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Abstract: This study presents a model for predicting photovoltaic power generation based on me-
teorological, temporal and geographical variables, without using irradiance values, which have
traditionally posed challenges and difficulties for accurate predictions. Validation methods and
evaluation metrics are used to analyse four different approaches that vary in the distribution of the
training and test database, and whether or not location-independent modelling is performed. The
coefficient of determination, R2, is used to measure the proportion of variation in photovoltaic power
generation that can be explained by the model’s variables, while gCO2eq represents the amount
of CO2 emissions equivalent to each unit of power generation. Both are used to compare model
performance and environmental impact. The results show significant differences between the loca-
tions, with substantial improvements in some cases, while in others improvements are limited. The
importance of customising the predictive model for each specific location is emphasised. Furthermore,
it is concluded that environmental impact studies in model production are an additional step towards
the creation of more sustainable and efficient models. Likewise, this research considers both the
accuracy of solar energy predictions and the environmental impact of the computational resources
used in the process, thereby promoting the responsible and sustainable progress of data science.

Keywords: energy; prediction; regression; r-squared

1. Introduction

Energy, or more specifically electricity, is one of the most significant pillars of society.
Not only it is of vital importance to people’s daily lives, but due to the growing popula-
tion and economic growth its consumption will continue to increase substantially in the
future [1,2]. The changing landscape of energy systems and the increasing dependence
on electricity make it necessary to develop strategies to mitigate the impact of energy
disruptions [3].

As global efforts to reduce greenhouse gas emissions and decarbonisation continue,
renewable energy sources such as solar and wind power are being integrated into the
energy systems faster than any other fuel in history [1,4].

Solar Photovoltaic energy has emerged in the last few decades as the most flourishing
source of power generation [5]. Not only is it a clean and renewable energy, but it is also
economically accessible with minimal maintenance.

Nevertheless, they have the disadvantage of high dependence on climatic factors,
significant variability and high cost of energy storage. Hence, forecasting the generation
of Photovoltaic (PV) installations for a given period of time can help to make optimal
use of resources, allowing for reduced emissions, lower costs, safe operation and better
integration into the grid [6,7].

Furthermore predicting solar energy generation offers intriguing prospects and simul-
taneous challenges as an accurate forecasts enables efficient grid integration and informed
decision-making in energy trading and storage [8].
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The prediction of PV power generation has been extensively studied in the literature
using different approaches; generally a single location is used [9–12].

Previous generation values or the irradiance [9,13] at the time are typically used as
the only or most important characteristics for predicting PV generation. The problem with
this is the lack of a record of this data and its difficult accessibility. For this reason, a large
number of studies concentrate on the prediction of irradiance [14–20].

In particular, irradiance is a parameter that, depending on the location, may be very
accessible or not recorded at all. In addition, it requires precise instruments for its measure-
ment, calibration and maintenance, which generates uncertainty about the reliability of
the data.

In this study the prediction of the power of Photovoltaic installation was based on the
selection of both geographical, seasonal and meteorological variables. Irradiance was not
considered as a variable because of the problems associated with its use.

Machine learning approaches and techniques are studied with the aim of developing
a model that is able to predict Photovoltaic generation. Building on previous work by
Pasion et al. [21], an algorithm is developed that predicts the energy generated by Photo-
voltaic installations.

The general objectives of this work and their corresponding sub-objectives are defined
as follows:

1. Reproduce the initial results of the baseline study

1.1 Develop and apply the instantaneous prediction model proposed in the study
by Pasion et al.

1.2 Extend the state of the art.

2. Propose a different approach to improve the results on predicting the actual Photo-
voltaic generation.

2.1 Explore and identify relevant Machine Learning algorithms aimed at improv-
ing the prediction performance.

2.2 Propose different folding approaches and compare their results with the previ-
ous techniques.

This paper is structured as follows: Section 1 introduces the topic and its motivation.
Section 2 outlines the context in which the work was carried out, along with the objectives
and structure of the study. Section 3 presents the dataset and the methodology employed for
its management, as well as the construction of models using different techniques. Section 4
presents the main results. Finally, Section 5 summarises the findings and suggests future
directions for research.

2. State-of-the-Art

A number of scientific works have been dedicated to predicting the efficient use of
solar panels and the electricity they generate due to the fact that new energy sources are
increasingly important for our contemporary society. This section summarises the research
carried out over the past few years and the results achieved.

