outbreak in
China. The findings showed that regions with higher economic levels, particularly Beijing
and Shanghai, exhibited more interest in MPox.

To summarize, these works have used time-series forecasting models such as ARIMA,
Autocorrelation, and LSTM, to analyze web behavior, internet activity, and related infor-
mation during virus outbreaks in the recent past. However, none of these works have
focused on applying any such models to the recent surge in web behavior related to the
2023 MVD outbreak.

2.2. Review of Various Conspiracy Theories That Were Associated with Virus Outbreaks in the
Recent Past

The COVID-19 pandemic was plagued by the proliferation of conspiracy theories and
false information. These encompassed claims suggesting that COVID-19 was a fabrication,
insinuations that the virus was artificially engineered and released as a bioweapon, and
accusations of governments capitalizing on the crisis for anti-democratic purposes [138].
In the early stages of the pandemic, social media stories even propagated the idea that 5G
technology was responsible for the spread of the virus [139]. Some conspiracy theories
contended that the pandemic served as a guise for the clandestine injection of microchip
quantum-dot spy software into individuals for surveillance purposes, gaining substantial
traction on social media platforms [140]. Furthermore, there were assertions that COVID-19
testing, especially the use of nasopharyngeal swabs, could harm the blood–brain barrier or
even infect individuals with the virus [141]. The conspiracy theories related to face masks
included claims that masks could facilitate viral transmission or lead to oxygen deprivation
and carbon dioxide poisoning [142]. Furthermore, misinformation extended to unverified
therapies and remedies, encompassing homeopathic arsenic-based products, colloidal
silver solutions, the use of high-dose vitamins as preventive measures, and various herbal
remedies [143,144].

In general, conspiracy theories have the potential to have a significant negative impact.
For example, false claims connecting 5G technology to the pandemic triggered attacks on
telecommunication masts and subjected engineers to verbal and physical abuse in multiple
countries, including the UK [145]. The repercussions of misinformation during infectious
disease crises draw historical parallels, such as the HIV/AIDS pandemic, where denial of
the virus’s existence and the promotion of untested alternative solutions led to substantial
public health concerns and loss of lives [146–148]. The findings from recent works indicate
that belief in COVID-19 conspiracy theories was inversely related to adherence to health-
protective behaviors and trust in guidance from public health experts [149,150]. In a
comprehensive study of 82 hoaxes related to the 2023 MPox outbreak and their spread
on social media, researchers found that the sources behind these hoaxes were mostly
unknown (73.17%), making it challenging to identify the primary disinformants. In the
remaining instances (26.83%), sources included figures with public notoriety (18.29%),
fictitious sources (6.1%), and impersonated identities (2.44%). The predominant format of
these hoaxes was a combination of image and text (39%), followed by primarily text-based
hoaxes (36.6%) [151]. In a separate study analyzing conspiracy theories related to the MPox
outbreak on TikTok, 153 videos were identified and analyzed. The most prevalent theme
(46.4% of videos) asserted that MPox was a deliberately orchestrated pandemic introduced
for power, control, or financial gain. A second category (33.3% of videos) revolved around
vaccines, with content alleging that MPox was an excuse to mandate vaccines worldwide.
To add to this, approximately 17.6% of videos claimed that the WHO was involved in the
MPox outbreak to gain more power and potentially override national laws [152].
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To summarize, these works show that virus outbreaks in the recent past have been
associated with several conspiracy theories which have been investigated and analyzed by
researchers from different disciplines. However, none of those works studied the emergence
of the new conspiracy theory involving the MVD and the emergency alert signal sent by
FEMA in the United States on 4 October 2023.

2.3. Review of Applications of Google Trends in Healthcare

Google Trends data has been of interest to researchers for the mining and analysis of
the underlying web behavior related to various emerging technologies [153,154], global
affairs [155,156], humanitarian issues [157,158], societal problems [159,160], and needs of
different diversity groups [161,162]. In the last decade and a half, the utilization, applica-
tions, and use cases of Google Trends to mine, monitor, interpret, and analyze web behavior
during epidemics, pandemics, and virus outbreaks have attracted a significant amount of
attention from researchers from different disciplines [163–168]. Ginsberg et al. [169] used
Google Trends to track influenza-like illness (ILI) for early detection and rapid response.
By analyzing the relative frequency of specific queries, the authors accurately estimated
ILI activity in various regions of the United States. Kapitány-Fövény et al. [170] utilized
Google Trends to forecast the incidence of Lyme disease in Germany. The study spanned
from 2013 to 2018, with data on Lyme disease incidence obtained from the Robert Koch
Institute and Google search volumes for “Borreliose” in Germany. The authors applied a
SARIMA model to the Lyme-disease-incidence time series and incorporated Google Trends
data as an external regressor. The results showed that Google Trends data correlated well
with reported Lyme disease incidence. Verma et al. [171] used Google Trends to predict
disease outbreaks in India. The research explored the correlation between Google Trends
data for diseases like malaria, dengue fever, chikungunya, and enteric fever in 2016 in
Haryana and Chandigarh and IDSP data. The results show a strong temporal correlation
between Google Trends data and the IDSP data, suggesting that Google Trends could be
used as an early warning tool for disease outbreaks. The work of Young et al. [172] involved
using Google Trends to predict weekly state-level cases of syphilis in the United States.
By analyzing web behavior related to keywords associated with syphilis, the study aimed
to determine whether such data could serve as a supplementary tool for monitoring and
predicting syphilis outbreaks. Another work by Young et al. [173] involved using Google
Trends to forecast new HIV diagnosis cases in the United States. The study collected Google
Trends search-volume data for HIV-related keywords and combined it with state-level
HIV case reports from the CDC. They developed a predictive model using a negative
binomial approach and the Least Absolute Shrinkage and Selection Operator (LASSO)
method. Morsy et al. [174] used Google Trends to predict the Zika virus in Brazil and
Columbia. They aimed to determine whether the search volume for the term ‘Zika’ on
Google Trends could serve as an early surveillance system for anticipating Zika outbreaks.
The researchers used time-series forecasting models to establish a relationship between the
weekly Zika cases and the corresponding Google search-query data. As can be seen from
this review, in these works Google Trends was used for the mining and analysis of relevant
web behavior during virus outbreaks of the past such as Lyme disease, malaria, syphilis,
HIV, ILI, and Zika virus. However, none of these works focused on the analysis of web
behavior in the context of the 2023 MVD outbreak.

To summarize, time-series forecasting, investigation of conspiracy theories, and web
behavior mining and analysis using Google Trends during virus outbreaks have attracted
the attention of researchers from different disciplines such as Healthcare, Epidemiology, Big
Data, Data Analysis, Data Science, and Computer Science in the last few years. However,
prior works in this field have multiple limitations, as follows:

• The works that applied time-series forecasting models on relevant web behavior did
not investigate the web behavior data related to the 2023 MVD outbreak.

• Some of the works related to the applications of time-series forecasting models to
model web behavior during virus outbreaks did not focus on:
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◦ studying the web behavior from different geographic regions
◦ comparing the performance of different time-series forecasting models to deter-

mine the optimal model for studying web behavior in different regions

• Even though several works in this field have studied the development and dissem-
ination of conspiracy theories related to virus outbreaks in the recent past such as
COVID-19 and MPox, none of those works studied the relevant web behavior data in
the context of the new conspiracy theory involving the MVD outbreak and the FEMA
emergency alert signal.

• Relevant web behavior data from Google Trends has been mined and analyzed in
several prior works in this field to understand and interpret multimodal components
of web behavior during virus outbreaks. However, such works did not focus on
mining, analyzing, or interpreting the web behavior related to new conspiracy theories
involving the MVD outbreak and the FEMA emergency alert signal.

The work presented in this paper aims to address these research gaps. The step-by-step
methodology that was followed is outlined in Section 3 and the results are presented and
discussed in Section 4.

3. Methodology

This section is divided into three parts. In Section 3.1 an overview of the working of
Google Trends and the procedure that was followed for data collection using Google Trends
is presented. Section 3.2 presents the methodology that was followed for the development
of the time-series forecasting models which were applied to the data collected from Google
Trends. In Section 3.3, the approach that was followed for correlation analysis in this context
is discussed.

3.1. Overview of the Data Collection Architecture and Description of Data Collection

The data analyzed in this research work was collected from Google Trends [175].
Google Trends is a web-based tool provided by Google that allows users to delve into and
assess the search interest and prevalence of topics, keywords, or search queries over time.
It equips individuals with the means to gauge how frequently specific terms are queried
on Google from different geographic regions, offering valuable insights into the dynamic
trends and curiosities of online users [176,177]. Furthermore, Google Trends provides
geographic data, facilitating the identification of regions where a topic garners the greatest
attention. This tool also provides information regarding related queries, spotlighting
frequently associated search terms with the chosen topic, and facilitating the exploration
of interconnected trends and inquiries of interest to users. Google Trends also supports
comparative analysis, allowing users to gauge the relative popularity of multiple search
terms [178].

Google Trends offers three key benefits when compared to traditional surveys. First, it
eliminates the cost associated with data collection and analysis, in contrast to conventional
surveys, which often come with financial implications. Second, conducting routine surveys
across a diverse global user base can be a formidable challenge, whereas Google Trends
effortlessly taps into the worldwide search data generated daily on Google, simplifying
the process of data collection and analysis. Third, Google Trends provides data that can be
easily mined and analyzed, avoiding delays inherent in traditional surveys, which may be
subject to time constraints related to participant recruitment and inclusion criteria [179,180].
There are two mathematical equations that underline the functioning of Google Trends,
which are shown as Equations (1) and (2). In these equations, “q” represents the number of
searches for the query in the location “l” during the period “t”. Here, Q(l,t) is the set of all
the queries made from “l” during t, and π(n(q,l,t) > τ) is a dummy variable. The dummy
variable serves as an indicator, taking the value 1 when the query meets the popularity
threshold n(q,l,t) > τ and 0 otherwise. To add to this, Equation (1) yields Relative Popularity
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(RP) values that are subsequently scaled to fit within a range of 0 to 100, and Equation (2)
provides the numerical value of the Google Trends Index (GTI) [178,181].

RP(q, l , t) =
n(q, l, t)

∑q∈Q(l, t) n(q, l, t)
× π(n(q,l,t)>τ) (1)

GTI(q, l, t) =
RP(q, l, t)

max
{

RP(q, l, t)t∈1,2,...,T

} × 100 (2)

Google Trends offers a range of features that provide valuable insights related to
web behavior on Google. The “Explore” feature allows users to dig deeper into online
interests, enabling the exploration of keyword popularity over chosen time periods and
regions. Google Trends also provides “Trending Searches”, offering both daily search trends
and real-time search trends for a selected region. For those interested in historical trends,
the “Year in Searches” feature lets users explore what was trending in a specific region
during a particular year. Additionally, Google Trends offers “Subscriptions”, allowing
users to receive updates on specific topics or trending searches via email. These features
collectively make Google Trends a powerful tool for the mining and analysis of web
behavior on different topics, with a specific focus on virus outbreaks [182–185].

For the work presented in this paper, Google Trends was used for collecting data
regarding the 2023 MVD outbreak and the conspiracy theory linking the MVD outbreak, a
zombie outbreak, and the FEMA emergency alert signal. The workflow diagram in Figure 1
shows the step-by-step procedure that was followed for data collection using Google Trends.
At first, the search queries were set to compile MVD-related and zombie-related search
interests, and the geolocation was set to worldwide. Thereafter, in the “Search Category”
option on Google Trends, the “All categories” option was selected and for the type of
search data to be mined, “Web Search” was selected as the relevant web behavior data
was being mined. After setting these specifications for the data mining process, an API
call to Google Trends was performed for the weekly data between 2 October 2023 and
October 9, 2023. There were primarily two reasons why the data mining was performed for
this time range. First, the date when the FEMA emergency alert signal was broadcasted
was 4 October 2023, and the search-interest data on that day as well as around that day is
relevant to investigate. Second, Google Trends provides several options for data mining.
Although custom timelines can be provided to the Google Trends API. However, selecting
the timeline as “Past 7 days” provides the hourly search-interest data for each day in the
7-day period. In this work, the investigation also included the analysis of search interests
related to this conspiracy theory right after the broadcasting of the FEMA emergency
alert signal. So, obtaining the hourly search-interest data was necessary. After this data
collection was completed, the master dataset comprised the hourly search interests related
to MVD and search interests related to zombies between 2 October 2023 and 9 October
2023, for 216 regions. As this data was collected using Google Trends, the highest value of
the search interest was 100 and the lowest value was 0. The names of these 216 regions are
shown in Table 1. These regions recorded significant search interests related to MVD and
this conspiracy theory, so the data of search interests from these regions was included in
the development of the master dataset.
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Table 1. List of 216 regions for which data was collected using Google Trends.