Kim et al. [22] propose a model for predicting the solar power, obtained from Pho-
tovoltaic (PV) panels and for optimising the tilt angle in the case of Daegu city in South
Korea. For this purpose, the authors apply several Machine Learning algorithms like:
Linear Regression (LR), Random Forest (RF), Gradient Boosting (GB), Support Vector Ma-
chine (SVM), Least Absolute Shrinkage and Selection Operator (LASSO), and also consider
several influential factors (weather conditions, availability of dust and aerosol).

It has been proven that such an approach leads to increased effectiveness at energy
production. Wei [23] investigates how to improve the functionality of PV systems, which are
located in Tainan City, Taiwan. Solar radiation of the panels’ surface at various tilt angles is
predicted via the utilisation of four Machine Learning (ML) algorithms: LR, RF, Multilayer
Perceptron (MLP) and K-nearest Neighbors (kNN). The optimal value of the solar panels’
tilt angel is also found. Machine learning techniques related to the construction of Artificial
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Neural Networks (ANNs) are used by Kamal et al. [24] to reconfigure the topology of PV
arrays and to achieve their optimal workability .

The findings point out that the presented mechanism with very high accuracy is
capable of to outlining the best topologies (among the following: series parallel, parallel,
bridge link, honeycomb, and total cross tied) for the PV panels’ deployment. Dependence
between the correct PV panels’ installation and their efficiency is investigated by Kim and
Byun [25] as the authors predict power generation. The XGBoost algorithm is applied for
solving a regression task and to give a very accurate prognosis regarding the electricity
generation. Khilar et al. [26] propose a model, based on the deep belief network, for
detecting the dust level on solar panels. Such an investigation is important for the places
where there is almost no wind and rain, and at same time, the PV system must work
efficiently. The considered input variables include dust particles on panels, temperature,
and solar irradiance, which are important for identifying the frequency of the manual or
automatic cleaning of the panels.

Khan et al. [27] rely on ensemble ML algorithms RF, XGBoost, and catboost to find
the optimal direction for the placement of PV panels. The proposed approach can predict
solar power at two levels: at the first level, base models are created via the utilisation of
XGBoost and catboost, and the resulted predictions are used at the second level where RF
is applied for building a metamodel. The task of this metamodel is to learn what is the
best way to use the predictions gathered from the base models. The presented method is
evaluated and compared with other ML algorithms and it is proved its better performance
is proven. Gautam M et al. [28] show a framework to maximise the usage of solar power,
which is built on the Decision Tree (DT) algorithm. The idea behind it is to find a strategy
for switching solar and grid systems, which are connected to a common node, to perform
efficient energy management. This, DT predicts the switching configuration and, in this
way, the cost for electricity is reduced at an increased consumption.

Predicting the usage of solar power in summer and winter in Mashhad, Iran is dis-
cussed by Almadhor et al. [29]. This investigation is conducted in the context of the
realisation of smart cities and through stimulating the citizens to used renewable energy.
The prediction is performed via constructed ANN, which solves a linear regression prob-
lem. Shaaban et al. [30] use the Machine Learning approach to evaluate the dust volume
on solar Photovoltaic panels as dust contributes to decreasing the generated energy. The
proposed model, based on a regression tree, is compared with an ANN model in order
to be demonstrated its high performance. When a threshold value of the dust level is
reached, a cleaning procedure is triggered. Bulusu et al. [31] propose a predictive model
that points out the hourly energy production from solar microgrids. This novel approach
uses ANNs and includes two parts: (1) for features extraction and (2) for predicting the
energy production via the created models for the given hours. The authors recommend not
using data older than two years to train the models, as solar panels degrade over time and
significant differences in the training and testing data can occure. An investigation related
to the performance of PV grid-based systems is presented by Yar et al. [32] as the analysis
relies on several methods like: conducting experiments, accomplishing simulations, and
applying Machine Learning. The Logistical Regression technique is utilised to evaluate the
difference in the performance between simulation results and real-time systems. Then, the
findings obtained regarding monoperk and polyperk crystalline systems as well as their
advantages and bottlenecks are discussed.

Mahesh et al. [33] propose a novel method for evaluating the efficiency of PV panel
systems. It combines the Maximum Power Point Tracking (MPPT) technique and SVM
Machine Learning to predict the maximal value of the power generated by a PV solar panel.
The presented method is compared with the available ones (ANN, fuzzy logic, perturb and
observe, and incremental conductance) and its high performance is proven. The problem
regarding how power effective the PV panels placed on the building’s façade are examined
by Vahdatikhaki et el. [34]. Surrogate modeling is applied to simulate solar radiation as
the last one is predicted via the RF algorithm in three scenarios. Then, an optimisation
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procedure is applied regarding the obtained RF model hyperparameters via the usage of
the genetic algorithm. The authors conclude that such an approach possesses big potential
to simulate and predict with high accuracy the solar radiation of vertically placed PV panels
on the buildings’ surface.

Pasion et al. [21] uses Machine Learning techniques to construct models based on data
from twelve sites in the United States of America to predict Photovoltaic energy production
without irradiance data. Incorporating irradiance data into solar energy forecasts poses
challenges in terms of data accuracy, computational complexity, maintenance costs, lower
interpretability and limitations in regions with sparse historical data. The study uses
readily available parameters such as location, time and weather conditions. By comparing
six Machine Learning algorithms, including deep learning and ensemble models, the
study identified distributed random forest as the most effective. The study also found
that ambient temperature, humidity and cloud cover were the most important variables
for prediction. The authors highlight the possibility of precise predictions even without
irradiance data.

3. Materials and Methods

In this section, the materials and methods used in this project are described.

3.1. Data Set Description

This work uses the Pasion et al. location data [21,35], which contains data collected
from twelve Department of Defense (DoD) solar installations at different locations within
the United States of America (USA) from the year 2017 to 2018.

The information is stored in an unique CVS file with 21,046 rows and 17 columns. The
attributes included are included in the following, along with brief descriptions:

• GENERATION

– PolyPwr: Solar power generation in Watts.

• TEMPORAL

– Date: Date of measurement.
– Time: Time of measurement.
– Month: Month of measurement.
– Hour: Hour of measurement.
– YRMODAHRMI: Combination of year, month, day, hour and minute.
– Season: Season of the year.

• GEOGRAPHICAL

– Location: Geographic location of measurement site.
– Latitude: Latitude coordinates in degrees.
– Longitude: Longitude coordinates in degrees.
– Altitude: Altitude in meters.
– Pressure: Atmospheric pressure in millibars.

• METEOROLOGICAL

– Humidity: Humidity level in percentage.
– AmbientTemp: Ambient temperature in Celsius.
– Wind.Speed: Wind speed in km/h.
– Visibility: Visibility distance in km.
– Cloud.Ceiling: Height of cloud cover in km.

The sampling period is highly variable throughout both the date and location, but
ranges from 15 min to hours.

3.2. Data Preprocesing

For the experiments, the original database, which had already been pre-processed,
was used. The authors of the baseline study [21], filtered the database to cover exclusively
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cover the time window from 10:00 a.m. to 3:45 p.m. This was in order to avoid modelling
periods of darkness and low sunlight, also reducing losses caused by shadows. The variable
“YRMODAHRMI” mentioned above is dropped in this stage as it does not bring new
information. There were not missing values within the database.

In this study, the categorical variable “Season” is used after one-hot encoding, depend-
ing on the model used, and normalisation of the data is conducted. From now on this
dataset is called DB1.

3.3. Data Visualization

In the context of this work, it is useful to identify the relationships between features
and their effect on the variable to be predicted, which is “PolyPwr” for DB1. In this section,
the visual analysis for the database is provided.

In Figure 1, all locations of this study are displayed on a map, along with their names
and circles of different colours and sizes, representing the number of instances in DB1 for
each place. In addition, the accompanying graph on the right side of the figure provides
information about the colour coding and its corresponding frequencies.

Figure 1. Geographic locations of the studied sites (This map was generated using the Python
package plotly.io).

The larger the circle, the more data there is for that place. For example, the number of
instances in Kahului is substantially smaller than in Travis, and it is reflected in their size
and colour difference.

Finally, it can be seen that for Peterson and USAFA there is an overlap of their circles,
since they are geographically very close as well as have a similar number of instances,
therefore making it difficult to distinguish one from the other.