List of Regions

Afghanistan, Åland Islands, Albania, Algeria, American Samoa, Andorra, Angola, Antigua and Barbuda, Argentina, Armenia, Aruba, Australia,
Austria, Azerbaijan, Bahamas, Bahrain, Bangladesh, Barbados, Belarus, Belgium, Belize, Benin, Bermuda, Bhutan, Bolivia, Bosnia and Herzegovina,
Botswana, Brazil, British Virgin Islands, Brunei, Bulgaria, Burkina, Faso, Burundi, Cambodia, Cameroon, Canada, Cape Verde, Cayman Islands,
Chad, Chile, China, Colombia, Comoros, Congo—Brazzaville, Congo—Kinshasa, Costa Rica, Côte d’Ivoire, Croatia, Cuba, Curaçao, Cyprus,
Czechia, Denmark, Djibouti, Dominica, Dominican Republic, Ecuador, Egypt, El Salvador, Equatorial Guinea, Estonia, Eswatini, Ethiopia, Faroe
Islands, Fiji, Finland, France, French, Guiana, French, Polynesia, Gabon, Gambia, Georgia, Germany, Ghana, Gibraltar, Greece, Greenland, Grenada,
Guadeloupe, Guam, Guatemala, Guernsey, Guinea, Guinea-Bissau, Guyana, Haiti, Honduras, Hong Kong, Hungary, Iceland, India, Indonesia, Iran,
Iraq, Ireland, Isle of Man, Israel, Italy, Jamaica, Japan, Jersey, Jordan, Kazakhstan, Kenya, Kosovo, Kuwait, Kyrgyzstan, Laos, Latvia, Lebanon,
Lesotho, Liberia, Libya, Liechtenstein, Lithuania, Luxembourg, Macao, Madagascar, Malawi, Malaysia, Maldives, Mali, Malta, Martinique,
Mauritania, Mauritius, Mexico, Moldova, Mongolia, Montenegro, Morocco, Mozambique, Myanmar (Burma), Namibia, Nepal, Netherlands, New
Caledonia, New Zealand, Nicaragua, Niger, Nigeria, North Macedonia, Northern Mariana Islands, Norway, Oman, Pakistan, Palestine, Panama,
Papua New Guinea, Paraguay, Peru, Philippines, Poland, Portugal, Puerto Rico, Qatar, Réunion, Romania, Russia, Rwanda, Samoa, San Marino,
Saudi Arabia, Senegal, Serbia, Seychelles, Sierra Leone, Singapore, Sint Maarten, Slovakia, Slovenia, Solomon Islands, Somalia, South Africa, South
Korea, South Sudan, Spain, Sri Lanka, St. Barthélemy, St. Helena, St. Kitts and Nevis, St. Lucia, St. Martin, St. Pierre and Miquelon, St. Vincent and
Grenadines, Sudan, Suriname, Sweden, Switzerland, Syria, Taiwan, Tajikistan, Tanzania, Thailand, Timor-Leste, Togo, Trinidad and Tobago, Tunisia,
Türkiye, Turkmenistan, Turks and Caicos Islands, U.S. Virgin Islands, Uganda, Ukraine, United Arab Emirates, United Kingdom, Uruguay, USA,
Uzbekistan, Vanuatu, Venezuela, Vietnam, Western Sahara, Yemen, Zambia, Zimbabwe
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This dataset is available at https://dx.doi.org/10.21227/jm5y-e993. This dataset
contains 216 data files where the search interests related to MVD and search interests related
to zombies between 2 October 2023 and 9 October 2023, are presented for the 216 regions.
For each region, this dataset presents the search-interest data as a separate data file. Each
data file contains three attributes that represent the time (in an hourly format), the search
interests related to MVD, and the search interests related to zombies. These second and third
attributes are named as per the data file. For instance, in the data file named “United States”,
the data originating from the United States is available. The first attribute in this data
file is “Time”, which represents the hourly information. The second attribute in this data
file is “zombie: (United States)”, which represents the search interests related to zombies
originating from the United States. The third attribute in this data file is “marburg virus:
(United States)”, which represents the search interests related to MVD originating from the
United States. In a similar manner, in the data file named “Canada”, the data originating
from Canada is available. The first attribute in this data file is “Time”, which represents
the hourly information. The second attribute in this data file is “zombie: (Canada)”, which
represents the search interests related to zombies originating from Canada. The third
attribute in this data file is “marburg virus: (Canada)”, which represents the search interests
related to MVD originating from Canada. The compliance of this dataset with the FAIR
principles of Scientific Data Management [186] is explained next. Several prior works
in the field of dataset development have discussed how the developed datasets such as
the human metabolome database for 2022 [187], WikiPathways dataset [188], datasets of
Tweets about COVID-19 [189,190], a dataset of Tweets about MPox [191], computational
2D materials database (C2DB) [192], the open reaction database [193], RCSB Protein Data
Bank [194], and the PHI-base: pathogen–host interactions database [195], to name a few,
complied with the FAIR principles of scientific data management. The FAIR principles
include four key aspects of scientific data management, namely Findability, Accessibility,
Interoperability, and Reusability. This dataset, which can be accessed at https://dx.doi.
org/10.21227/jm5y-e993, has the characteristic of findability, as it is assigned a distinct
Digital Object Identifier (DOI) by IEEE Dataport. This dataset is accessible, as researchers
from any discipline may use this DOI to access the dataset online as long as they have a
working internet connection and a system that can connect to the internet and download
data files. The dataset exhibits interoperability, as it contains data that is presented in a
standardized format (.CSV files), enabling its comprehension and analysis across different
platforms, devices, and operating systems. This dataset fulfills the reusability criterion,
as the data files may be re-used several times to examine and explore various research
problems related to the MVD outbreak and this conspiracy theory.

3.2. Methodology for Performing Time-Series Forecasting

The data collected using Google Trends (discussed in Section 3.1) comprised the search
interests related to MVD recorded from relevant Google Searches from the 216 regions. As
Google Searches serve as an indicator of the needs, interests, motives, concerns, perspec-
tives, and opinions of the global population during a virus outbreak, several prior works in
this field have developed time-series forecasting models to accurately predict web behavior
during virus outbreaks (reviewed in Section 2.1). As discussed in Section 2.1, such works
did not focus on predicting web behavior related to the recent outbreak of MVD. To add to
this, several works related to time-series forecasting used only one specific model for time-
series forecasting out of some of the most popular models such as ARIMA, Autocorrelation,
or Long Short-Term Memory network (LSTM). The work presented in this paper addresses
both limitations. More specifically, programs were written in Python 3.11.5 to develop
and apply all these models—ARIMA, Autocorrelation, and LSTM on the web searches
related to MVD emerging from 216 regions (Table 1) and the performance characteristics of
these models per region for all the 216 regions was computed. The pseudocodes of these
programs are shown in Algorithms 1, 2 and 3, respectively.

https://dx.doi.org/10.21227/jm5y-e993
https://dx.doi.org/10.21227/jm5y-e993
https://dx.doi.org/10.21227/jm5y-e993
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Algorithm 1: ARIMA for Time-Series Forecasting of Web Behavior related to MVD

Input: Master Dataset for Analysis
Output: ARIMA Forecast for the Data, Performance Metrics (RMSE, MSE, AE)
File Path
dataframe = load the data files
regions[] = region names
for each region in regions do:

dataset = get values from dataframe: marburg virus: <region>
dataset = convert dataset to float32
x = dataset
size = calculate size as 75% of all x
split x into:

train: from start to size
test: from size to end x

history = train value predictions_test = empty list
for data in test do:

model = history, order = (0,1,0)
model_fit_test = fit model
output_test = forecast by fitted model
yhat_test = output[0]
predictions_test←− append(yhat)
obs_test = test[data]
history←− append(obs)

end for
predictions_train = empty list
for data in train do:

model_train = ARIMA history, order(0,1,0)
model_fit_train←− fit model
output_train←− get forecast
yhat_train←− output_train[0]
predictions_train←− append(yhat_train)
obs_train←− train[data]
history←− append(obs_train)

RMSE = calculate RMSE (test, prediction_test), calculate RMSE (train, prediction_train)
MSE = calculate MSE (test, prediction_test), calculate MSE (train, prediction_train)
AE = calculate AE (test, prediction_test), calculate AE (train, prediction_train)
predictionsplot = empty list
end for
for data from 0 to dataset length do:

if data ≤ predicitons length do:
predictionsplot←− append(np.nan)

else:
index = length of dataset − data
predictionsplot←− append_prediction(index)

plot (dataset label = ground truth, predictions_train, predictions_test)
show and save the plot
end for

end for
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Algorithm 2: Autocorrelation for Time-Series Forecasting of Web Behavior related to MVD

Input: Master Dataset for Analysis
Output: Autocorrelation Forecast for the Data, Performance Metrics (RMSE, MSE, AE)
dataframe = load the data files
for each region in regions do:

dataset = get values from dataframe: marburg virus: <region>
dataset = convert dataset to float32
x = dataset
size = calculate size as 75% of all x
split x into:

train: from start to size
test: from size to end x

windows = 24
model = Autoreg(train, lags = 24)
model_fit = fit the model(training data)
coef = coefficients from the model fit
lag = last 24 values of the dataset
prediction_test = empty list
for each data in test do:

length = history length
lag = last window value in history
yhat = coef[0]
for each d in 0 to windows − 1 do:

yhat_test+ = coef[d + 1] * lag[windows − d − 1]
obs_test = test [data]
prediction_test←− append(yhat_test)
history←− append(obs_test)

end for
prediction_train = empty list
for data in train do:

length = length of history
lag = last window values from history
yhat_train = coef[0]

end for
for each data in history do:

yhat_train += coef[d + 1] * lag[window − d − 1]
obs_train←− train[data]
prediction_train←− append(yhat_train)
history←− append(obs_train)
end for
RMSE = calculate RMSE (test, prediction_test), calculate RMSE (train, prediction_train)
MSE = calculate MSE (test, prediction_test), calculate MSE (train, prediction_train)
AE = calculate AE (test, prediction_test), calculate AE (train, prediction_train)
for each t3 from 0 to the length of the series do:

if t3 ≤ length of predictions2 then:
predicionsplot←− append(np.nan)

else:
index2←− length of dataset − data
predictionsplot←− append_prediction(index)

plot (dataset label = ground truth, predictions_train, predictions_test)
show and save the plot
end for

end for
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Algorithm 3: LSTM for Time-Series Forecasting of Web Behavior related to MVD

Input: Master Dataset for Analysis
Output: Autocorrelation Forecast for the Data, Performance Metrics (RMSE, MSE, AE)
dataframe = load the data files
for each region in regions do:

tf.keras.utils.set_random_seed(1)
tf.config.experimental.enable_op_determinism()
Function create_dataset(dataset, look_back = 1):

dataX = empty list
dataY = empty list
for i from 0 to (len(dataset)-look_back-1 do:

a = dataset segment from i and size look_back
dataX←− append(a)
dataY←− append(dataset[i + look_back, 0]
np.array (dataX)
np.array (dataY)
return (data)

end for
end of Function
dataset = get values from dataframe: marburg virus: <region>
dataset = dataframe.values
dataset = convert dataset (float32)
scaler = MiniMaxScaler(feature_range = (0, 1))
dataset = fit, transform dataset
train_size = 75% of all dataset
test_size = len(dataset) − train_size
look_back = 1

trainX, trainY = create_dataset(train, look_back)
testX, testY = create_dataset(test, look_back)
trainX = reshape trainX with dimension
testX = reshape testX with dimension

model = Sequential()
model.add(LSTM(100, input_shape = (1, look_back)))
model.add(Dense(1))
model.compile(loss = ‘mean_squared_error’, optimizer = ‘adam’)
model.fit(trainX, trainY, epochs = 100, batch_size = 1, verbose = 2)
trainPredict = inverse transform by scaler
trainY = inverse transform by scaler
testPredict = inverse transform by scaler
testY = inverse transform by scaler
trainPredict = model.predict(trainX)
testPredict = model.predict(testX)

RMSE = calculate RMSE (test, testPredict), calculate RMSE (train, trainPredict)
MSE = calculate MSE (test, testPredict), calculate MSE (train, trainPredict)
AE = calculate AE (test, testPredict), calculate AE (train, trainPredict)

testPredictPlot = np.empty_like(dataset)
testPredictPlot[len(trainPredict) + (look_back * 2) + 1:len(dataset)-1, :] = testPredict
trainPredictPlot = np.empty_like(dataset)
trainPredictPlot[look_back:len(trainPredict) + look_back, :] = trainPredict
plot (dataset label = ground truth, trainPredictPlot, testPredictPlot)
show and save the plot

end for

Figure 2 shows a flowchart that outlines the working of these models and how the
same were applied to the master dataset. As can be seen from Figure 2 and Algorithms 1–3,
the performance of these models for time series forecasting was evaluated by computing
the Mean Absolute Error (MAE), Mean Squared Error (MSE), and Root Mean Squared
Error (RMSE) for both the train set and the test set. The results of the same are presented in
Section 4.
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3.3. Methodology for Correlation Analysis

The section presents the specifics of the correlation analysis that was performed on
the master dataset. The dataset contained search interests from relevant Google Searches
related to MVD and the conspiracy theory for each region in the list of 216 regions. For each
region, the correlations between these two types of search interests were investigated using
Pearson’s correlation. Thereafter, the nature of the correlation i.e., statistically significant,
or not statistically significant was determined based on the p-value of the correlation.
To add to this, the correlation between the search interest data related to this conspiracy
theory in the United States and the remaining countries was also evaluated using Pearson’s
correlation to determine the nature of the correlation, i.e., statistically significant or not
statistically significant. Figure 3 represents a flowchart that shows the step-by-step process
that was performed in this regard to develop and apply the models for correlation analysis.
Algorithm 4 represents the pseudocode of the program that was written in Python 3.11.5 to
check for correlations between web behavior related to MVD and this conspiracy theory
and to determine the nature of the same. Another program was also written to check for
correlations between the web behavior related to this conspiracy theory in the United States
and other countries. To avoid possible redundancy, the pseudocode of that program is not
presented in this paper.

Algorithm 4: Correlation between MVD and Conspiracy Theory-related Web Behavior

Input: Master Dataset for Analysis
Output: Pearson’s r-value and p-value for each region
dataframe = load the data files
files = get the list of all CSV files in the master dataset using a recursive search
country = empty list
Name = empty list
for each file_name in files do:

i←− 0, col1←− empty list, col2←− empty list
for each date in the first column of f do:

if specific date exists then:
if second column of f at the ith row is an integer or is digit then:

col1←− append the integer value
else

col1←− append 0
if third column of f at the ith row is an integer or is digit then:

col2←− append the integer value
else

col2←− append 0
end if

increment i
end for
country←− append col, col2
r_value = empty list, p_value = empty list, significance = empty list
for each entry c in country do:

stat_1 = calculate pearson correlation between c[0] and c[1]
p_1←− extract second value from stat_1
p_0←− extract first value from stat_1
r_value←− p_0, p_value←− p_1
if p_1 is less than 0.05 then:

significance←− statically significant
else:

significance←− not significant
end for
open file in writing mode as CSV output:

writer = CSV writer for CSV output
write the header row with columns
for i from 0 to length of country do:

row←− empty list
row [i]←− append(name[i], r_value[i], p_value[i], significance[i])
write row to the CSV

end for
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the dataset.

4. Results and Discussion

This section presents the results and highlights the novel findings of this work.
As discussed in Section 3, Algorithms 1–3 were applied to the web behavior data related
to MVD present in the dataset, and the results of forecasting for each region were plotted
and computed using RMSE, MSE, and MAE. As a result of the same, a graph was plot-
ted per model per region resulting in 648 graphs (three plots per region × 216 regions).
To avoid possible redundancy, the graphs of nine regions (selected at random) are shown
in Figures 4–12, respectively.
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The complete results (RMSE, MSE, and MAE on Train and Test sets) of running
Algorithms 1, 2 and 3 (ARIMA, Autocorrelation, and LSTM) on the data of all 216 regions
are presented in Tables 2–4, respectively.

Table 2. Results (RMSE, MSE, and MAE on Train and Test sets) of running Algorithm 1 on the
master dataset.

Country Name
RMSE for

ARIMA
(Train Set)

MSE for
ARIMA

(Train Set)

MAE for
ARIMA

(Train Set)

RMSE for
ARIMA

(Test Set)

MSE for
ARIMA

(Test Set)

MAE for
ARIMA

(Test Set)

Afghanistan 0 0 0 0 0 0

Åland Islands 0 0 0 0 0 0

Albania 13.78808 190.1111 3.809524 20.00595 400.2381 6.095238

Algeria 9.59249 92.01587 3.68254 22.13272 489.8571 6.571429

American Samoa 0 0 0 0 0 0

Andorra 0 0 0 0 0 0

Angola 9.029933 81.53968 3.396825 2.488067 6.190476 0.761905

Antigua and Barbuda 16.74837 280.5079 7.253968 5.442338 29.61905 2.380952

Argentina 8.276952 68.50794 2.571429 1.091089 1.190476 0.47619

Armenia 0 0 0 0 0 0

Aruba 0 0 0 0 0 0

Australia 5.370407 28.84127 2.222222 7.309485 53.42857 2.952381

Austria 16.61277 275.9841 5.126984 5.019011 25.19048 1.809524

Azerbaijan 16.67762 278.1429 5.47619 4.396969 19.33333 2.190476

Bahamas 13.89616 193.1032 5.261905 7.857359 61.7381 3.404762

Bahrain 12.02181 144.5238 5.873016 16.74885 280.5238 8.095238

Bangladesh 7.380261 54.46825 3.801587 5.561346 30.92857 2.166667

Barbados 10.33257 106.7619 3.873016 9.209209 84.80952 3.904762

Belarus 0 0 0 0 0 0

Belgium 14.64772 214.5556 4.285714 3.070598 9.428571 0.952381

Belize 9.096485 82.74603 3.68254 6.488084 42.09524 2.904762

Benin 7.529835 56.69841 3.650794 13.73386 188.619 5.095238

Bermuda 0 0 0 0 0 0

Bhutan 12.06892 145.6587 4.833333 8.063734 65.02381 2.880952

Bolivia 11.99669 143.9206 4.047619 8.524475 72.66667 3.809524

Bosnia and Herzegovina 7.268108 52.8254 2.079365 7.057586 49.80952 2

Botswana 18.51833 342.9286 5.865079 7.851297 61.64286 3.833333

Brazil 1.339272 1.793651 0.619048 2.654735 7.047619 1.238095

British Virgin Islands 0 0 0 0 0 0

Brunei 16.08213 258.6349 5.730159 14.56512 212.1429 5.095238

Bulgaria 17.32463 300.1429 6.460317 13.12758 172.3333 5.47619

Burkina Faso 21.58924 466.0952 7.825397 6.636838 44.04762 2.904762

Burundi 9.040473 81.73016 2.984127 9.829499 96.61905 4

Cambodia 16.83628 283.4603 7.920635 15.45654 238.9048 8.809524

Cameroon 6.508846 42.36508 2.730159 24.94756 622.381 10.57143
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Table 2. Cont.