In Table 1, descriptive statistics for numeric variables can be found. The columns
describe the number of instances (count), their mean (x), their standard deviation (std),
their lowest value (min), their highest value (max), and, the 25th, 50th, and 75th percentiles.

The representation of the variable to be predicted, Power Generation, is presented in
Figure 2, which displays the distribution of the different values this variable assumes. It is
evident that sufficient representation is provided from 0 to 23. Beyond this range, however,
the same statement cannot be made.
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Table 1. Descriptive statistics of numerical variables in DB1. x represents the arithmetic mean of
the sample.

Variable Count x Std min 25% Median 75% max

Latitude 21045 38.2 6.3 20.9 38.2 39 41.1 47.5
Longitude 21045 −108.6 16.4 −156.4 −117.3 −111.2 −104.7 −80.1
Altitude 21045 798.8 770.7 1 2 458 1370 1947
Month 21045 6.6 3 1 4 7 9 12
Hour 21045 12.6 1.7 10 11 13 14 15

Humidity 21045 37.1 23.8 0 17.5 33.1 52.6 100
AmbientTemp 21045 29.3 12.4 −20 21.9 30.3 37.5 65.7

PolyPwr 21045 13 7.1 0.3 6.4 13.8 18.9 34.3
Wind.Speed 21045 10.3 6.4 0 6 9 14 49

Visibility 21045 9.7 1.4 0 10 10 10 10
Pressure 21045 925.9 85.2 781.7 845.5 961.1 1008.9 1029.5

Cloud.Ceiling 21045 516 301.9 0 140 722 722 722

Figure 2. Distribution of power generation.

In Figure 3, the correlation between numerical variables in DB1 are shown. Most
notable, the relationship between Pressure and Altitude is noted, having an almost a perfect
negative correlation, which is consistent with their expected relationship.

Figure 3. Correlation matrix of all numerical variables within the database.
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A detailed view of the correlation between PolyPwr and the rest of the numerical
variables is shown in Figure 4. The graph shows that it has a high positive correlation
with ambient temperature and cloud cover, and a negative correlation with humidity and
latitude. In particular, there appears to be almost no correlation with longitude and month.

Figure 4. Correlation of all numerical variables in the database with the variable PolyPwr.

3.4. Input Parameters Description

The primary objective of this study is to develop accurate predictions of the energy
self-supply from Photovoltaic generators. In order to do so, the study uses temporal,
geographical, and meteorological features.

In the work of Pasion et al. [21], the variables used were latitude, month, hour, ambient
temperature, pressure, humidity, wind speed, cloud ceiling, and visibility.

In the present study, however, the variables altitude and season are used as well.

3.5. Regressors

In this section, the importance and use of regressors in the experiments are explained.
Likewise, the process of model building is generally outlined and the parameterisation
chosen for each specific regressor is detailed.

The type of regressor chosen for the model plays a key role in the final result to be
obtained. Here, regressors are used to model the relationship between the solar energy pro-
duction and the temporal, meteorological, and geographical data, allowing us to optimise
the accuracy of both real-time and hourly predictions and facilitate solar energy monitoring
and design for practical applications.

In the baseline study [21,35], H2O AutoML was used. The H2O module is “an
open source, in-memory, distributed, fast, and scalable Machine Learning and predictive
analytics platform that allows you to build Machine Learning models on big data and
provides easy productionalisation of those models in an enterprise environment”, according
to its own documentation [36]. There, six different regressors, with their default input
values, were used and compared. The best results were obtained using the distributed
random forest regression algorithm, so our comparisons will be made exclusively with
their implementation of this model.

For this experimentation, the library scikit-learn is used for the models of Linear
Regression and Random Forest. For the Artificial Neural Network, Tensorflow and Keras
were used.
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Random Forest

In the application of this work, the best results are obtained using the following
parameterisations for RF:

• The number of trees was set to {50, 100, 250, 500}.
• To continue growing each tree at the training stage, a minimum number of instances

was required per split, 4, and also per leaf, 2.
• The maximum features considered for splitting a node were the square root of the

total number of features (sqrt).
• The maximum depth of each tree was limited to 22.

3.6. Experimental Pipeline

This section describes the methods used in order to perform both the cross validation,
validation, and evaluation of the models. In addition to do this, all models were tested on
five different seeds.

This is a key in guaranteeing both the reliability of the predictions and the models
ability to handle unknown data.

3.6.1. Validation Methods

The cross validation used in this project allows us to go through several subsets of
the main dataset in a systematic way, testing the model in different scenarios. Its use is
described below:

All the Database

In this approach, the entire dataset is used for validation, where k-fold cross validation
is used with a k of 5. Essentially, training is performed using four subsets of the five from
the entire dataset, while the remaining one is used for testing. This is repeated k times, in
this case five, so that all subsets are used for validation.

By Location

For this case, the same cross-validation technique is used as in the previous case,
however, a separate model is trained and tested for each individual location.

Taking One Location Out

In this case, the data from one location is omitted from the training process, while
the rest of the locations are used in their entirety. The performance of the model with the
omitted data is then evaluated. This allows us to see the model’s ability to generalise it to
unknown scenarios.

Taking One Location Out but Leaving One Week

In the last approach, a whole location is not excluded from training, instead, informa-
tion from the first week is retained while excluding the rest of its time horizon. For the
remaining locations, all instances are used. Afterwards, the same procedure is repeated
while including the location details that were omitted during the model learning phase
for evaluation.

Then, the same procedure as before is performed, using the omitted location informa-
tion that has not been fed in the model learning process for its evaluation.

This gives us insight on how providing contextual 1 week temporal data can improve
or worsen the working model.

3.6.2. Evaluation Methods

In this section, the evaluation metrics used to assess the effectiveness of the models
are discussed.
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R-Squared (R²)

The coefficient of determination, often known as R-squared, is the proportion of the
total variance of the dependent variable that can be explained by the estimated regression
model [37].

A value close to 1 means that the model is able to explain a large part of the variation
in the data, lower values mean that it lacks this ability and therefore does not fit the data
well. It is calculated using the following formula:

R2 = 1 − SSres

SStot

where

SSres: Sum of squared differences between predicted and actual values
SStot : Total sum of squared differences between actual values and their means.

By this definition, we can see that if SSres is less than SStot, this means that the
predictions are worse than a model that simply predicts the median of the true values and
that R2 will take a negative value.

CO2 Emissions

To assess the climate impact, calculations were performed to measure the carbon
emissions generated during both the training and testing processes of various models
based on Random Forest (RF). These emissions, quantified in grams of carbon dioxide
equivalent (gCO2eq), are attributed to the cloud or the personal computing resources used
for code execution.

All the experiments described were implemented locally in Spain. As of 2022, the
carbon efficiency in the country was 0.163 kgCO2eq/kWh according to Carbon Footprint
Ltd. [38].

The equipment used to perform this work had an Intel Core i5-10300H CPU of
2.50 GHz, 8 Gb of RAM, and a NVIDIA GeForce GTX 1650 Ti GPU and all estimations were
calculated with the CodeCarbon emissions tracker version 222 [39], thanks to the previous
work of Lacoste et al. [40] and Lottick et al. [41].

4. Results

As seen in the previous section, the performance of the algorithms has been evaluated
on the basis of four different metrics, but for the analysis of the results, R-squared and
the total emissions estimated in gCO2eq are used as comparison metrics. Only the most
relevant models are presented below and their results consist on the average of the folds
over five different seeds.

4.1. Results Related to Objective One

As mentioned in the introduction, the results of Pasion et al. are reproduced. In partic-
ular, the instantaneous prediction model proposed in the study is developed and applied,
and the state of the art is extended.

4.1.1. All the Database

Using the methodology of Pasion et al, their results were successfully reproduced
with minimal variation. Figure 5 displays the R2 values obtained from this experiment,
illustrating two model variations that differ only in the number of estimators used, i.e., the
number that accompanies their name.

Thanks to this, we can visually compare the difference between both versions. As
the number of estimators increases, the model’s fit improves. However, this enhancement
results in higher emissions due to the need for extended runtime.

https://github.com/mlco2/codecarbon
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Figure 5. Comparative graph of the models proposed by Pasion et al.

4.1.2. By Location

A fair comparison of the results cannot be made because the cross-validation values
using location modelling were not provided in the original study. However, Figure 6
displays the results using 50 estimators. The emissions generated to train these 12 models
were 0.028 gCO2eq.