Country Name
RMSE for

ARIMA
(Train Set)

MSE for
ARIMA

(Train Set)

MAE for
ARIMA

(Train Set)

RMSE for
ARIMA

(Test Set)

MSE for
ARIMA

(Test Set)

MAE for
ARIMA

(Test Set)

Canada 2.875733 8.269841 1.746032 0.845154 0.714286 0.47619

Cape Verde 18.35886 337.0476 7.761905 12.40584 153.9048 6.095238

Cayman Islands 6.670237 44.49206 2.142857 5.300494 28.09524 2.380952

Chad 8.387443 70.34921 3.047619 3.690399 13.61905 1.666667

Chile 9.139136 83.52381 1.444444 15.43651 238.2857 2.571429

China 20.72534 429.5397 9.047619 10.89779 118.7619 4.285714

Côte d’Ivoire 7.041825 49.5873 2.412698 13.30592 177.0476 5.047619

Colombia 5.540615 30.69841 1.603175 0.872872 0.761905 0.380952

Comoros 5.889188 34.68254 2.126984 6.113996 37.38095 2.714286

Congo—Brazzaville 11.52774 132.8889 3.809524 8.582929 73.66667 3.47619

Congo—Kinshasa 13.79383 190.2698 5.190476 4.918381 24.19048 2.142857

Costa Rica 11.30599 127.8254 4.619048 27.79431 772.5238 11.28571

Croatia 15.55431 241.9365 5.253968 16.54719 273.8095 5.238095

Cuba 14.12754 199.5873 5.650794 15.76615 248.5714 3.714286

Curaçao 0 0 0 0 0 0

Cyprus 14.44969 208.7937 5.142857 9.534399 90.90476 4.619048

Czechia 9.922317 98.45238 3.246032 7.453028 55.54762 3.5

Denmark 13.02013 169.5238 4.396825 9.329931 87.04762 3.571429

Djibouti 0 0 0 0 0 0

Dominica 0 0 0 0 0 0

Dominican Republic 18.38305 337.9365 6.571429 6.879922 47.33333 2.47619

Ecuador 8.286056 68.65873 2.722222 4.49603 20.21429 1.928571

Egypt 9.951868 99.03968 5.214286 7.123068 50.7381 3.404762

El Salvador 14.10449 198.9365 3.222222 2.43975 5.952381 1

Equatorial Guinea 14.94275 223.2857 5.603175 18.76547 352.1429 7.952381

Estonia 13.93238 194.1111 4.428571 22.47856 505.2857 9.333333

Eswatini 17.02706 289.9206 6.968254 21.07809 444.2857 9.333333

Ethiopia 18.62879 347.0317 7.714286 23.99603 575.8095 10.47619

Faroe Islands 0 0 0 0 0 0

Fiji 20.84523 434.5238 8.634921 13.99149 195.7619 6.428571

Finland 7.618899 58.04762 2.412698 3.450328 11.90476 1.52381

France 1.480026 2.190476 0.603175 1.647509 2.714286 0.761905

French Guiana 0 0 0 0 0 0

French Polynesia 0 0 0 0 0 0

Gabon 8.54679 73.04762 3.142857 14.2361 202.6667 6.095238

Gambia 14.50999 210.5397 5.968254 11.53256 133 3.952381

Georgia 15.58082 242.7619 5.587302 5.550633 30.80952 2.190476
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Table 2. Cont.

Country Name
RMSE for

ARIMA
(Train Set)

MSE for
ARIMA

(Train Set)

MAE for
ARIMA

(Train Set)

RMSE for
ARIMA

(Test Set)

MSE for
ARIMA

(Test Set)

MAE for
ARIMA

(Test Set)

Germany 2.173067 4.722222 1.18254 2.198484 4.833333 1.214286

Ghana 13.6376 185.9841 7.095238 25.91837 671.7619 11.66667

Gibraltar 0 0 0 0 0 0

Greece 7.662525 58.71429 2.857143 19.79177 391.7143 7.238095

Greenland 0 0 0 0 0 0

Grenada 14.38363 206.8889 4.47619 12.02775 144.6667 4.619048

Guadeloupe 5.747325 33.03175 2.126984 2.115701 4.47619 0.666667

Guam 0 0 0 0 0 0

Guatemala 14.58799 212.8095 5.365079 5.89996 34.80952 2.380952

Guernsey 0 0 0 0 0 0

Guinea 12.59567 158.6508 5.285714 11.49534 132.1429 4.952381

Guinea-Bissau 17.11956 293.0794 4.952381 12.12828 147.0952 4.333333

Guyana 9.763066 95.31746 1.857143 14.83561 220.0952 2.619048

Haiti 10.07433 101.4921 3.650794 1.690309 2.857143 0.761905

Honduras 11.29827 127.6508 4.31746 9.892277 97.85714 3.952381

Hong Kong 10.86497 118.0476 4.460317 9.170346 84.09524 3.52381

Hungary 7.077799 50.09524 2.936508 15.23155 232 6.571429

Iceland 8.991177 80.84127 3.619048 28.24721 797.9048 9.142857

India 1.939563 3.761905 0.888889 0.9759 0.952381 0.380952

Indonesia 1.425393 2.031746 0.809524 1.195229 1.428571 0.714286

Iran 8.369446 70.04762 3.31746 6.33208 40.09524 3.238095

Iraq 17.57027 308.7143 8.126984 12.94126 167.4762 6.380952

Ireland 1.268069 1.608 0.488 1.625687 2.642857 0.642857

Isle of Man 0 0 0 0 0 0

Israel 11.54494 133.2857 5.031746 19.18705 368.1429 10.2381

Italy 4.059087 16.47619 1.888889 2.77746 7.714286 1.142857

Jamaica 6.163126 37.98413 2.873016 10.28175 105.7143 3.857143

Japan 11.6585 135.9206 4.492063 13.88216 192.7143 5.095238

Jersey 0 0 0 0 0 0

Jordan 5.61602 31.53968 2.206349 9.337584 87.19048 3.571429

Kazakhstan 0 0 0 0 0 0

Kenya 9.204899 84.73016 3.968254 16.88617 285.1429 8

Kosovo 8.073079 65.1746 2.15873 9.623879 92.61905 3.52381

Kuwait 15.4509 238.7302 7 24.9819 624.0952 10.85714

Kyrgyzstan 0 0 0 0 0 0

Laos 0 0 0 0 0 0

Latvia 12.78454 163.4444 4.492063 21.67839 469.9524 6.619048

Lebanon 16.85701 284.1587 6.285714 7.412987 54.95238 2.380952
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Table 2. Cont.

Country Name
RMSE for

ARIMA
(Train Set)

MSE for
ARIMA

(Train Set)

MAE for
ARIMA

(Train Set)

RMSE for
ARIMA

(Test Set)

MSE for
ARIMA

(Test Set)

MAE for
ARIMA

(Test Set)

Lesotho 11.6986 136.8571 5.365079 26.57245 706.0952 12.90476

Liberia 11.81303 139.5476 5.039683 16.28248 265.119 7.833333

Libya 10.5492 111.2857 5.190476 11.81605 139.619 4.809524

Liechtenstein 0 0 0 0 0 0

Lithuania 11.90038 141.619 3.809524 6.45866 41.71429 2.380952

Luxembourg 6.737717 45.39683 2 24.15919 583.6667 10.2381

Macao 14.08985 198.5238 4.285714 6.561068 43.04762 2.190476

Madagascar 11.76894 138.5079 3.52381 25.11213 630.619 9.190476

Malawi 13.69973 187.6825 4.603175 17.36718 301.619 6.095238

Malaysia 4.101877 16.8254 2.222222 4.649629 21.61905 2

Maldives 12.7895 163.5714 4.301587 21.52629 463.381 9.333333

Mali 10.19103 103.8571 3.873016 19.22548 369.619 10.90476

Malta 13.12093 172.1587 4.857143 5.191568 26.95238 2.285714

Martinique 12.62336 159.3492 4.285714 29.56188 873.9048 13.38095

Mauritania 20.30404 412.254 8.761905 12.12043 146.9048 4.857143

Mauritius 12.63593 159.6667 4.777778 24.51336 600.9048 11.04762

Mexico 4.037522 16.30159 1.380952 1.759329 3.095238 1

Moldova 0 0 0 0 0 0

Mongolia 8.125504 66.02381 2.626984 4.753445 22.59524 2.214286

Montenegro 13.7708 189.6349 3.444444 8.799351 77.42857 3.142857

Morocco 17.04033 290.373 7.309524 17.09985 292.4048 7.119048

Mozambique 11.9227 142.1508 3.007937 8.617535 74.2619 3.595238

Myanmar (Burma) 9.760627 95.26984 2.349206 15.51497 240.7143 3.047619

Namibia 12.94524 167.5794 4.944444 22.81969 520.7381 7.166667

Nepal 16.66381 277.6825 6.52381 4.353433 18.95238 1.428571

Netherlands 15.66363 245.3492 4.52381 10.36937 107.5238 4.333333

New Caledonia 0 0 0 0 0 0

New Zealand 6.948792 48.28571 3.047619 10.13246 102.6667 3.904762

Nicaragua 5.087333 25.88095 1.515873 1.870829 3.5 0.880952

Niger 4.739232 22.46032 1.809524 22.90872 524.8095 7.52381

Nigeria 9.814955 96.33333 3.888889 9.763879 95.33333 3.52381

North Macedonia 14.08928 198.5079 4.063492 4.203173 17.66667 1.857143

Northern Mariana Islands 0 0 0 0 0 0

Norway 8.161563 66.61111 3.02381 4.896549 23.97619 2.309524

Oman 12.69921 161.2698 5.666667 21.22218 450.381 8.52381

Pakistan 9.568467 91.55556 3.349206 6.06316 36.7619 2.190476

Palestine 0 0 0 0 0 0

Panama 14.65097 214.6508 5.444444 18 324 5.571429
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Table 2. Cont.

Country Name
RMSE for

ARIMA
(Train Set)

MSE for
ARIMA

(Train Set)

MAE for
ARIMA

(Train Set)

RMSE for
ARIMA

(Test Set)

MSE for
ARIMA

(Test Set)

MAE for
ARIMA

(Test Set)

Papua New Guinea 0 0 0 0 0 0

Paraguay 15.67882 245.8254 4.984127 18.52926 343.3333 7.190476

Peru 10.9982 120.9603 3.738095 1.779513 3.166667 0.833333

Philippines 1.43095 2.047619 0.714286 2.035401 4.142857 0.809524

Poland 4.712361 22.20635 1.920635 6.611678 43.71429 2.952381

Portugal 15.74348 247.8571 5.730159 13.20714 174.4286 4.428571

Puerto Rico 15.98064 255.381 5.809524 2.21467 4.904762 0.904762

Qatar 15.13694 229.127 6.047619 30.71451 943.381 12.71429

Réunion 13.52159 182.8333 4.277778 12.2756 150.6905 5.880952

Romania 5.274978 27.8254 2.412698 9.162553 83.95238 3.190476

Russia 3.825561 14.63492 1.333333 1.889822 3.571429 0.904762

Rwanda 19.74721 389.9524 6.555556 19.97141 398.8571 9.571429

Samoa 0 0 0 0 0 0

San Marino 0 0 0 0 0 0

Saudi Arabia 13.8587 192.0635 6.666667 11.56966 133.8571 5.952381

Senegal 17.12605 293.3016 6.507937 5.928141 35.14286 2.809524

Serbia 10.56123 111.5397 3.47619 23.95929 574.0476 8.666667

Seychelles 13.68118 187.1746 5.936508 16.06831 258.1905 7.047619

Sierra Leone 16.17881 261.754 4.97619 17.98611 323.5 8.02381

Singapore 4.708149 22.16667 1.642857 6.559254 43.02381 2.738095

Sint Maarten 0 0 0 0 0 0

Slovakia 18.30973 335.246 7.357143 12.3645 152.881 4.738095

Slovenia 16.02379 256.7619 5.571429 16.71754 279.4762 6.285714

Solomon Islands 0 0 0 0 0 0

Somalia 7.06433 49.90476 3.285714 21.97726 483 9.571429

South Africa 4.974538 24.74603 2.761905 8.745067 76.47619 3.809524

South Korea 10.1848 103.7302 4.698413 8.807464 77.57143 4.952381

South Sudan 15.41799 237.7143 5.079365 14.0153 196.4286 7.095238

Spain 2.817181 7.936508 1.15873 1.812654 3.285714 0.809524

Sri Lanka 19.99127 399.6508 7.888889 12.70171 161.3333 4.952381

St. Barthelemy 0 0 0 0 0 0

St. Helena 20.96747 439.6349 11.09524 20.79034 432.2381 9.857143

St. Kitts and Nevis 0 0 0 0 0 0

St. Lucia 6.988653 48.84127 2.619048 22.619 511.619 6.952381

St. Martin 0 0 0 0 0 0

St. Pierre and Miquelon 0 0 0 0 0 0

St. Vincent and Grenadines 11.6046 134.6667 2.84127 15.86551 251.7143 4.190476

Sudan 20.89182 436.4683 9.452381 14.86046 220.8333 8.261905



Computation 2023, 11, 234 26 of 62

Table 2. Cont.