In the box plot, we observe that the model is capable of fine-tuning itself greatly for
certain places such as Camp Murray and Travis, reaching values close to 0.8. On the other
hand, Kahului, JDMT, and USAFA stand out as having obtained the worst results, with the
worst-case obtaining values lower than 0.4, well below the mean.

Figure 6. Results obtained from location modelling using the parametrisation proposed by Pasion et al.
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4.2. Results Related to Objective Two

To enhance the precision of PV generation prediction, a distinct approach is suggested.
Various hyperparameterisations of the algorithm are analysed, and different folding tech-
niques are compared with the previous methods mentioned earlier.

4.2.1. All the Database

In Figure 7, three different implementations of the model proposed in our experiment
are displayed. These results are obtained using the Random Forest algorithm and the
parameterisations mentioned above. As depicted, each implementation is associated with
a specific number of estimators, indicated next to the implementation name.

The most impressive outcomes are obtained using the model RF 1-500, followed by
RF 1-100 and RF 1-50. This pattern shows a consistent relationship between the number of
estimators used and larger R2 results, reinforcing our earlier observations.

Alongside, the results of the base experiments are presented. Notably, our results
surpassed those of the base study conducted by Pasion et al. [21]. It can be observed that
our method not only achieves enhanced R2 values but also a significant reduction in the
quantity of emissions generated. This improvement further stresses the effectiveness of our
approach in achieving both greater predictive accuracy and environmental sustainability.

Figure 7. Comparison between results obtained from modelling using the parametrisation proposed
by this study and by Pasion et al.

4.2.2. By Location

In Figure 8, the results are shown when using our model with random forest and
250 estimators, with which we obtain a better R2 and total emissions of 0.074 gCO2eq.
However, similar results were obtained with 50 and 100 estimators, with emissions of
0.026 gCO2eq, which is lower than the original.

4.2.3. Taking One Location Out

Figure 9 shows that omitting a site from the training leads to significantly worse results,
including negative values of R2, as observed for JDMT. This effect could be attributed to
the differences in climate between the locations. The employed model was the RF model
with 250 estimators and generated 0.126 gCO2eq emissions.

4.2.4. Taking One Location Out but Leaving One Week

By giving the model a week of context, it can be seen in Figure 10 that even using a
very small time horizon compared to the rest of the data, all models are improved and
none of them have negative results anymore. The model used was the RF model with
250 estimators, which produced 0.171 gCO2eq emissions.
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Figure 8. Results obtained from location modelling using the parametrisation proposed by this study.

Figure 9. Results from location modelling excluding a location using our proposed model.

Figure 10. Results from location modelling excluding a location and providing 1-week data context
using our proposed model.
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5. Discussion and Conclusions

In this work, different models have been proposed with the aim of optimising the
prediction of the energy generated by Photovoltaic installations. Not only the values
obtained using the method proposed by Pasion et al. were improved, but also the number
of emissions was decreased.

When modelling by location, prominent differences were observed depending on
the location, with both very high and very low values of accuracy. Omitting a location
from the training showed how all models worsened, reaching negative R2 results, but then
giving a week of data from the location in the form of context made all the models improve,
demonstrating that only a small time horizon has an impact, achieving better results.

This is due to the strong dependence of Photovoltaics on environmental factors, but
especially on geographical factors, where two installations at the same latitude but one at
the sea level and the other at a high altitude will behave differently even on the same day;
the same is true for sites at different latitudes where the difference between the seasons is
more noticeable.

On the other hand, it has been found that across the different experiments, as a general
rule, using the same parameterisation, the higher the number of estimators, the better the
prediction results, but that this increases the carbon emissions generated by the model.

Therefore, we conclude that, within the scope of this research, it was not possible to
make a single model that can be adapted to all the sites studied, due to the considerable
variations in the different variables. Prediction models should be designed considering
the individual characteristics of the sites where they are to be implemented, thus improv-
ing the prediction results and allowing for a more efficient management of renewable
energy resources.

Finally, it is important to include environmental impacts in the process of developing
and using models. While they may seem marginal in this case, they are emissions that
are emitted over the entire life cycle of the model. This approach allows us to create
reliable models while managing all of our resources in a sustainable and environmentally
responsible manner, so we believe that minimising and quantifying these emissions is an
important angle to include in all model development.
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