Country Name
RMSE for

ARIMA
(Train Set)

MSE for
ARIMA

(Train Set)

MAE for
ARIMA

(Train Set)

RMSE for
ARIMA

(Test Set)

MSE for
ARIMA

(Test Set)

MAE for
ARIMA

(Test Set)

Suriname 0 0 0 0 0 0

Sweden 13.94661 194.5079 4.650794 9.795529 95.95238 2.761905

Switzerland 14.39246 207.1429 4.111111 14.48973 209.9524 3.857143

Syria 0 0 0 0 0 0

Taiwan 12.05543 145.3333 5.31746 2.581989 6.666667 1.238095

Tajikistan 0 0 0 0 0 0

Tanzania 20.46949 419 6.968254 26.45301 699.7619 13.19048

Thailand 2.603417 6.777778 1.015873 2.78602 7.761905 1.190476

Timor-Leste 0 0 0 0 0 0

Togo 15.50627 240.4444 5.714286 26.70741 713.2857 11.7619

Trinidad and Tobago 11.38294 129.5714 4.428571 33.98669 1155.095 16.71429

Türkiye 2.134375 4.555556 0.968254 2.845213 8.095238 1.190476

Tunisia 17.81341 317.3175 6.47619 22.72192 516.2857 7.333333

Turkmenistan 0 0 0 0 0 0

Turks and Caicos Islands 0 0 0 0 0 0

U.S. Virgin Islands 0 0 0 0 0 0

Uganda 16.43216 270.0159 6.920635 29.3428 861 12.52381

Ukraine 7.148648 51.10317 2.849206 6.269731 39.30952 2.642857

United Arab Emirates 13.60964 185.2222 6.984127 10.91962 119.2381 4.380952

United Kingdom 0.629941 0.396825 0.285714 0.899735 0.809524 0.238095

United States 2.33843 5.468254 0.928571 0.46291 0.214286 0.214286

Uruguay 14.211 201.9524 5.285714 10.68154 114.0952 4.904762

Uzbekistan 14.3737 206.6032 3.873016 8.41201 70.7619 3.47619

Vanuatu 0 0 0 0 0 0

Venezuela 9.136531 83.47619 2.301587 5.830952 34 1.809524

Vietnam 2.081666 4.333333 0.857143 2.171241 4.714286 1

Western Sahara 0 0 0 0 0 0

Yemen 0 0 0 0 0 0

Zambia 13.4772 181.6349 5.698413 14.46342 209.1905 6.285714

Zimbabwe 12.54832 157.4603 5.190476 14.32613 205.2381 6.380952

Table 3. Results (RMSE, MSE, and MAE on Train and Test sets) of running Algorithm 2 on the
master dataset.

Country Name
RMSE of Au-
tocorrelation

(Train Set)

MSE of Auto-
correlation
(Train Set)

MAE of Auto-
correlation
(Train Set)

RMSE of Au-
tocorrelation

(Test Set)

MSE of Auto-
correlation

(Test Set)

MAE of Auto-
correlation

(Test Set)

Afghanistan 0 0 0 0 0 0

Åland Islands 0 0 0 0 0 0

Albania 9.547236 266.6762 3.449842 16.33022 266.6762 6.070559

Algeria 5.983334 309.8742 3.026799 17.60324 309.8742 8.755387
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Table 3. Cont.

Country Name
RMSE of Au-
tocorrelation

(Train Set)

MSE of Auto-
correlation
(Train Set)

MAE of Auto-
correlation
(Train Set)

RMSE of Au-
tocorrelation

(Test Set)

MSE of Auto-
correlation

(Test Set)

MAE of Auto-
correlation

(Test Set)

American Samoa 0 0 0 0 0 0

Andorra 0 0 0 0 0 0

Angola 6.06661 31.05337 3.182088 5.572555 31.05337 3.188894

Antigua and Barbuda 10.53139 29.9032 5.786529 5.468382 29.9032 4.685652

Argentina 5.160407 3.124834 1.915264 1.76772 3.124834 0.977066

Armenia 0 0 0 0 0 0

Aruba 0 0 0 0 0 0

Australia 4.096864 33.99733 2.078919 5.830723 33.99733 2.770755

Austria 10.83433 22.50378 4.518217 4.743815 22.50378 3.749277

Azerbaijan 11.01557 13.87758 3.86089 3.725262 13.87758 3.252013

Bahamas 9.789052 48.23301 5.390787 6.944999 48.23301 4.775422

Bahrain 8.451745 203.8561 6.220559 14.27782 203.8561 9.989248

Bangladesh 4.524827 24.08574 2.864864 4.907722 24.08574 3.710554

Barbados 8.051779 44.85521 2.938033 6.697403 44.85521 2.92712

Belarus 0 0 0 0 0 0

Belgium 8.85279 8.422725 2.9068 2.902193 8.422725 2.344049

Belize 6.027706 22.24202 3.190105 4.716145 22.24202 2.821407

Benin 4.729482 112.321 2.869876 10.59816 112.321 4.86543

Bermuda 0 0 0 0 0 0

Bhutan 7.641408 61.58425 4.080188 7.847563 61.58425 4.348069

Bolivia 8.978993 41.01737 4.208674 6.404481 41.01737 3.756414

Bosnia and
Herzegovina 4.779151 28.62655 1.992647 5.350379 28.62655 2.262842

Botswana 12.67149 78.44828 6.246121 8.857103 78.44828 6.110068

Brazil 0.882356 3.935664 0.516444 1.983851 3.935664 0.931681

British Virgin Islands 0 0 0 0 0 0

Brunei 9.480926 308.6751 4.700313 17.56915 308.6751 8.426272

Bulgaria 11.95635 83.69336 6.315804 9.148408 83.69336 6.237365

Burkina Faso 14.31467 41.75848 7.148378 6.46208 41.75848 5.400082

Burundi 7.373451 65.44432 3.422807 8.089767 65.44432 5.022543

Cambodia 11.88999 345.2464 8.282581 18.58081 345.2464 12.45667

Cameroon 4.86618 348.1162 2.915288 18.65787 348.1162 9.084295

Canada 2.264004 0.868871 1.600211 0.932133 0.868871 0.783274

Cape Verde 11.46525 110.7488 5.873995 10.52372 110.7488 6.187318

Cayman Islands 5.534619 22.40385 2.6401 4.73327 22.40385 3.189553

Chad 5.274818 10.57232 2.418889 3.25151 10.57232 1.981079

Chile 1.705141 237.0363 0.797758 15.39598 237.0363 3.170539

China 14.75331 128.8751 8.077444 11.35232 128.8751 7.216554

Côte d’Ivoire 9.282463 432.434 3.350107 20.79505 432.434 11.19471
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Table 3. Cont.

Country Name
RMSE of Au-
tocorrelation

(Train Set)

MSE of Auto-
correlation
(Train Set)

MAE of Auto-
correlation
(Train Set)

RMSE of Au-
tocorrelation

(Test Set)

MSE of Auto-
correlation

(Test Set)

MAE of Auto-
correlation

(Test Set)

Colombia 3.824796 1.991984 1.483824 1.411377 1.991984 1.206169

Comoros 4.57128 52.32465 2.782305 7.233578 52.32465 4.655305

Congo—Brazzaville 7.258426 54.2349 3.104642 7.364435 54.2349 3.767057

Congo—Kinshasa 9.466793 17.27012 4.488946 4.155734 17.27012 3.452318

Costa Rica 6.153947 677.8751 3.521392 26.03604 677.8751 14.58405

Croatia 9.937297 322.4361 4.849895 17.95651 322.4361 8.571793

Cuba 9.673677 115.8269 4.788526 10.76229 115.8269 3.96974

Curaçao 0 0 0 0 0 0

Cyprus 10.9392 105.7162 5.734284 10.28184 105.7162 7.269532

Czechia 6.525328 38.41361 2.827252 6.197872 38.41361 3.605674

Denmark 9.850139 56.46845 4.841825 7.514549 56.46845 4.829783

Djibouti 0 0 0 0 0 0

Dominica 0 0 0 0 0 0

Dominican Republic 12.21003 51.48443 5.875481 7.175265 51.48443 5.859984

Ecuador 5.591392 15.12805 2.355274 3.889479 15.12805 2.040708

Egypt 6.149146 45.76967 4.304301 6.765329 45.76967 4.941281

El Salvador 47.795 4031.202 17.61659 63.49175 4031.202 28.50461

Equatorial Guinea 10.05492 185.1663 4.273236 13.60758 185.1663 6.827011

Estonia 9.493435 320.6342 4.461361 17.90626 320.6342 10.35126

Eswatini 10.11582 292.2951 5.50259 17.09664 292.2951 8.906344

Ethiopia 11.90093 255.0395 7.506921 15.96996 255.0395 8.341224

Faroe Islands 0 0 0 0 0 0

Fiji 14.37325 132.6001 7.861227 11.51521 132.6001 7.789546

Finland 5.233477 6.194874 2.325577 2.488951 6.194874 1.932455

France 1.120485 2.003828 0.607629 1.415566 2.003828 0.863699

French Guiana 0 0 0 0 0 0

French Polynesia 0 0 0 0 0 0

Gabon 6.045124 165.8478 3.727497 12.87819 165.8478 7.123294

Gambia 9.52169 71.51402 5.396629 8.456596 71.51402 5.872677

Georgia 12.25343 100.2455 7.121271 10.01227 100.2455 7.364313

Germany 1.575677 2.520911 1.036421 1.587738 2.520911 1.119649

Ghana 8.127446 471.2825 5.614317 21.70904 471.2825 13.16765

Gibraltar 0 0 0 0 0 0

Greece 5.555145 244.8915 2.747845 15.64901 244.8915 7.481647

Greenland 0 0 0 0 0 0

Grenada 12.86441 151.6387 6.159252 12.31417 151.6387 8.262845

Guadeloupe 4.134032 3.222124 1.949929 1.795028 3.222124 1.376126

Guam 0 0 0 0 0 0

Guatemala 9.344646 29.69501 5.26385 5.449313 29.69501 4.369718
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Table 3. Cont.

Country Name
RMSE of Au-
tocorrelation

(Train Set)

MSE of Auto-
correlation
(Train Set)

MAE of Auto-
correlation
(Train Set)

RMSE of Au-
tocorrelation

(Test Set)

MSE of Auto-
correlation

(Test Set)

MAE of Auto-
correlation

(Test Set)

Guernsey 0 0 0 0 0 0

Guinea 8.020519 95.65707 4.661525 9.780443 95.65707 5.539834

Guinea-Bissau 11.16234 85.9241 4.971446 9.269526 85.9241 4.876213

Guyana 2.517421 235.7208 0.902204 15.3532 235.7208 3.061355

Haiti 6.585808 6.792683 3.144837 2.606278 6.792683 2.40467

Honduras 9.296952 57.77398 4.400755 7.60092 57.77398 4.649517

Hong Kong 7.353977 41.40477 3.82363 6.434654 41.40477 3.466788

Hungary 5.225407 122.7043 3.140391 11.0772 122.7043 5.309302

Iceland 5.922715 419.9142 3.113922 20.49181 419.9142 8.49435

India 1.289805 0.900497 0.749746 0.948945 0.900497 0.731705

Indonesia 1.103112 0.782783 0.686736 0.88475 0.782783 0.668795

Iran 5.515225 31.68146 2.994191 5.628629 31.68146 3.877756

Iraq 12.55775 87.60657 7.057821 9.359838 87.60657 6.396014

Ireland 0.974491 1.729115 0.547556 1.314958 1.729115 0.70643

Isle of Man 0 0 0 0 0 0

Israel 7.903272 196.6148 4.960509 14.02194 196.6148 8.713525

Italy 3.133917 4.316491 1.612017 2.077617 4.316491 1.404546

Jamaica 4.290459 71.54644 2.75134 8.458513 71.54644 5.632011

Japan 7.735241 106.0027 4.238804 10.29576 106.0027 4.884764

Jersey 0 0 0 0 0 0

Jordan 3.708129 86.17836 1.7919 9.28323 86.17836 4.655009

Kazakhstan 0 0 0 0 0 0

Kenya 5.960261 137.8703 3.875778 11.74182 137.8703 7.767086

Kosovo 6.359459 49.82043 1.686356 7.058359 49.82043 3.073302

Kuwait 10.19731 714.7134 6.009618 26.73413 714.7134 15.32199

Kyrgyzstan 0 0 0 0 0 0

Laos 0 0 0 0 0 0

Latvia 8.898493 233.3365 4.326054 15.27536 233.3365 6.396053

Lebanon 11.15287 53.26224 5.987507 7.298098 53.26224 5.779635

Lesotho 7.575091 401.5749 4.781264 20.03934 401.5749 10.72093

Liberia 7.775482 175.9486 4.44222 13.26456 175.9486 8.237929

Libya 7.048344 111.3744 4.542626 10.55341 111.3744 5.525318

Liechtenstein 0 0 0 0 0 0

Lithuania 9.031481 24.0281 3.696522 4.901846 24.0281 2.652109

Luxembourg 5.203751 584.4337 2.55309 24.17506 584.4337 11.75841

Macao 16.37218 626.3795 7.214573 25.02758 626.3795 12.00941

Madagascar 8.056012 373.3813 3.166608 19.32308 373.3813 9.879311

Malawi 9.456212 214.1751 4.590584 14.63472 214.1751 6.548388
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Table 3. Cont.

Country Name
RMSE of Au-
tocorrelation

(Train Set)

MSE of Auto-
correlation
(Train Set)

MAE of Auto-
correlation
(Train Set)

RMSE of Au-
tocorrelation

(Test Set)

MSE of Auto-
correlation

(Test Set)

MAE of Auto-
correlation

(Test Set)

Malaysia 3.027362 14.55967 1.985457 3.815713 14.55967 2.213564

Maldives 11.05308 538.4476 5.323819 23.20447 538.4476 13.88415

Mali 7.121835 306.3747 4.064986 17.50356 306.3747 11.27971

Malta 9.056621 31.83283 4.657467 5.642059 31.83283 4.712883

Martinique 9.748098 689.4085 5.245546 26.25659 689.4085 15.4876

Mauritania 13.13171 88.15271 7.200627 9.388968 88.15271 7.662908

Mauritius 8.761748 453.3572 3.836104 21.29219 453.3572 11.63681

Mexico 2.612147 2.922535 1.126163 1.709542 2.922535 1.043981

Moldova 0 0 0 0 0 0

Mongolia 5.169104 11.07499 2.21608 3.32791 11.07499 2.116271

Montenegro 10.46805 102.2567 4.440561 10.11221 102.2567 6.26818

Morocco 12.27848 241.1229 6.936316 15.52813 241.1229 8.58022

Mozambique 8.961407 35.63636 2.413428 5.969619 35.63636 2.639244

Myanmar (Burma) 2.407638 235.912 1.352414 15.35943 235.912 3.643141

Namibia 7.874785 239.0842 4.49069 15.46235 239.0842 6.310737

Nepal 12.96567 29.01789 5.968387 5.386826 29.01789 3.733779

Netherlands 10.6473 61.49948 4.320568 7.842161 61.49948 4.930311

New Caledonia 0 0 0 0 0 0

New Zealand 5.092617 77.35123 2.885639 8.794955 77.35123 5.253943

Nicaragua 3.552405 1.662006 1.395157 1.289188 1.662006 0.812994

Niger 3.915178 266.4439 1.529212 16.32311 266.4439 4.886317

Nigeria 6.694565 52.00449 4.023198 7.211414 52.00449 4.40873

North Macedonia 10.75917 13.58104 3.545521 3.685246 13.58104 2.548404

Northern Mariana
Islands 0 0 0 0 0 0

Norway 5.832329 14.17639 2.866471 3.765155 14.17639 2.452245

Oman 7.612618 479.1339 4.955876 21.88913 479.1339 10.12697

Pakistan 6.305306 46.19294 3.045765 6.796539 46.19294 4.200318

Palestine 0 0 0 0 0 0

Panama 7.976283 265.3628 5.033874 16.28996 265.3628 8.038425

Papua New Guinea 0 0 0 0 0 0

Paraguay 9.36601 264.2494 4.172757 16.25575 264.2494 6.955869

Peru 7.624232 5.534475 3.702979 2.352547 5.534475 2.082666

Philippines 0.885505 3.714283 0.54972 1.927247 3.714283 1.078276

Poland 3.660544 29.904 2.081432 5.468454 29.904 2.813396

Portugal 10.46164 101.0983 5.017028 10.05477 101.0983 5.165927

Puerto Rico 10.56894 16.33975 4.928882 4.042246 16.33975 3.629358

Qatar 11.173 452.4833 6.37943 21.27166 452.4833 10.9481
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Table 3. Cont.

Country Name
RMSE of Au-
tocorrelation

(Train Set)

MSE of Auto-
correlation
(Train Set)

MAE of Auto-
correlation
(Train Set)

RMSE of Au-
tocorrelation

(Test Set)

MSE of Auto-
correlation

(Test Set)

MAE of Auto-
correlation

(Test Set)

Réunion 8.809801 73.17947 3.499218 8.554501 73.17947 4.389758

Romania 3.335597 44.26107 2.133118 6.652899 44.26107 3.023861

Russia 2.254237 3.029526 1.0317 1.740553 3.029526 1.230431

Rwanda 11.03336 237.3087 4.619325 15.40483 237.3087 7.975922

Samoa 0 0 0 0 0 0

San Marino 0 0 0 0 0 0

Saudi Arabia 9.002735 77.40342 5.940556 8.797921 77.40342 6.727711

Senegal 11.0033 35.37583 5.909475 5.947758 35.37583 4.661211

Serbia 7.371186 269.5461 3.115696 16.41786 269.5461 6.858306

Seychelles 8.71973 166.6366 5.428664 12.90878 166.6366 8.045354

Sierra Leone 10.5304 186.5661 4.744025 13.65892 186.5661 7.072295

Singapore 3.037643 21.66193 1.64868 4.654238 21.66193 2.354216

Sint Maarten 0 0 0 0 0 0

Slovakia 13.65778 174.2823 7.24118 13.2016 174.2823 6.851287

Slovenia 10.04812 190.0684 4.762657 13.78653 190.0684 7.438249

Solomon Islands 0 0 0 0 0 0

Somalia 5.218272 314.7882 3.14686 17.74227 314.7882 8.515299

South Africa 3.03295 81.68939 2.224909 9.038219 81.68939 5.821945

South Korea 6.544425 42.94735 4.220322 6.553423 42.94735 4.802469

South Sudan 10.60482 110.5208 5.30904 10.51289 110.5208 6.626357

Spain 1.771953 3.135097 0.968608 1.770621 3.135097 1.226833

Sri Lanka 13.79162 122.2438 8.492347 11.05639 122.2438 9.245106

St. Barthélemy 0 0 0 0 0 0

St. Helena 15.04679 340.1374 11.16958 18.44281 340.1374 13.80565

St. Kitts and Nevis 0 0 0 0 0 0

St. Lucia 4.452625 297.2686 2.350638 17.24148 297.2686 7.538465

St. Martin 0 0 0 0 0 0

St. Pierre and
Miquelon 0 0 0 0 0 0

St. Vincent and
Grenadines 6.327033 278.5168 2.980384 16.68882 278.5168 6.829061

Sudan 13.20677 120.0613 7.874987 10.95725 120.0613 7.766244

Suriname 0 0 0 0 0 0

Sweden 11.12028 58.18556 5.451402 7.627945 58.18556 4.439981

Switzerland 9.620514 106.2319 4.179798 10.30689 106.2319 4.711903

Syria 0 0 0 0 0 0

Taiwan 8.542505 15.32091 4.834299 3.914193 15.32091 3.708639

Tajikistan 0 0 0 0 0 0

Tanzania 13.1928 315.0844 5.843148 17.75062 315.0844 8.659294
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Table 3. Cont.

Country Name
RMSE of Au-
tocorrelation

(Train Set)

MSE of Auto-
correlation
(Train Set)

MAE of Auto-
correlation
(Train Set)

RMSE of Au-
tocorrelation

(Test Set)

MSE of Auto-
correlation

(Test Set)

MAE of Auto-
correlation

(Test Set)

Thailand 1.851518 4.061004 0.964724 2.015193 4.061004 1.023623

Timor-Leste 0 0 0 0 0 0

Togo 12.46273 797.6442 6.573539 28.2426 797.6442 16.86038

Trinidad and Tobago 7.231444 603.9144 3.430544 24.57467 603.9144 10.77016

Türkiye 1.404136 3.480567 0.863614 1.865628 3.480567 0.956541

Tunisia 12.71008 298.4444 7.344201 17.27554 298.4444 11.5082

Turkmenistan 0 0 0 0 0 0

Turks and Caicos
Islands 0 0 0 0 0 0

U.S. Virgin Islands 0 0 0 0 0 0

Uganda 11.36024 450.5361 6.53962 21.22584 450.5361 8.999745

Ukraine 5.236922 22.31077 2.880307 4.723428 22.31077 3.211289

United Arab
Emirates 9.81296 83.8914 6.364535 9.159225 83.8914 6.592083

United Kingdom 0.502379 0.518618 0.357571 0.720152 0.518618 0.395022

United States 2.039879 0.648399 1.119234 0.805232 0.648399 0.716547

Uruguay 11.51783 67.03862 4.861215 8.187712 67.03862 4.772031

Uzbekistan 11.15424 32.51257 3.755985 5.70198 32.51257 3.538633

Vanuatu 0 0 0 0 0 0

Venezuela 6.573665 18.05486 2.575041 4.249101 18.05486 2.422974

Vietnam 1.382188 3.861088 0.888741 1.964965 3.861088 1.055109

Western Sahara 0 0 0 0 0 0

Yemen 0 0 0 0 0 0

Zambia 9.028182 153.7403 5.60782 12.3992 153.7403 7.333309

Zimbabwe 7.700711 137.9502 4.806979 11.74522 137.9502 7.465501

Table 4. Results (RMSE, MSE, and MAE on Train and Test sets) of running Algorithm 3 on the
master dataset.

Country Name
RSME for

LSTM
(Train Set)

MSE for
LSTM

(Train Set)

MAE for
LSTM

(Train Set)

RSME for
LSTM

(Test Set)

MSE for
LSTM

(Test Set)

MAE for
LSTM

(Test Set)

Afghanistan 0 0 0 0 0 0

Åland Islands 0 0 0 0 0 0

Albania 9.7336 94.7436 3.5539 16.6119 275.9568 5.6548

Algeria 6.6306 43.9647 3.5466 15.7074 246.7213 5.0684

American Samoa 0 0 0 0 0 0

Andorra 0 0 0 0 0 0

Angola 6.4459 41.5499 3.3475 2.4405 5.956 2.2836

Antigua and Barbuda 11.0468 122.031 6.0127 4.8425 23.4496 4.6417
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Country Name
RSME for

LSTM
(Train Set)

MSE for
LSTM

(Train Set)

MAE for
LSTM

(Train Set)

RSME for
LSTM

(Test Set)

MSE for
LSTM

(Test Set)

MAE for
LSTM

(Test Set)

Argentina 5.7685 33.2755 2.3629 1.5811 2.4999 1.5477

Armenia 0 0 0 0 0 0

Aruba 0 0 0 0 0 0

Australia 4.1825 17.493 2.2748 5.5779 31.113 2.8582

Austria 11.5956 134.458 4.6221 4.0483 16.3884 3.0249

Azerbaijan 11.5166 132.6323 4.5556 3.4383 11.8218 2.9832

Bahamas 9.9308 98.6212 5.095 6.1092 37.3224 4.3574

Bahrain 8.9706 80.4724 6.1036 11.9741 143.38 7.3561

Bangladesh 4.8026 23.0654 2.796 3.8962 15.1806 2.4461

Barbados 7.2388 52.4007 2.9072 6.7102 45.0273 3.4134

Belarus 0 0 0 0 0 0

Belgium 10.2021 104.0831 3.7289 3.159 9.9791 2.926

Belize 5.5824 31.1636 2.9676 4.4613 19.9031 2.6012

Benin 5.1852 26.8863 3.2811 9.9706 99.4121 4.3851

Bermuda 0 0 0 0 0 0

Bhutan 7.9446 63.1166 4.1197 2.9389 8.6371 2.5615

Bolivia 9.2951 86.3995 4.4767 6.4988 42.2346 4.119

Bosnia and Herzegovina 5.0982 25.9919 1.9803 5.0099 25.0987 1.9786

Botswana 13.3231 177.504 5.5976 5.7334 32.8716 4.4417

Brazil 0.9128 0.8331 0.527 1.8464 3.4091 0.7874

British Virgin Islands 0 0 0 0 0 0

Brunei 9.7336 94.7437 4.1091 7.5546 57.0713 3.8908

Bulgaria 12.4939 156.0973 6.1303 9.1211 83.1944 5.3772

Burkina Faso 15.8841 252.3046 7.2073 5.3209 28.3122 4.2953

Burundi 6.3309 40.08 2.5513 6.8236 46.5612 3.018

Cambodia 11.8045 139.3459 6.8832 9.143 83.6081 7.0224

Cameroon 5.1216 26.2312 2.9666 18.5825 345.3106 7.9996

Canada 2.6211 6.87 1.8806 1.1596 1.3447 1.0067

Cape Verde 12.4699 155.4981 6.69 10.1468 102.9573 6.2734

Cayman Islands 4.6226 21.3684 1.9359 3.6719 13.4827 1.9941

Chad 5.8912 34.7066 2.7076 3.1258 9.7707 2.112

Chile 1.7669 3.122 0.5652 0.3484 0.1214 0.2118

China 15.108 228.2521 8.4072 8.1723 66.7864 6.0264

Colombia 3.9174 15.3456 1.5493 0.9076 0.8236 0.8517

Comoros 4.5292 20.5136 2.1552 4.7915 22.9588 2.7124

Congo—Brazzaville 7.8349 61.3854 3.3439 4.1571 17.2815 2.6733

Congo—Kinshasa 9.666 93.4313 5.0803 4.2111 17.7335 3.7272

Costa Rica 6.258 39.1631 3.4591 18.6752 348.7649 6.6876

Côte d’Ivoire 4.8461 23.4845 1.9603 9.3519 87.4575 3.6104
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Table 4. Cont.

Country Name
RSME for

LSTM
(Train Set)

MSE for
LSTM

(Train Set)

MAE for
LSTM

(Train Set)

RSME for
LSTM

(Test Set)

MSE for
LSTM

(Test Set)

MAE for
LSTM

(Test Set)

Croatia 11.0201 121.4419 4.758 16.1631 261.2445 6.0549

Cuba 8.7039 75.7581 4.2015 11.2715 127.0462 4.359

Curaçao 0 0 0 0 0 0

Cyprus 10.738 115.3048 4.2122 6.805 46.3087 3.9958

Czechia 6.8512 46.9389 2.7323 5.1385 26.4047 2.9119

Denmark 10.105 102.111 4.4315 6.8243 46.5713 3.9834

Djibouti 0 0 0 0 0

Dominica 0 0 0 0 0 0

Dominican Republic 12.6183 159.2206 5.3687 5.3812 28.9569 4.1157

Ecuador 5.7229 32.7513 2.4758 3.9822 15.8582 2.3963

Egypt 6.8698 47.1942 4.7907 5.1174 26.188 4.015

El Salvador 10.4495 109.1914 3.653 2.358 5.5603 2.2743

Equatorial Guinea 10.323 106.5634 4.7069 12.9413 167.4777 5.6865

Estonia 9.6458 93.0424 3.7614 15.7026 246.5723 5.7316

Eswatini 11.5948 134.4386 6.2858 14.3755 206.6537 6.7783

Ethiopia 13.1243 172.2469 7.2049 16.5128 272.6729 8.1253

Faroe Islands 0 0 0 0 0 0

Fiji 14.9577 223.7334 7.9468 9.792 95.8828 6.61

Finland 5.2825 27.9046 2.1186 2.4099 5.8076 1.7092

France 1.1711 1.3714 0.6354 1.4494 2.1007 0.8726

French Guiana 0 0 0 0 0 0

French Polynesia 0 0 0 0 0 0

Gabon 6.2507 39.0707 3.2634 11.2189 125.8636 4.6094

Gambia 9.9696 99.3936 5.6935 8.2451 67.9817 4.8419

Georgia 12.4274 154.4396 5.5388 4.3531 18.9494 3.3823

Germany 1.6134 2.6031 1.0412 1.5203 2.3113 2.3113

Ghana 8.8601 78.5015 5.8293 17.6815 312.6347 8.4393

Gibraltar 0 0 0 0 0 0

Greece 5.5339 30.6236 2.4596 14.0572 197.6036 4.6971

Greenland 0 0 0 0 0 0

Grenada 5.9433 35.3233 3.6672 8.6918 75.5475 4.3353

Guadeloupe 4.5099 20.3389 2.0812 1.7321 3.0003 1.3416

Guam 0 0 0 0 0 0

Guatemala 10.0255 100.5112 4.9873 4.5187 20.4187 3.2909

Guernsey 0 0 0 0 0 0

Guinea 8.7292 76.1994 4.9657 8.9506 80.1132 5.006

Guinea-Bissau 11.9285 142.2889 4.4322 8.488 72.0512 4.0859

Guyana 2.8462 8.1007 1.3192 1.1068 1.2251 1.0212
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Table 4. Cont.

Country Name
RSME for

LSTM
(Train Set)

MSE for
LSTM

(Train Set)

MAE for
LSTM

(Train Set)

RSME for
LSTM

(Test Set)

MSE for
LSTM

(Test Set)

MAE for
LSTM

(Test Set)

Haiti 7.169 51.3949 3.4521 2.2058 4.8655 2.136

Honduras 9.5497 91.1969 5.1703 7.8877 62.2158 5.1749

Hong Kong 7.5697 57.3006 3.9035 6.4165 41.1715 3.5521

Hungary 5.3615 28.7455 2.9516 10.839 117.4837 4.988

Iceland 6.1778 38.1655 3.0443 20.0922 403.6946 6.2659

India 1.3647 1.8625 0.7525 0.7327 0.5368 0.5564

Indonesia 1.0416 1.085 0.7564 0.88 0.7743 0.7189

Iran 5.8074 33.7257 2.8256 4.2489 18.0528 2.6769

Iraq 13.019 169.4941 7.7934 9.1199 83.1722 6.6574

Ireland 1.022 1.0444 0.4302 1.319 1.7398 0.5476

Isle of Man 0 0 0 0 0 0

Israel 8.1316 66.1237 5.1369 12.9617 168.0064 7.0347

Italy 3.1791 10.1064 1.6558 2.0621 4.2523 1.433

Jamaica 4.3067 18.5479 2.5403 7.1705 51.4166 3.1201

Japan 8.6611 75.0151 4.0985 9.7806 95.6608 4.3546

Jersey 0 0 0 0 0 0

Jordan 3.8336 14.6967 1.9276 8.9228 79.616 3.7557

Kazakhstan 0 0 0 0 0 0

Kenya 6.2116 38.5844 3.3232 11.6125 134.8494 5.2644

Kosovo 5.8571 34.3056 2.3665 6.9648 48.5085 3.1255

Kuwait 10.7792 116.1902 6.1713 27.6976 767.1596 13.8547

Kyrgyzstan 0 0 0 0 0 0

Laos 0 0 0 0 0 0

Latvia 9.0329 81.5935 4.0577 15.363 236.0222 4.8141

Lebanon 11.8732 140.9722 5.5145 5.7114 32.6202 3.8723

Lesotho 7.8351 61.3887 5.0121 19.4631 378.8121 9.5002

Liberia 8.8601 78.502 4.7636 13.7897 190.1569 7.7805

Libya 7.2756 52.9345 4.8078 10.27 105.4736 5.4583

Liechtenstein 0 0 0 0 0 0

Lithuania 9.4687 89.6554 3.6307 4.7039 22.1269 2.4119

Luxembourg 5.4328 29.5153 2.0352 19.7734 390.9885 8.0012

Macao 10.3247 106.5986 4.4586 5.4317 29.5037 3.4083

Madagascar 8.1859 67.0095 3.0837 17.8244 317.7098 5.9622

Malawi 9.475 89.7765 3.9896 12.203 148.9136 4.5393

Malaysia 3.2457 10.5344 2.1438 3.4703 12.0428 2.018

Maldives 9.0192 81.3456 3.7675 19.1721 367.5694 7.3871

Mali 6.9092 47.7376 3.441 13.9836 195.5414 7.0168

Malta 9.4541 89.3806 4.5121 3.9692 15.7546 3.1479

Martinique 8.9073 79.3393 4.2866 21.8366 476.8377 10.2019
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Table 4. Cont.

Country Name
RSME for

LSTM
(Train Set)

MSE for
LSTM

(Train Set)

MAE for
LSTM

(Train Set)

RSME for
LSTM

(Test Set)

MSE for
LSTM

(Test Set)

MAE for
LSTM

(Test Set)

Mauritania 13.8648 192.2316 7.3301 8.6391 74.6336 6.0727

Mauritius 8.7301 76.2139 3.9971 19.6992 388.0597 9.2592

Mexico 2.7721 7.6848 1.1133 1.1494 1.321 0.7958

Moldova 0 0 0 0 0 0

Mongolia 5.6577 32.0097 2.1858 3.2 10.2402 1.7923

Montenegro 9.6568 93.2531 2.8187 6.145 37.7609 2.7985

Morocco 13.3511 178.2515 7.0624 11.0452 121.9971 5.9386

Mozambique 8.3459 69.6548 2.3825 5.9153 34.9914 2.6254

Myanmar (Burma) 2.7862 7.7632 1.6896 1.6621 2.7626 1.3676

Namibia 8.8703 78.6822 4.1666 16.1122 259.6045 5.3507

Nepal 12.7623 162.8764 6.2004 3.956 15.6502 3.4753

Netherlands 10.9354 119.582 4.1819 7.2466 52.513 4.3334

New Caledonia 0 0 0 0 0 0

New Zealand 5.3017 28.1082 2.6547 6.0864 37.0443 2.6479

Nicaragua 2.0237 4.0952 0.976 1.2777 1.6325 0.8717

Niger 3.9517 15.6159 2.3765 16.9702 287.9891 5.9528

Nigeria 7.3737 54.371 3.9092 6.8294 46.6407 3.2942

North Macedonia 10.1685 103.3987 3.4865 3.0711 9.4314 2.3936

Northern Mariana Islands 0 0 0 0 0 0

Norway 6.2307 38.8211 3.1065 3.4664 12.0158 2.4974

Oman 8.5704 73.451 5.2916 20.3843 415.5193 8.2069

Pakistan 6.5964 43.5123 3.1347 4.3147 18.6169 2.693

Palestine 0 0 0 0 0 0

Panama 7.9751 63.6014 4.062 6.3065 39.7718 3.3684

Papua New Guinea 0 0 0 0 0 0

Paraguay 10.0941 101.8901 3.8105 7.7531 60.1103 4.1264

Peru 8.3073 69.0105 3.7563 2.2829 5.2117 2.1975

Philippines 0.9395 0.8827 0.5583 1.7197 2.9573 0.716

Poland 3.8525 14.8416 2.1698 4.8759 23.774 2.8208

Portugal 11.0247 121.5435 4.7544 9.3369 87.177 4.4406

Puerto Rico 10.9783 120.5236 4.8751 3.6483 13.3099 3.5062

Qatar 11.8303 139.9554 6.1867 22.1425 490.2905 9.8335

Réunion 9.4096 88.5414 3.8012 8.316 69.1552 4.3294

Romania 3.64 13.2498 2.1245 6.4228 41.2524 2.6677

Russia 2.6839 7.2032 1.3379 1.3486 1.8187 1.0539

Rwanda 13.5939 184.7951 5.4912 14.0024 196.066 7.3586

Samoa 0 0 0 0 0

San Marino 0 0 0 0 0 0

Saudi Arabia 9.7894 95.8327 6.1933 7.8526 61.6632 5.6638
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Table 4. Cont.

Country Name
RSME for

LSTM
(Train Set)

MSE for
LSTM

(Train Set)

MAE for
LSTM

(Train Set)

RSME for
LSTM

(Test Set)

MSE for
LSTM

(Test Set)

MAE for
LSTM

(Test Set)

Senegal 11.5231 132.7812 5.6435 4.8321 23.3488 4.1911

Serbia 7.611 57.927 2.9919 17.0023 289.0791 5.6237

Seychelles 9.7918 95.8801 5.3783 11.0476 122.0504 6.0669

Sierra Leone 11.3299 128.3673 4.4383 12.7055 161.4305 5.8939

Singapore 3.3178 11.0079 1.6058 4.6327 21.4623 2.1795

Sint Maarten 0 0 0 0 0 0

Slovakia 13.6908 187.4372 6.9251 10.8927 118.6518 6.2567

Slovenia 11.0111 121.245 4.6098 16.2637 264.5094 7.3231

Solomon Islands 0 0 0 0 0 0

Somalia 5.5604 30.9179 3.0668 18.3508 336.7535 7.4377

South Africa 3.3346 11.1196 2.3929 7.63 58.2163 3.674

South Korea 6.9248 47.9534 4.1089 6.3652 40.5161 4.3734

South Sudan 12.0022 144.0526 5.4966 10.1429 102.8774 6.1574

Spain 1.9102 3.6489 0.9706 1.5247 2.3247 0.991

Sri Lanka 14.6585 214.872 7.5076 9.0582 82.0501 5.1946

St. Barthélemy 0 0 0 0 0 0

St. Helena 15.9633 254.8255 11.5785 14.6825 215.5751 10.5333

St. Kitts and Nevis 0 0 0 0 0 0

St. Lucia 4.7856 22.9015 2.1552 16.1445 260.6449 4.5544

St. Martin 0 0 0 0 0 0

St. Pierre and Miquelon 0 0 0 0 0 0

St. Vincent and Grenadines 5.2222 27.2719 1.8175 2.3939 5.7306 1.4965

Sudan 14.5817 212.6251 8.5627 10.8392 117.4878 8.11

Suriname 0 0 0 0 0 0

Sweden 11.6771 136.355 4.8831 7.5428 56.8932 3.8568

Switzerland 10.4482 109.1649 4.191 10.3482 107.0847 3.9763

Syria 0 0 0 0 0 0

Taiwan 8.8644 78.5776 5.0119 3.2031 10.2601 3.1236

Tajikistan 0 0 0 0 0 0

Tanzania 14.1549 200.3618 5.935 19.8001 392.0455 9.7499

Thailand 1.9054 3.6305 1.0064 1.9381 3.7561 1.0714

Timor-Leste 0 0 0 0 0 0

Togo 10.8943 118.6865 5.5198 18.8062 353.675 8.7223

Trinidad and Tobago 7.7539 60.1228 3.7991 23.8618 569.3841 10.0506

Tunisia 13.1773 173.6403 6.5249 16.0612 257.9623 6.6638

Türkiye 1.4536 2.1131 0.8458 1.9669 3.8686 0.9816

Turkmenistan 0 0 0 0 0 0

Turks and Caicos Islands 0 0 0 0 0 0

U.S. Virgin Islands 0 0 0 0 0 0
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Table 4. Cont.

Country Name
RSME for

LSTM
(Train Set)

MSE for
LSTM

(Train Set)

MAE for
LSTM

(Train Set)

RSME for
LSTM

(Test Set)

MSE for
LSTM

(Test Set)

MAE for
LSTM

(Test Set)

Uganda 11.888 141.3237 6.5723 20.396 415.9966 9.0454

Ukraine 5.6833 32.3001 2.9119 4.5614 20.806 2.7815

United Arab Emirates 10.7911 116.4471 6.5811 8.1413 66.2805 5.1778

United Kingdom 0.5346 0.2858 0.3984 0.7138 0.5095 0.379

Uruguay 11.8371 140.1164 4.9007 7.7883 60.6579 4.3273

USA 2.082 4.3347 1.0967 0.7681 0.59 0.6998

Uzbekistan 10.5539 111.384 3.6693 6.5989 43.5455 3.4136

Vanuatu 0 0 0 0 0 0

Venezuela 6.7539 45.6146 2.3677 4.2025 17.6609 2.055

Vietnam 1.4709 2.1637 0.8434 1.1411 1.3021 0.7516

Western Sahara 0 0 0 0 0 0

Yemen 0 0 0 0 0 0

Zambia 9.7314 94.6992 5.5258 9.9891 99.782 5.2326

Zimbabwe 8.7034 75.7499 4.6912 9.7996 96.0318 5.0848

It is worth mentioning here that for multiple regions the search interests related to
MVD were constant during this 7-day period. So, for those regions, the RMSE, MSE, and
MAE are reported to be 0 in Tables 2–4. The performance metrics reported in Tables 2–4,
allow comparisons of the performance of the time-series forecasting models (ARIMA,
Autocorrelation, and LSTM) which were developed and implemented on the dataset using
Algorithms 1, 2, and 3, respectively. These performance metrics reveal that there was
not any particular time-series forecasting model that always outperformed the other two
models for every region. However, the results presented in Tables 2–4 serve as a framework
for the identification of the optimal time-series forecasting model for predicting MVD
virus-related web behavior in each region out of this collection of 216 regions (Table 1).
For instance, for the United States, the RMSE values generated by ARIMA, Autocorrelation,
and LSTM for the test set are 0.46291, 0.805232, and 0.7681, respectively. So, based on the
same, it can be concluded that the ARIMA model (Algorithm 1) is best suited to forecast
web behavior related to MVD emerging from the United States. Similarly, for Canada,
the RMSE values generated by ARIMA, Autocorrelation, and LSTM for the test set are
0.845154, 0.932133, and 1.1596. So, based on the same, it can once again be concluded
that the ARIMA model (Algorithm 1) is best suited to forecast web behavior related to
MVD emerging from Canada. However, for China, the RMSE values generated by ARIMA,
Autocorrelation, and LSTM for the test set are 10.89779, 11.35232, and 8.1723. So, based on
the same, it can be concluded that the LSTM model (Algorithm 3) is best suited to forecast
web behavior related to MVD emerging from China. In a similar manner, an optimal model
for performing forecasting of MVD-related web behavior can be deduced for each region
out of all the 216 regions (Table 1), based on a comparison of the results and findings
presented in Tables 2–4.

Thereafter, the results of correlation analysis are presented. As shown in Figure 3,
two types of correlations were investigated. First, the correlation between search interests
related to MVD and search interests related to zombies stated as Model 1 in Figure 3, was
investigated. Second, the correlation between the zombie-related search interests in the
United States and other regions, stated as Model 2 in Figure 3, was investigated. The results
of applying Model 1 to the master dataset are shown in Table 5.
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Table 5. Results of correlation analysis between search interests related to MVD and search interests
related to zombies in 216 regions.

Region Name Pearsons r-Value Pearsons p-Value Nature of Correlation

Afghanistan no correlation no correlation not significant

Åland Islands no correlation no correlation not significant

Albania −0.090702335 0.673391 not significant

Algeria 0.063822565 0.767019 not significant

American Samoa no correlation no correlation not significant

Andorra no correlation no correlation not significant

Angola −0.100306446 0.640968 not significant

Antigua and Barbuda −0.149116075 0.486791 not significant

Argentina 0.600519482 0.001917 statistically significant

Armenia no correlation no correlation not significant

Aruba no correlation no correlation not significant

Australia 0.292544706 0.165371 not significant

Austria 0.120643913 0.574431 not significant

Azerbaijan −0.195744703 0.359316 not significant

Bahamas 0.125273682 0.559721 not significant

Bahrain −0.012787181 0.952711 not significant

Bangladesh −0.35785392 0.085994 not significant

Barbados 0.00500911 0.981467 not significant

Belarus no correlation no correlation not significant

Belgium 0.398859048 0.053522 not significant

Belize −0.056937592 0.79158 not significant

Benin −0.104711124 0.626304 not significant

Bermuda no correlation no correlation not significant

Bhutan 0.926431913 8.35 × 10−11 statistically significant

Bolivia 0.052467553 0.807631 not significant

Bosnia and Herzegovina −0.129338946 0.546946 not significant

Botswana −0.088522736 0.680831 not significant

Brazil −0.094590223 0.660194 not significant

British Virgin Islands no correlation no correlation not significant

Brunei 0.100533352 0.640209 not significant

Bulgaria −0.182949839 0.392176 not significant

Burkina Faso −0.032792753 0.879096 not significant

Burundi 0.7706899 1.05 × 10−5 statistically significant

Cambodia 0.179998984 0.399988 not significant

Cameroon −0.159382001 0.456936 not significant

Canada −0.082672028 0.700944 not significant

Cape Verde −0.108891312 0.612513 not significant

Cayman Islands −0.127280178 0.553399 not significant

Chad −0.112659974 0.600189 not significant

Chile −0.16714496 0.435013 not significant
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Region Name Pearsons r-Value Pearsons p-Value Nature of Correlation

China −0.09808207 0.648424 not significant

Colombia −0.087660028 0.683784 not significant

Comoros 0.138615038 0.518311 not significant

Congo—Brazzaville 0.043158214 0.841295 not significant

Congo—Kinshasa −0.108070629 0.615211 not significant

Costa Rica 0.159105556 0.457727 not significant

Côte d’Ivoire 0.008714964 0.967762 not significant

Croatia −0.23280304 0.27363 not significant

Cuba −0.205104729 0.336332 not significant

Curaçao no correlation no correlation not significant

Cyprus −0.096785209 0.652786 not significant

Czechia 0.149096414 0.486849 not significant

Denmark 0.075805761 0.724799 not significant

Djibouti no correlation no correlation not significant

Dominica no correlation no correlation not significant

Dominican Republic −0.245334391 0.247889 not significant

Ecuador −0.109050224 0.611992 not significant

Egypt −0.213337626 0.316862 not significant

El Salvador −0.042349142 0.844235 not significant

Equatorial Guinea −0.218142785 0.305823 not significant

Estonia −0.075414291 0.726166 not significant

Eswatini 0.279329839 0.18621 not significant

Ethiopia −0.031797057 0.882742 not significant

Faroe Islands no correlation no correlation not significant

Fiji −0.121750998 0.570898 not significant

Finland 0.209053889 0.326905 not significant

France 0.668053741 0.00036 statistically significant

French Guiana no correlation no correlation not significant

French Polynesia no correlation no correlation not significant

Gabon 0.095426878 0.657366 not significant

Gambia −0.171380952 0.423293 not significant

Georgia 0.362478283 0.08173 not significant

Germany −0.010345017 0.961736 not significant

Ghana 0.414314395 0.044129 statistically significant

Gibraltar no correlation no correlation not significant

Greece −0.156444286 0.46538 not significant

Greenland no correlation no correlation not significant

Grenada −0.127654746 0.552222 not significant

Guadeloupe −0.111315525 0.604574 not significant

Guam no correlation no correlation not significant
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Region Name Pearsons r-Value Pearsons p-Value Nature of Correlation

Guatemala −0.153540723 0.473804 not significant

Guernsey no correlation no correlation not significant

Guinea −0.088577053 0.680645 not significant

Guinea-Bissau no correlation no correlation not significant

Guyana −0.075872122 0.724567 not significant

Haiti −0.036662844 0.864948 not significant

Honduras −0.10367876 0.629729 not significant

Hong Kong −0.292628068 0.165245 not significant

Hungary 0.066502821 0.757515 not significant

Iceland −0.134859125 0.529818 not significant

India 0.112910195 0.599374 not significant

Indonesia −0.132631908 0.536698 not significant

Iran 0.255540055 0.228129 not significant

Iraq −0.317866272 0.130111 not significant

Ireland 3.47 × 10−18 1 not significant

Isle of Man no correlation no correlation not significant

Israel 0.094336362 0.661052 not significant

Italy 0.20022065 0.348213 not significant

Jamaica 0.257952873 0.223615 not significant

Japan −0.029859044 0.889845 not significant

Jersey no correlation no correlation not significant

Jordan −0.103746534 0.629504 not significant

Kazakhstan no correlation no correlation not significant

Kenya 0.004281525 0.984159 not significant

Kosovo −0.090909091 0.672687 not significant

Kuwait −0.098624292 0.646603 not significant

Kyrgyzstan no correlation no correlation not significant

Laos no correlation no correlation not significant

Latvia −0.082679045 0.70092 not significant

Lebanon 0.850399011 1.42 × 10−7 statistically significant

Lesotho 0.015013135 0.944491 not significant

Liberia −0.139923493 0.514331 not significant

Libya −0.05606639 0.794702 not significant

Liechtenstein no correlation no correlation not significant

Lithuania −0.157291159 0.462937 not significant

Luxembourg −0.075264917 0.726688 not significant

Macao 0.013177024 0.951271 not significant

Madagascar 0.801624529 2.49 × 10−6 statistically significant

Malawi −0.14378595 0.502668 not significant

Malaysia −0.066896998 0.75612 not significant
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Region Name Pearsons r-Value Pearsons p-Value Nature of Correlation

Maldives −0.027905873 0.897012 not significant

Mali −0.116449557 0.587902 not significant

Malta −0.111690871 0.603348 not significant

Martinique −0.116775918 0.586849 not significant

Mauritania −0.093022948 0.665502 not significant

Mauritius −0.03932881 0.855225 not significant

Mexico −0.083723737 0.697314 not significant

Moldova no correlation no correlation not significant

Mongolia −0.147166174 0.49257 not significant

Montenegro −0.072167714 0.737541 not significant

Morocco −0.046490381 0.829211 not significant

Mozambique −0.020588279 0.923928 not significant

Myanmar (Burma) 0.870771295 3.14 × 10−8 statistically significant

Namibia −0.119343675 0.578592 not significant

Nepal −0.199158241 0.35083 not significant

Netherlands 0.077685891 0.718241 not significant

New Caledonia no correlation no correlation not significant

New Zealand 0.034430784 0.873103 not significant

Nicaragua −0.147146008 0.49263 not significant

Niger −0.104590084 0.626705 not significant

Nigeria 0.370403039 0.074795 not significant

North Macedonia −0.166045252 0.438084 not significant

Northern Mariana Islands no correlation no correlation not significant

Norway −0.316463118 0.13191 not significant

Oman −0.088556261 0.680716 not significant

Pakistan −0.055013307 0.79848 not significant

Palestine no correlation no correlation not significant

Panama −0.093918925 0.662465 not significant

Papua New Guinea no correlation no correlation not significant

Paraguay −0.313893217 0.13525 not significant

Peru 0.415475269 0.04348 statistically significant

Philippines 0.215999599 0.310717 not significant

Poland 0.145549599 0.497387 not significant

Portugal 0.178016266 0.405285 not significant

Puerto Rico 0.170419543 0.425938 not significant

Qatar −0.085169268 0.692335 not significant

Réunion −0.161577247 0.450679 not significant

Romania 0.436293089 0.033055 statistically significant

Russia −0.287145768 0.173678 not significant

Rwanda −0.08690683 0.686366 not significant
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Samoa no correlation no correlation not significant

San Marino no correlation no correlation not significant

Saudi Arabia 0.095406704 0.657434 not significant

Senegal 0.073499192 0.732869 not significant

Serbia −0.267267654 0.206747 not significant

Seychelles 0.070774484 0.742439 not significant

Sierra Leone −0.146647907 0.494111 not significant

Singapore 0.04074778 0.850058 not significant

Sint Maarten no correlation no correlation not significant

Slovakia −0.192522789 0.367435 not significant

Slovenia −0.052580012 0.807226 not significant

Solomon Islands no correlation no correlation not significant

Somalia −0.098682014 0.64641 not significant

South Africa −0.515288309 0.009968 statistically significant

South Korea 0.505629707 0.011716 statistically significant

South Sudan −0.103285849 0.631034 not significant

Spain −0.010395398 0.961549 not significant

Sri Lanka −0.316011788 0.132492 not significant

St. Barthélemy no correlation no correlation not significant

St. Helena 0.046822547 0.828009 not significant

St. Kitts and Nevis no correlation no correlation not significant

St. Lucia −0.059897491 0.780996 not significant

St. Martin no correlation no correlation not significant

St. Pierre and Miquelon no correlation no correlation not significant

St. Vincent and Grenadines −0.199562952 0.349832 not significant

Sudan −0.090807231 0.673034 not significant

Suriname no correlation no correlation not significant

Sweden −0.21857412 0.304843 not significant

Switzerland −0.245401511 0.247755 not significant

Syria no correlation no correlation not significant

Taiwan −0.147082649 0.492818 not significant

Tajikistan no correlation no correlation not significant

Tanzania −0.110427608 0.607477 not significant

Thailand 0.069503569 0.746915 not significant

Timor-Leste no correlation no correlation not significant

Togo −0.109324789 0.611091 not significant

Trinidad and Tobago −0.155064952 0.469372 not significant

Tunisia −0.328907162 0.116573 not significant

Türkiye −0.131694408 0.539607 not significant

Turkmenistan no correlation no correlation not significant

Turks and Caicos Islands no correlation no correlation not significant
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U.S. Virgin Islands no correlation no correlation not significant

Uganda −0.182196864 0.394161 not significant

Ukraine −0.338520286 0.10565 not significant

United Arab Emirates −0.03805935 0.859852 not significant

United Kingdom 0.110722888 0.606511 not significant

USA 0.632244176 0.000918 statistically significant

Uruguay 0.780639033 6.78 × 10−6 statistically significant

Uzbekistan 0.164119111 0.44349 not significant

Vanuatu no correlation no correlation not significant

Venezuela −0.15483844 0.47003 not significant

Vietnam −0.192602426 0.367233 not significant

Western Sahara no correlation no correlation not significant

Yemen no correlation no correlation not significant

Zambia 0.033333374 0.877117 not significant

Zimbabwe −0.135748266 0.527083 not significant

As can be seen from Table 5, the list of regions where there was a statistically significant
correlation between MVD-related searches and zombie-related searches on Google on 4
October 2023, were Argentina, Bhutan, Burundi, France, Ghana, Lebanon, Madagascar,
Myanmar (Burma), Peru, Romania, South Africa, South Korea, United States, and Uruguay.
This is an interesting finding, as historically zombie-related web searches on Google had
no correlation with web searches on Google related to MVD. In this context, 4 October 2023
was selected as the date for investigation because the FEMA emergency alert signal was
broadcast on that day and the conspiracy theory was that this signal would activate the
Marburg virus in people who have been vaccinated and turn some of them into zombies.
Thereafter, the second correlation model (Model 2 in Figure 3) was run on the master dataset
to check for correlations between zombie-related web searches on Google in the United
States and zombie-related web searches from the list of 215 remaining regions. The results
of the same are shown in Table 6.

Table 6. Results of correlation analysis between search interests related to zombies in the United
States and the remaining 215 regions.

Region Name Pearsons r-Value Pearsons p-Value Nature of Correlation

Afghanistan −0.09595 0.6556 not significant

Åland Islands 0.078697 0.714724 not significant

Albania 0.011993 0.955647 not significant

Algeria −0.1165 0.587731 not significant

American Samoa −0.1263 0.556475 not significant

Andorra 0.343671 0.100117 not significant

Angola −0.04035 0.851492 not significant

Antigua and Barbuda 0.088904 0.679529 not significant

Argentina 0.382087 0.065397 not significant

Armenia −0.16178 0.450095 not significant
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Table 6. Cont.

Region Name Pearsons r-Value Pearsons p-Value Nature of Correlation

Aruba 0.014382 0.946823 not significant

Australia −0.3429 0.10093 not significant

Austria 0.046433 0.82942 not significant

Azerbaijan −0.06898 0.748768 not significant

Bahamas 0.124811 0.561182 not significant

Bahrain −0.01622 0.940023 not significant

Bangladesh −0.03106 0.885457 not significant

Barbados −0.08025 0.709316 not significant

Belarus 0.073615 0.732464 not significant

Belgium 0.034153 0.874118 not significant

Belize −0.20214 0.343505 not significant

Benin 0.079631 0.711478 not significant

Bermuda 0.119492 0.578115 not significant

Bhutan −0.02986 0.889843 not significant

Bolivia 0.255697 0.227834 not significant

Bosnia and Herzegovina −0.02618 0.903345 not significant

Botswana 0.005875 0.978264 not significant

Brazil 0.367615 0.077181 not significant

British Virgin Islands 0.042156 0.844936 not significant

Brunei −0.19561 0.359643 not significant

Bulgaria −0.12217 0.569568 not significant

Burkina Faso 0.097461 0.650512 not significant

Burundi 0.005958 0.977956 not significant

Cambodia 0.342958 0.10087 not significant

Cameroon 0.03725 0.862805 not significant

Canada 0.466469 0.021577 statistically significant

Cape Verde 0.096654 0.653228 not significant

Cayman Islands −0.13711 0.522906 not significant

Chad −0.26642 0.20824 not significant

Chile 0.203786 0.339516 not significant

China −0.2226 0.295803 not significant

Colombia −0.04168 0.846681 not significant

Comoros 0.16589 0.438519 not significant

Congo—Brazzaville 0.039259 0.855478 not significant

Congo—Kinshasa −0.01833 0.932257 not significant

Costa Rica −0.04959 0.817994 not significant

Côte d’Ivoire 0.088248 0.681771 not significant

Croatia 0.090166 0.67522 not significant

Cuba 0.024516 0.909469 not significant

Curaçao 0.117277 0.585235 not significant
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Table 6. Cont.

Region Name Pearsons r-Value Pearsons p-Value Nature of Correlation

Cyprus −0.03672 0.864739 not significant

Czechia −0.18693 0.381775 not significant

Denmark 0.207912 0.329615 not significant

Djibouti −0.03659 0.865206 not significant

Dominica 0.014971 0.944645 not significant

Dominican Republic −0.06974 0.74608 not significant

Ecuador 0.307463 0.143872 not significant

Egypt 0.066507 0.757499 not significant

El Salvador −0.06432 0.765254 not significant

Equatorial Guinea −0.18634 0.383297 not significant

Estonia −0.00644 0.976169 not significant

Eswatini −0.02406 0.911145 not significant

Ethiopia 0.099336 0.644216 not significant

Faroe Islands −0.00035 0.998714 not significant

Fiji −0.17233 0.42068 not significant

Finland 0.073906 0.731445 not significant

France 0.098315 0.647641 not significant

French Guiana −0.05422 0.801314 not significant

French Polynesia −0.16382 0.444329 not significant

Gabon 0.128604 0.549245 not significant

Gambia −0.09829 0.647714 not significant

Georgia 0.062136 0.773018 not significant

Germany 0.120046 0.576343 not significant

Ghana 0.035662 0.868604 not significant

Gibraltar 0.062093 0.773169 not significant

Greece 0.091659 0.670135 not significant

Greenland 0.151738 0.479073 not significant

Grenada −0.16569 0.439078 not significant

Guadeloupe −0.17654 0.409241 not significant

Guam −0.19768 0.354478 not significant

Guatemala −0.08468 0.694017 not significant

Guernsey 0.016417 0.939308 not significant

Guinea 0.093087 0.665285 not significant

Guinea-Bissau no correlation no correlation not significant

Guyana −0.05355 0.803751 not significant

Haiti 0.097893 0.649058 not significant

Honduras −0.0947 0.659824 not significant

Hong Kong −0.42424 0.038813 statistically significant

Hungary 0.107359 0.617554 not significant
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Region Name Pearsons r-Value Pearsons p-Value Nature of Correlation

Iceland 0.0398 0.853508 not significant

India 0.039949 0.852966 not significant

Indonesia −0.06099 0.777109 not significant

Iran −0.19558 0.359735 not significant

Iraq 0.135739 0.527111 not significant

Ireland 0.051086 0.812607 not significant

Isle of Man 0.073164 0.734045 not significant

Israel −0.09267 0.666686 not significant

Italy 0.07234 0.736935 not significant

Jamaica 0.213237 0.317096 not significant

Japan −0.35339 0.090271 not significant

Jersey 0.16045 0.453885 not significant

Jordan 0.088905 0.679525 not significant

Kazakhstan −0.20714 0.331451 not significant

Kenya 0.018438 0.931856 not significant

Kosovo −0.14557 0.497324 not significant

Kuwait 0.19782 0.354143 not significant

Kyrgyzstan −0.05025 0.815624 not significant

Laos −0.16247 0.44816 not significant

Latvia 0.287447 0.173207 not significant

Lebanon 0.110645 0.606766 not significant

Lesotho 0.06515 0.762308 not significant

Liberia −0.21222 0.319458 not significant

Libya 0.08889 0.679576 not significant

Liechtenstein −0.07501 0.727568 not significant

Lithuania −0.11568 0.590391 not significant

Luxembourg 0.094974 0.658897 not significant

Macao −0.05698 0.791434 not significant

Madagascar −0.09165 0.670158 not significant

Malawi −0.04478 0.835413 not significant

Malaysia −0.3219 0.125036 not significant

Maldives 0.076795 0.721346 not significant

Mali −0.08522 0.692171 not significant

Malta −0.04598 0.831055 not significant

Martinique −0.27954 0.185867 not significant

Mauritania 0.819754 9.51 × 10−7 statistically significant

Mauritius −0.03636 0.86604 not significant

Mexico 0.393424 0.057171 not significant

Moldova −0.03068 0.886823 not significant

Mongolia 0.412104 0.045387 statistically significant
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Region Name Pearsons r-Value Pearsons p-Value Nature of Correlation

Montenegro −0.09137 0.671121 not significant

Morocco 0.160407 0.454008 not significant

Mozambique −0.17488 0.413754 not significant

Myanmar (Burma) 0.034417 0.873154 not significant

Namibia 0.121531 0.571599 not significant

Nepal −0.11723 0.585373 not significant

Netherlands 0.14285 0.505484 not significant

New Caledonia −0.2661 0.208817 not significant

New Zealand 0.124488 0.562206 not significant

Nicaragua −0.03112 0.885239 not significant

Niger 0.156955 0.463905 not significant

Nigeria 0.217549 0.307175 not significant

North Macedonia 0.173099 0.418589 not significant

Northern Mariana Islands 0.646713 0.000638 statistically significant

Norway 0.08754 0.684195 not significant

Oman −0.03557 0.868938 not significant

Pakistan −0.13549 0.527882 not significant

Palestine 0.098489 0.647058 not significant

Panama 0.168015 0.432593 not significant

Papua New Guinea −0.07654 0.722227 not significant

Paraguay 0.153044 0.475254 not significant

Peru 0.234161 0.270762 not significant

Philippines −0.39349 0.057128 not significant

Poland 0.173083 0.418631 not significant

Portugal 0.143596 0.50324 not significant

Puerto Rico −0.02542 0.906154 not significant

Qatar 0.125201 0.55995 not significant

Réunion 0.054686 0.799656 not significant

Romania 0.025209 0.906921 not significant

Russia −0.05316 0.805152 not significant

Rwanda 0.014844 0.945115 not significant

Samoa −0.28245 0.181134 not significant

San Marino 0.060922 0.777342 not significant

Saudi Arabia −0.03375 0.875606 not significant

Senegal 0.072302 0.737068 not significant

Serbia −0.1206 0.574572 not significant

Seychelles 0.013748 0.949161 not significant

Sierra Leone −0.14807 0.489887 not significant

Singapore 0.255118 0.228925 not significant

Sint Maarten −0.12123 0.572562 not significant
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Region Name Pearsons r-Value Pearsons p-Value Nature of Correlation

Slovakia 0.048977 0.820217 not significant

Slovenia 0.127292 0.553361 not significant

Solomon Islands 0.013335 0.950688 not significant

Somalia 0.109009 0.612126 not significant

South Africa 0.052403 0.807865 not significant

South Korea 0.368282 0.076606 not significant

South Sudan −0.18285 0.392433 not significant

Spain 0.139112 0.516797 not significant

Sri Lanka −0.05101 0.81287 not significant

St. Barthélemy 0.071335 0.740467 not significant

St. Helena 0.001053 0.996102 not significant

St. Kitts and Nevis −0.05172 0.810321 not significant

St. Lucia −0.24535 0.24786 not significant

St. Martin −0.08901 0.679155 not significant

St. Pierre and Miquelon 0.02774 0.897619 not significant

St. Vincent and Grenadines 0.132365 0.537525 not significant

Sudan −0.11314 0.598624 not significant

Suriname 0.054396 0.800697 not significant

Sweden 0.136607 0.524449 not significant

Switzerland 0.017598 0.934952 not significant

Syria 0.015707 0.941928 not significant

Taiwan 0.4215 0.040229 statistically significant

Tajikistan 0.172028 0.421518 not significant

Tanzania −0.1645 0.442414 not significant

Thailand −0.01067 0.960521 not significant

Timor-Leste 0.5755 0.003256 statistically significant

Togo 0.099706 0.642978 not significant

Trinidad and Tobago 0.137748 0.520958 not significant

Tunisia 0.106702 0.619719 not significant

Türkiye 0.284156 0.178401 not significant

Turkmenistan 0.137217 0.522581 not significant

Turks and Caicos Islands 0.319718 0.127765 not significant

U.S. Virgin Islands 0.06417 0.765787 not significant

Uganda 0.013549 0.949899 not significant

Ukraine 0.089928 0.67603 not significant

United Arab Emirates −0.05261 0.80713 not significant

United Kingdom 0.39561 0.055681 not significant

Uruguay 0.204763 0.337156 not significant

Uzbekistan −0.42842 0.036735 statistically significant
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Region Name Pearsons r-Value Pearsons p-Value Nature of Correlation

Vanuatu −0.07757 0.718644 not significant

Venezuela 0.110428 0.607474 not significant

Vietnam 0.118984 0.579746 not significant

Western Sahara 0.151467 0.479867 not significant

Yemen 0.088108 0.68225 not significant

Zambia 0.2617 0.216722 not significant

Zimbabwe −0.07489 0.727997 not significant

As can be seen from Table 6, the list of regions where this correlation was statistically
significant were Canada, Hong Kong, Mauritania, Mongolia, Northern Mariana Islands,
Taiwan, Timor-Leste, and Uzbekistan. This is also an interesting finding, as the FEMA
emergency alert signal was broadcast only in the United States. However, the results show
that the zombie-related searches from the United States had a statistically significant corre-
lation with zombie-related searches emerging from multiple other regions, even though
no emergency signal or similar was broadcast in those regions. Thereafter, an analysis was
also performed to determine the list of regions out of these 216 regions where there was a
positive increase in zombie-related searches between 2 PM and 3 PM (EST) on 4 October
2023. This time range was specifically chosen for this analysis as the FEMA emergency alert
signal was broadcast at 2.20 PM (EST) on 4 October 2023. The results are shown in Table 7.

Table 7. Representation of regions where there was a positive increase in zombie-related searches
between 2 PM and 3 PM (EST) on 4 October 2023.

Region Name Search Interest at 2 PM Search Interest at 3 PM Percentage Increase

Algeria 6 16 166.6667

Argentina 31 39 25.80645

Austria 18 20 11.11111

Belgium 19 22 15.78947

Bolivia 10 22 120

Cambodia 22 77 250

Canada 52 58 11.53846

Costa Rica 5 10 100

Cuba 13 14 7.692308

Denmark 29 33 13.7931

Dominican Republic 4 5 25

Finland 8 9 12.5

France 23 25 8.695652

Greece 8 18 125

Guatemala 4 7 75

Hungary 11 21 90.90909

India 64 70 9.375

Indonesia 62 66 6.451613

Israel 13 16 23.07692
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Table 7. Cont.

Region Name Search Interest at 2 PM Search Interest at 3 PM Percentage Increase

Italy 32 34 6.25

Jersey 2 10 400

Lebanon 6 10 66.66667

Mexico 39 41 5.128205

Morocco 16 19 18.75

Nigeria 31 47 51.6129

Palestine 6 8 33.33333

Poland 39 46 17.94872

Portugal 12 14 16.66667

Qatar 20 23 15

Senegal 8 9 12.5

Slovenia 2 4 100

South Korea 80 87 8.75

Spain 38 41 7.894737

Sri Lanka 22 34 54.54545

Sweden 27 32 18.51852

Switzerland 11 14 27.27273

Taiwan 16 87 443.75

Tunisia 6 11 83.33333

Turks and Caicos Islands 4 7 75

Ukraine 25 28 12

United Kingdom 18 19 5.555556

United States 51 100 96.07843

Uruguay 2 8 300

Vietnam 55 62 12.72727

Zambia 11 14 27.27273

Thereafter, further analysis of the trends of search interests in regions where there was
a statistically significant correlation between MVD-related web searches and zombie-related
web searches was performed. In this analysis, the trends of zombie-related web searches
during the entire day on 4 October 2023 were analyzed.

It is worth noting that in Figures 13 and 14, the Y-axis represents the value of search
interests as obtained from Google Trends and the X-axis represents the hour, where 12.01
to 1.00 is considered hour 1, 1.01 to 2.00 is considered hour 2, and so on. From Figures 13
and 14, the trends and variations of searches in these regions can be observed. For instance,
there was a peak in search interests in multiple regions between 2 PM and 3 PM. At the
same time, it is interesting to note that there was a peak in search interests in Bhutan
between 5 PM and 8 PM. A different pattern can be seen in Argentina, where the peak in
search interests occurred between 2 AM and 5 AM. In a similar manner, these Figures can
be analyzed to interpret the similarities and variations in terms of the trends in zombie-
related web searches on 4 October 2023, in different geographic regions where there was
a statistically significant correlation between MVD-related web searches on Google and
zombie-related web searches on Google.
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The research work presented and discussed in this paper has a few limitations. First,
the data obtained by Google Trends is the data generated by only a certain percentage
of the worldwide population who have access to the internet and opt to use Google as
their primary search engine. Second, it is important to note that the data collected from
Google Trends and analyzed in this work represent the relative search volumes rather than
absolute values of the total amount of Google Searches emerging from different geographic
regions. Third, there is a notable inadequacy related to the disclosure of the methodology
and underlying algorithms used by Google in producing search-interest data.

As per Seltzer [196], “From the perspective of statistical practice, data mining raises three
quite different sorts of ethical issues. These are (a) the suitability and validity of the methods
employed in any given data mining application, (b) the degree to which confidentiality and privacy
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obligations are respected, and (c) the overall aims of a given data mining application”. Each of
these issues highlighted by Seltzer [196] are discussed in detail in the American Statistical
Association’s Ethical Guideline for Statistical Practice [197]. The suitability and validity of
the models used in this work (Algorithms 1–4) have already been discussed in Sections 3
and 4, respectively. The purpose of performing data mining was also discussed in Section 3.
The collected data has been uploaded as a dataset on IEEE Dataport, available at https://dx.
doi.org/10.21227/jm5y-e993, as per the CC BY 4.0 License, so that the results presented in
this paper may be replicated and/or any similar research questions may be investigated
using this dataset. As stated in the support section of Google Trends [198], the data provided
by Google Trends is “anonymized (no one is personally identified)”. Finally, the Privacy Policies
of Google state [199] “We restrict access to personal information to Google employees, contractors,
and agents who need that information in order to process it. Anyone with this access is subject to
strict contractual confidentiality obligations and may be disciplined or terminated if they fail to meet
these obligations”. None of the authors of this paper were Google employees, contractors, or
agents at the time of writing this paper or prior to the same. To summarize, as per the best
knowledge of the authors, the work of this paper met the standards of ethical research in
this field [200].

5. Conclusions

As a result of the outbreak of the MVD in February 2023 and the high fatality rate
of the same on a global scale, people have been devoting a substantial amount of time to
social media platforms and the internet in general over the last few months to acquire and
disseminate information pertaining to MVD. During virus outbreaks in the recent past, such
as COVID-19, Influenza, Lyme Disease, and Zika virus, researchers from different fields
such as Healthcare, Epidemiology, Big Data, Data Analysis, Data Science, and Computer
Science utilized Google Trends to extract and analyze multimodal components of web
behavior of the general public in order to examine, explore, interpret, assess, and forecast the
worldwide perception, readiness, reactions, and response linked to these virus outbreaks.
During such virus outbreaks of the past, the application of time-series forecasting models
such as ARIMA, LSTM, and Autocorrelation to web searches to model, predict, and forecast
the web behavior of the general public in the context of the outbreaks also attracted the
attention of researchers from different disciplines. Furthermore, the paradigms of web
behavior on the internet during virus outbreaks of the past also led to the development
and dissemination of conspiracy theories that led to a range of reactions in the general
public. For example, during the outbreak of COVID-19, a popular conspiracy theory was
that 5G towers had a role in the transmission of the virus. The analysis of such conspiracy
theories during virus outbreaks of the past has also been relevant to understanding the
underlying patterns of information seeking and sharing on the internet. The outbreak
of MVD and an electronic alert (for testing purposes) sent by the Federal Emergency
Management Agency (FEMA) to all television, radio, and mobile devices throughout the
United States on 4 October 2023 has given rise to an unconventional conspiracy theory
that associates the Marburg Virus with a zombie outbreak. Specifically, the conspiracy
theory was centered around the concept that the FEMA alert would activate the Marburg
virus in people who have been vaccinated and turn some of them into zombies. This
conspiracy theory spread like wildfire on the internet to the extent that soon after the
FEMA alert signal was broadcast, Jeremy Edwards (press secretary and deputy director
of public affairs at FEMA) provided a statement to the public to clarify that he was not
a zombie. Due to this recent outbreak of MVD and the conspiracy theory involving
the same, it is imperative to conduct an investigation into the underlying patterns of
web behavior in order to obtain a comprehensive understanding of the paradigms of
information seeking and sharing used by the general public in this particular context. No
prior work in this field thus far has focused on the same. Therefore, the work presented in
this paper aims to address this research gap and makes multiple scientific contributions
to this field. It presents the results of performing time-series forecasting of the search

https://dx.doi.org/10.21227/jm5y-e993
https://dx.doi.org/10.21227/jm5y-e993
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interests related to MVD emerging from 216 different regions on a global scale using three
models—ARIMA, LSTM, and Autocorrelation. The results of this analysis in terms of
RMSE, MSE, and MAE are presented and discussed. The results of this analysis present
the optimal model for forecasting web behavior related to MVD in each of these regions.
For instance, for the United States, the RMSE values generated by ARIMA, Autocorrelation,
and LSTM for the test set are 0.46291, 0.805232, and 0.7681, respectively. So, based on the
same, it can be concluded that the ARIMA model is best suited to forecast web behavior
related to MVD emerging from the United States. Similarly, for Canada, the RMSE values
generated by ARIMA, Autocorrelation, and LSTM for the test set are 0.845154, 0.932133,
and 1.1596. So, based on the same, it can once again be concluded that the ARIMA model
is best suited to forecast web behavior related to MVD emerging from Canada. However,
for China, the RMSE values generated by ARIMA, Autocorrelation, and LSTM for the
test set are 10.89779, 11.35232, and 8.1723. So, based on the same, it can be concluded
that the LSTM model is best suited to forecast web behavior related to MVD emerging
from China. The paper also presents the findings from investigating two types of web
behavior for correlations. First, the correlation between search interests related to MVD
and search interests related to zombies was investigated. Second, the correlation between
zombie-related search interests in the United States and other regions was investigated. The
findings from the first analysis show that the list of regions where there was a statistically
significant correlation between MVD-related searches and zombie-related searches on
Google on 4 October 2023 were Argentina, Bhutan, Burundi, France, Ghana, Lebanon,
Madagascar, Myanmar (Burma), Peru, Romania, South Africa, South Korea, United States,
and Uruguay. This is an interesting finding, as historically zombie-related web searches on
Google had no correlation with web searches on Google related to MVD. The findings from
the second analysis show that the list of regions where this correlation was statistically
significant were Canada, Hong Kong, Mauritania, Mongolia, Northern Mariana Islands,
Taiwan, Timor-Leste, and Uzbekistan. This is also an interesting finding, as the FEMA
emergency alert signal was broadcast only in the United States. Finally, the paper also
presents an analysis of variation and degree of increase of search interests in the context
of this conspiracy theory emerging from different geographic regions. As per the best
knowledge of the authors, no similar work has been carried out in this field thus far. Future
work would involve detecting and analyzing the popular topics represented in Google
Searches in relation to this conspiracy theory to interpret the specific themes of information
seeking and sharing on Google in the context of this conspiracy theory.
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